
Medical Research Archives. Volume 5, issue 3. March 2017. 
 
Probabilistic Modeling of Blood Vessels for Segmenting Magnetic 

Resonance Angiography Images 

 

Copyright 2017 KEI Journals. All Rights Reserved.     
1 

 

Probabilistic Modeling of Blood Vessels for Segmenting Magnetic 
Resonance Angiography Images 

Authors & Affiliations 

Ahmed Shalaby 

BioImaging Lab, University of 
Louisville, KY, USA 

Fatma Taher 

Department of Electrical and 
Computer Engineering, Khalifa 
University, Abu Dhabi, UAE 

Maryam El-Baz 

BioImaging Lab, University of 
Louisville, KY, USA 

Mohammed Ghazal 

Electrical and Computer 
Engineering Department Abu 
Dhabi University,Abu Dhabi, UAE 

Mohamed Abou El-Ghar 

Radiology Department, Urology 
and Nephrology Center, University 
of Mansoura, Egypt. 

Ali Takieldeen 

BioImaging Lab, University of 
Louisville, KY, USA 

Correspondence 

Ayman El-Baz 

BioImaging Lab, University of 
Louisville, KY, USA  

Abstract 

A new adaptive probabilistic 
model of blood vessels on 
magnetic resonance angiography 
(MRA) images is proposed. The 
model accounts for both laminar 
(for normal subjects) and turbulent 
blood flows (in abnormal cases 
like anemia or stenosis) and results 
in a fast algorithm for extracting a 
3D cerebrovascular system from 
MRA data. To accurately separate 
blood vessels from other regionsof-
interest, the marginal distribution 
is precisely approximated with an 
adaptive linear combination of the 
derived model and a number of 
dominant and subordinate discrete 
Gaussians, rather than with a 
mixture of only three pre-selected 
Gaussian and uniform or Rician 
components. To validate the 
accuracy of the proposed 
algorithm, a special 3D 
geometrical phantom motivated by 
statistical analysis of the time-of-
flight MRA (TOF-MRA) data is 
designed. Experiments with 
synthetic and 50 real data sets 
confirm the high accuracy and 
reduced computational cost of the 
proposed approach. 
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1. Introduction 

Accurate 3D cerebrovascular 
system segmentation from 
magnetic resonance 
angiography (MRA) images is 
one of the most important 
problems in practical computer-
assisted medical diagnostics. 
Phase Contrast MRA (PC-
MRA) provides good 
suppression of background 
signals and quantifies blood 
flow velocity vectors for each 
voxel. time-of-flight MRA 
(TOF-MRA) is less quantitative, 
but it is fast and produces 
images with high contrast. The 
most popular techniques for 
extracting blood vessels from 
MRA data are scale-space 
filtering, centerline based 
methods, deformable models, 
statistical models, and hybrid 
methods. 

Multiscale filtering enhances 
curvilinear structures in 3D 
medical images by convolving 
an image with Gaussian filters 
at multiple scales [4-7]. 
Eigenvalues of the Hessian at 
each voxel are analyzed to 
determine the local shapes of 
3D structures (by the 
eigenvalues, voxels from a 
linear structure, like a blood 
vessel, differ from those for a 
planar structure, speckle noise, 
or unstructured components). 
The multiscale filter output 
forms a new enhanced image 

such that the curvilinear 
structures become brighter 
whereas other components 
become darker [4]. Such an 
image can be directly visualized, 
thresholded, and segmented 
using a deformable model. 
Alternatively, the obtained 
eigenvalues define a candidate 
set of voxels corresponding to 
the centerlines of the vessels [5]. 
Multiscale filter responses at 
each of the candidates determine 
the likelihood that a voxel 
belongs to a vessel of each 
particular diameter. The 
maximal response over all the 
diameters (scales) is assigned to 
each voxel, and a surface model 
of the entire vascular structure is 
reconstructed from the 
estimated centerlines and 
diameters. After segmenting the 
filtered MRA image using 
thresholding, anisotropic 
diffusion techniques are used to 
remove noise, while preserving 
small vessels [6]. Lacoste et al. 
[7] proposed a multiscale 
technique based on Markov 
marked point processes to 
extract coronary arteries from 
2D X-ray angiograms. Coronary 
vessels are modeled locally as 
piece-wise linear segments of 
varying locations, lengths, 
widths and orientations. The 
vessels’ centerlines are extracted 
using a Markov object process 
modeled by a uniform Poisson 
process. Process optimization 
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was achieved via simulated 
annealing using a reversible 
Markov chain Monto Carlo 
algorithm. 

Centerline minimal path-
based techniques [8-10] 
formulate the two-point 
centerline extraction as the 
minimum cost integrated along 
the centerline path. Gu¨lsu¨n 
and Tek [8] used multi-scale 
medialness filters to compute 
the cost of graph edges in a 
graph-based minimal path 
detection method to extract the 
vessels’ centerlines. A post 
processing step, based on the 
length and scale of vessel 
centerlines, was performed to 
extract the full vessel centerline 
tree. P`echaud et al. [9] 
presented an automatic 
framework to extract tubular 
structures from 2D images by 
the use of shortest paths. Their 
framework combined multiscale 
and orientation optimization to 
propagate 4D (space + scale + 
orientation) paths on the 2D 
images. Li and Yezzi [10] 
represented the 3D vessel 
surface as a 
4D curve, with an additional 
non-spatial dimension that 
described the radius (thickness) 
of the vessel. They applied a 
minimal path approach to find 
the minimum path between user 
defined end points in the 4D 
space. The detected path 
simultaneously described the 

vessel centerline as well as its 
surface. To overcome the 
possible shortcut problem of 
minimal path techniques (i.e., 
track a false straight shortcut 
path instead of following the 
true curved path of the vessel), 
Zhu and Chung [11] used a 
minimum average-cost path 
model to segment the 3D 
coronary arteries from CT 
images. In their approach, the 
average edge cost is minimized 
along paths in the discrete 4D 
graph constructed by image 
voxels and associated radii. 

Deformable model 
approaches to 3D vascular 
segmentation attempt to 
approximate the boundary 
surface of the blood vessels [12-
17]. An initial boundary, called 
a snake [18], evolves in order to 
optimize a surface energy which 
depends on image gradients and 
surface smoothness. To increase 
the capture range of the 
evolving boundary, Xu and 
Prince [19] used a gradient 
vector flow (GVF) field as an 
additional force to drive snakes 
into object concavities, which 
was later used to segment the 
blood vessels from 3D MRA 
[12]. Geodesic active contours 
[20] implemented with level set 
techniques offer flexible 
topological adaptability to 
segment the MRA images [13] 
including more efficient 
adaptation to local geometric 
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structures represented. Fast 
segmentation of blood vessel 
surfaces is obtained by inflating 
a 3D balloon with fast marching 
methods [14]. 

Holtzman-Gazit et al. [15] 
extracted blood vessels in 
Computed tomography 
angiography (CTA) images 
based on variational principles. 
Their framework combined the 
Chan-Vese minimal variance 
model with a geometric edge 
alignment measure and the 
geodesic active surface model. 
Manniesing et al. [16] proposed 
a level set-based vascular 
segmentation method for 
finding vessel boundaries in 
CTA images. The level set 
function is attracted to the 
vessel boundaries based on a 
dual object (vessels) and 
background intensity 
distributions, which are 
estimated from the intensity 
histogram. Recently, Forkert et 
al. [17] used a vesselness filter 
to guide the direction of a level 
set to extract vessels from TOF-
MRA data. Compared to scale-
space filtering, deformable 
models produce much better 
experimental results, but have a 
common drawback, namely, 
manual initialization. Also, both 
group approaches are slow when 
compared to statistical 
approaches. 

Statistical extraction of a 
vascular tree is completely 

automatic, but its accuracy 
depends on the underlying 
probability models. The MRA 
images are multi-modal in that 
the signals (intensities, or gray 
levels) in each region of interest 
(e.g., blood vessels, brain 
tissues, etc) are associated with 
a particular dominant mode of 
the total marginal probability 
distribution of signals. To the 
best of our knowledge, adaptive 
statistical approaches for 
extracting blood vessels from 
the MRA images have been 
proposed so far only by Wilson 
and Noble [21] for the TOF-
MRA data and Chung and 
Noble [22] for the PC-MRA 
data. The former approach 
represents the marginal data 
distribution with a mixture of 
two Gaussians and one uniform 
component for the stationary 
cerebrospinal fluid (CSF), brain 
tissues, and arteries, 
respectively, whereas the latter 
approach replaces the Gaussians 
with the more adequate Rician 
distribution. To identify the 
mixture (i.e., estimate all its 
parameters) a conventional EM 
algorithm is used in both cases. 
It was called a ”modified EM” 
in [21], after replacing gray 
levels in individual pixels 
considered by their initial EM 
scheme with a marginal gray 
level distribution. Actually, such 
a modification returns to what 
has been in common use for 
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decades for density estimation 
(see e.g., [23]), while the 
individual pixels appeared in 
their initial scheme only as a 
verbatim replica of a general 
EM framework. 

Different hybrid approaches 
have attempted to combine the 
aforementioned approaches. For 
instance, a region-based 
deformable contour for 
segmenting tubular structures is 
derived in [24] by combining 
signal statistics and shape 
information. Law and Chung 
[25] guided a deformable 
surface model with the second 
order intensity statistics and 
surface geometry to segment 
blood vessels from TOF- and 
PC-MRA images. A 
combination of a Gaussian 
statistical model with the 
maximum intensity projection 
images acquired at three 
orthogonal directions [26] 
allows for extracting blood 
vessels iteratively from images 
acquired by rotational 
angiography. Alternatively, Hu 
et al. [27] extracted the object 
boundaries by combining an 
iterative thresholding approach 
with region growing and 
component label analysis. 

Mille et al. [28] used a 
generalized cylinder (GC) 
region-based deformable model 
for the segmentation of the 
angiogram. The GC is modeled 
as a central planar curve, acting 

as a medial axis, and variable 
thickness. The GC is deformed 
by coupling the evolution of the 
curve and thickness using 
narrow band energy 
minimization. This energy was 
transformed and derived in 
order to allow implementation 
on a polygonal line deformed 
using a gradient descent 
approach. Tyrrell et al. [29] 
proposed a super-elliposoid 
geometric model to extract the 
vessel boundaries from in-vivo 
optical slice data. Their 
approach predicted the direction 
of the centerline utilizing a 
statistical estimator. Chen and 
Metaxas [30] combined a prior 
Gibbs random field model, 
marching cubes, and deformable 
models. First, the Gibbs model 
is used to estimate object 
boundaries using region 
information from 2D slices. 
Then, the estimated boundaries 
and the marching cubes 
technique are used to construct a 
3D mesh specifying the initial 
geometry of a deformable 
model. Finally, the deformable 
model fits the data under the 3D 
image gradient forces. 
Recently, Shang et al. [31] 
developed an active contour 
framework to segment coronary 
artery and lung vessel trees 
from CT images. A region, 
competition based active 
contour model is used to 
segment thick vessels based on 
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a Gaussian mixture model of the 
gray-level distribution of the 
vessel region. Then, a 
multiscale vector field, derived 
from the Hessian matrix of the 
image intensity, is used to guide 
the active contour through thin 
vessels. Finally, the surface of 
the vessel is smoothed using a 
”vesselness” function that 
selects between a minimal 
principal curvature and a mean 
curvature criterion. Gao et al. 
[32] used a statistical model to 
find the main cerebrovascular 
structure from TOF-MRA. 
Then, an edge-strength function 
that incorporates statistical 
region distribution and gradient 
information is used to guide a 
3D geometric deformable model 
to deal with the under-
segmentation problem. Dufour 
et al. [33] proposed an 
interactive segmentation 
method that incorporates 
component-trees and example 
based segmentation to extract 
the cerebrovascular tree from 
TOF-MRA data. Liao et al. [34] 
used a parametric intensity 
model to extract thick and most 
thin vessels from 7 Tesla MRA 
images. To fill the remaining 
gaps, a generative Markov 
random field method was 
applied. 

The previous overview 
shows the following limitations 
of the existing approaches: 

1. Most of them presume 
only a single image type 
(e.g., TOF- or PC-MRA). 

2. Most of them require user 
interaction to initialize a 
vessel of interest. 

3. Some deformable models 
assume circular vessel 
cross sections; this holds 
for healthy people, but not 
for patients with a stenosis 
or an aneurysm. 

4. All but statistical 
approaches are 
computationally 
expensive. 

5. Known statistical 
approaches use only 
predefined probability 
models that cannot fit all 
the cases because actual 
intensity distributions for 
blood vessels depend on 
the patient, scanner, and 
scanning parameters. 

The rest of the paper is 
organized as follows: in Section 
2, we briefly discuss the 
proposed probability model of 
vascular signals and the 
adaptive model of Multi-modal 
MRA. Section 3 presents the 
experiments of proposed 
segmentation methodology of 
the blood vessels. Section 4 
explains the validation, and 
compares our results with other 
alternatives. Finally, 
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conclusions are drawn in 
Section 5. 

2. The Proposed Method 

This paper derives a more 
general probabilistic model of 
blood vessels on MRA images 
to account for normal and 
abnormal states of the vascular 
system, i.e. for both laminar and 
turbulent blood flow without 
and with stenosis. To accurately 
separate blood vessels from 
other regions-of-interest, the 
marginal distribution is 
precisely approximated with an 
adaptive linear combination of 
the derived model and a number 
of dominant and subordinate 
discrete Gaussians rather than 
with a mixture of only three pre-
selected Gaussian and uniform 
or Rician components. 
Experiments show that our 
adaptive model results in 
significantly improved 
segmentation of MRA images. 
More physical and mathematical 
foundation of the proposed 
method can be found in [36-42]. 

2.1. Probability Model of Vascular 
Signals 

Conventional models of 
intensities for vessel voxels in 
[1, 21] assume laminar blood 
flow with parabolic velocity 
flow through a circular cross-
section of the vessel [2]. Let q; q 
∈ Q = {0,1,...,Q−1}, be the Q-

ary signals (image intensity, or 
gray level).Then the intensity 
profile for a vessel is

 where qr is the 
intensity at the distance r from 
the center of a vessel of radius R 
and the constant qmax ≤ Q − 1 
depends on the scanner. In this 
case the intensities over the 
circular cross-section are 
distributed uniformly with the 
probability 
density:  in the 
range [0,qmax]. Nonetheless, the 
laminar flow 
holds only for subjects with 
normal vascular systems [3]. 

Various diseases change 
either blood velocity or 
viscosity or both and cause the 
turbulent flow. Turbulence 
depends on the diameter of 
vessel and blood velocity and 
viscosity. For example, due to 
lower blood viscosity, anemia 
leads frequently to turbulence. 
Artery constrictions increasing 
blood velocity (see Fig. 1) and 
vascular diseases such as 
thrombosis, embolism, 
thyrotoxicosis, atherosclerosis, 
and valvular heart diseases also 
result in turbulence [3]. 

Since the MRA may 
represent both normal and 
abnormal subjects, the model of 
vascular signals can be built as a 
mixture of the laminar and 
turbulent components [38, 39]: 
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max max max

1 2
( ) (1 ) ( ) ( )

( )
lam lamq q q

q q q q

β βϕ β ϕ βϕ −= − + ≡ +
−

 (1) 

Probability densities for different mixing weights β ∈ [0,1] in this 
model are presented in Fig. 2. 

 

Figure 1: Influence of constriction (C) on the blood velocities in a 
vessel (arrows indicate flow directions) and ranges of velocities at each 
cross-section along the vessel [3]. 

 (b)  (c) 

Figure 2: Probability densities for Eq. (1) with β = 0.0,0.2,0.4,...,1.0 
and synthetic crosssection images of a blood vessel with laminar (β = 
0, b) and turbulent (β = 1, c) flow. 

2.2. Adaptive Model of Multi-modal 
MRA 

MRA images contain three 
regions-of-interest (signal 
classes): (i) darker CSF from 
bones and fat, (ii ) brain tissues 

(gray matter and white mater), 
and (iii ) brighter blood vessels. 
Marginal signal distributions for 
the first two classes are typically 
of intricate shape that differs 
much from the conventional 
individual Gaussians in [1, 21]. 

( a ) 
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The model in Eq.(1) describes 
only circular vessels and should 
have additional terms changing 
its shape to account for 
variations of the blood flow due 
to stenosis. Generally, no 
predefined probability model 
can accurately describe all the 
signal variations due to changes 
in blood velocity and viscosity, 
vessel diameter, and scanner 
sensitivity. 

Therefore, we propose an 
adaptive probability model to 
handle both normal and 
abnormal MRA images. It 
mixes three submodels 
representing the above-
mentioned major image areas 
(abbreviated by “csf”, “bt”, and 
“bv”, respectively) [37, 41]: 

 

 
( , , )

( ) ( )i i
i bv csf bt

PMRA q qα ϕ
∈

= ∑                                                (2) 

where αi are the mixing weights 
(α1 + α2 + α3 = 1). Each of the 
three submodels φi(q) is a 
mixture of one dominant 
component with a linear 
combination of several sign-
alternate subordinate 
components chosen to closely 
approximate corresponding 
parts of an empirical marginal 
signal distribution 
Femp = (femp(q) : q ∈ Q). 

The subordinate part of each 
submodel φi(q) is a linear 
combination of discrete 
Gaussians (LCDGs) with Ci,p 

positive and Ci,n negative 
components under obvious 
restrictions on their weights [42-
45]. To identify the three 
submodels (estimate parameters 
of their dominant components 
and numbers and parameters of 
the positive and negative 
subordinate components), we 
use the EM-based techniques 
introduced in [35]. The only 
difference here is in the 
nonanalytical estimation of the 
parameter β on the M-steps 
using the gradient-basedsearch 
for the global maximum of the 
goal likelihood function: 

max

0

( ) ( | ) ( ) ln ( | )
q

emp bv
q

G i bv q f q qβ π ϕ β
=

= =∑                            (3) 

where π(i q) is the responsibility of the submodel i for q [36, 41]. 

3. Segmentation of blood vessels 

To justify the adaptive model 
of Eq. (2), Fig. 3 shows how 

different scanners effect the 
measurements. These three 
TOF-MRA slices were acquired 
for a subject with anemia using 
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a Picker 1.5T Edge MRI scanner 
with resolution of 512 × 512 × 
93, a subject with parietal lobe 
hemorrhage using a Signa 
Horizon GE 1.5T scanner with 
resolution 512 × 512 × 150, and 

a normal subject using a state-
of-art Siemens 3T scanner with 
resolution 512×512×125, 
respectively. The slice thickness 
is 1 mm in all the cases. 

 

 

Figure 3: Three TOF-MRA slices with their empirical distributions 
femp(q) overlaid with the dominant mixtures p3(q). 

The models of Eq. (2) were 
built with the EM-based 
approach (see [35] for detail). 
Figure 3 presents both the 
marginal empirical distributions 
Femp and the initial 3-component 
dominant mixtures for them 
containing the two Gaussian 
components and our model of 
blood vessels in Eq. (1). The 
estimated parameters β of the 
latter are 0.92, 0.18, and 0.038 
for the slices A, B, and C in Fig. 
3, respectively, that reflects 
levels of blood turbulence 
expected from physics-based 
considerations. 

Figure 4 illustrates basic 
stages of our EM-based 
initialization and final 
refinement of the whole model 
of Eq. (2) for the slice A. Given 
the dominant mixture P3 = 
(p3(q) : q ∈ Q), the number and 
the parameters of the 
subordinate DGs are estimated 
from the absolute deviations 
femp(q) − p3(q) by minimizing 
the residual approximation 
error. In this case the eight DGs 
are added to the dominant 
mixture to obtain the best initial 
3-class model. The final model 
is obtained using the EM-based 
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refinement (here, the first nine 
refining iterations increase the 
log-likelihood of the model 
from −5.9 to −4.4. The final 

submodels of each class provide 
the best segmentation thresholds 
t1 = 64 and t2 = 187. 

 

 
 

Figure 4: Deviations and absolute deviations femp(q) − p3(q) (a), the best 
mixture (b) to model the absolute deviations, the residual absolute error 
(c) in function of the number of DGs approximating the deviations, the 
initial (d) and final (e) 3-class model w.r.t. the empirical distribution, 
the log-likelihood dynamics (f) for the model refinement, the 
individual components (g), and the class submodels (h) for the refined 
model. 
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Figure 5: Estimated Wilson-Noble’s model [21] (a) and its class 
submodels (b). 

To highlight the advantages 
of our approach, Fig. 5 shows 
results obtained with the model 
of Wilson and Noble [21] (the 
mixture of two Gaussians and 
φlam(q)) . The quality is 
evaluated by the Levy distance 
[36] and the absolute error 
between the empirical 
distribution and the estimated 3-
class model. In this example, the 
Wilson-Noble’s and our 
approach result in the Levy 
distance of 0.14 and 0.0002 and 
the absolute error of 0.14 and 

0.004, respectively. The lower 
Levy distance and absolute error 
suggest our approach yields the 
notably better approximation 
ensuring more accurate 
separation of the blood vessels 
from their background. As 
shown later in Fig. 8 the 
typically higher separation 
threshold of the Wilson-Noble’s 
approach, e.g. t2 = 203 versus 
our t2 = 187 in this particular 
example, results in many missed 
blood vessels.   
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Figure 6: Slice in Fig. 3,B: our final (a,b) and the Wilson-Noble’s (c,d) 
3-class model (a,c) with the individual class submodels (b,d). 

 
 0 50 100150200 q 250 (c)0 50 100150200 q 250 (d) 

Figure 7: Slice in Fig. 3,C: our final (a,b) and the Wilson-Noble’s (c,d) 
3-class model (a,c) with the individual class submodels (b,d). 

Figures 6 and 7 show our and 
Wilson-Nobble’s models 
estimated for the slices in Figs. 
3, B and C, respectively. In 
these examples our models are 
more accurate. We compared 
both the approaches on 50 real 
MRA data sets, too. Results of 
the six tests in Fig. 8 as well as 

other tests confirm that the 
WilsonNoble’s approach fails to 
detect large fractions of vascular 
trees validated by an expert–
radiologist. Our approach is 
more accurate in restoring detail 
of the brain vascular tree. 
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Table 1: Minimum εn, maximum 
εx, and mean ε  ̄ segmentation 
errors, and standard deviations σ 
of errors on the geometrical 3D 
TOF-MRA phantoms for our 
(OA) and the Wilson–Noble’s 
(WN) approaches as well as for 

three other segmentation 
algorithms using iterative 
thresholding (IT) [27] and 
gradient based (DMG) [18] or 
gradient vector flow based 
(GVF) [19] deformable models. 
 

 
 
 
 
 

 OA WN IT DMG GVF 

εn,% 0.09 0.10 4.81 10.1 2.45 

εx,% 2.10 12.1 33.1 21.8 13.6 

ε¯ ,% 0.61 6.20 18.8 11.9 5.96 

σ,% 0.93 7.40 8.41 3.79 2.79 
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Figure 8: Each raw relates to one patient: our (a) and the Wilson-
Noble’s (b) segmentation, and their differences (c): the red voxels are 
detected by the both approaches and the green ones are missed by the 
latter one. 
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Figure 9: Segmentation of 3D phantoms with our (OA) and the Wilson-
Noble’s (WN) approaches (the same color code as in Fig. 8). 

4. Validation 

It is very difficult to 
accurately get manually 
segmented complete vasculare 
trees to validate our algorithm. 
To quantitatively evaluate its 
performance, we created three 
3D phantoms in Fig. 9 with 
geometrical shapes similar to 
blood vessels with known 
ground truth. These three 
phantoms mimic bifurcations, 
zero and high curvature existing 
in any vascular system, and their 
changing radii simulate both 
large and small blood vessels. 
To make the distributions of 
these three phantoms similar to 

MRA images, first we compute 
the empirical class distributions 
p(q|bv), p(q|csf), and p(q|bt) 
from the signals that represent 
blood vessels, CSF, and brain 
tissues from the MRA images 
segmented by a radiologist (we 
have selected 200 images from a 
data set of over 5000 images of 
50 subjects). Then, The 
phantoms signal are generated 
by using the inverse mapping 
methods. The resulting 
phantom’s histograms are 
similar to those in Fig. 4(e). 

The total segmentation error 
is evaluated by a percentage of 
erroneous voxels with respect to 

“Cylinder” Error0.18% Error3.97% 

“Spiral” Error1.34% Error9.52% 

“Tree” Error0.29% Error4.64% 

Phantom OA WN 
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the overall number of voxels in 
the ground truth 3D phantom. 
Figure 9 shows that, on average, 
our approach is 14 times more 
accurate than the Wilson-
Noble’s one. Table 1 gives error 
statistics for 440 synthetic slices 
segmented in the phantoms with 
both approaches and compares 
them to three other known 
segmentation algorithms. 

Therefore, comparing to the 
more conventional probability 
model in [21], our adaptive 
model notably improves the 
accuracy of segmenting the 
MRA images acquired with 
different scanners. The 
conventional approaches either 
assume a purely laminar blood 
flow or pre-select a simple 
parametric distribution in 
attempts to take account of 
actual signal features. By 
contrast, our model is derived 
from the physical description of 
the blood flow and thus can 
accurately handle both normal 
and abnormal cases. Moreover, 
the estimated weights β ∈ [0,1] 
in Eq. (1) provide a natural 
measure of the percentage of 
abnormality of the blood flow 
for a particular subject. 

5. Conclusions 

We presented a new 
physically justified adaptive 
probability model of blood 
vessels on magnetic resonance 
angiography (MRA) images. It 
accounts for laminar (normal 
subjects) and turbulent blood 
flow (abnormal cases like 
anemia or stenosis). Better 
accuracy of segmenting MRA 
images with our approach 
compared to more conventional 
algorithms is confirmed by 
experts-radiologists and also 
validated using special 3D 
geometrical phantoms. 

Our present C++ 
implementation of the algorithm 
on a single 2.4 GHz Pentium 4 
CPU with 512 MB RAM takes 
about 49 sec to segment 93 
TOFMRA slices of size 512 × 
512 pixels each. 

The proposed model is 
suitable for segmenting both 
TOF-MRA and PCMRA 
images. Experiments with the 
latter type was not included in 
this paper due to space 
limitations. But the algorithm’s 
code, sample data, and 
segmentation results for all the 
MRA images will be provided 
in our web page. 
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