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Abstract 

Large-scale data sets of cancer patients have been being 

generated due to the significantly reduced cost of sequencing 

full genome of individual patients using the Next Generation 

Sequencing (NGS) technology. Comprehensive genomics data 

analysis revealed the diverse dysfunctional biomarkers of 

individual cancer patients, which are believed to be 

responsible for heterogeneous drug response. Thus precision 

medicine is becoming popular that aims to find the optimal 

treatments for individual patients based on their genomics 

profiling data. However, it is challenging to interpret the 

complicated and distinct genome mutation and variation 

patterns, and associate them to optimal treatments. Though a 

set of approaches and data resources have been reported to 

reposition FDA approved drugs and investigational drugs for 

specific diseases, novel and sophisticated computational 

approaches are needed urgently to reposition drugs for cancer 

subtypes or individual patients. In this study, some widely 

used computational approaches and pharmacogenomics data 

resources for repositioning optimal drugs are introduced and 

discussed, which aims to provide a general overview of the 

genomic data-driven drug repositioning, and help readers 

understand the topic conveniently.  
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1. The need and feasibility of data-driven 

drug repositioning 

There is no routine cancer. Due to the 

advance of the next generation sequencing 

(NGS) technology (1), it becomes possible 

to sequence a human genome with around 

US$1,000 (2). Consequently, large-scale 

datasets of genomics of cancer patients have 

been being generated rapidly. For example, 

in The Cancer Genome Atlas (TCGA), 

comprehensive genomics data sets, e.g., 

mutation, methylation, copy number 

aberration, gene expression, and protein 

expression of 14551 cases (samples) from 

38 types of cancer (by March 21, 2017) are 

publically available at National Cancer 

Institute (NCI's) Genomic Data Commons 

(GDC) website (GDC URL: 

https://gdc.cancer.gov/). Another convenient 

way to access TCGA data and other cancer 

genomics data sets is using the cBioPortal 

(3) (cBioPortal URL: 

http://www.cbioportal.org/). The genomics 

data sets can be download using the R (a 

widely used free software for statistical data 

analysis, and for the bioinformatics data 

analysis) Package 'cgdsr', which provides a 

set of R functions of data 

accessing/downloading from the Cancer 

Genomics Data Server (CGDS), hosted by 

the Computational Biology Center at 

Memorial-Sloan-Kettering Cancer Center 

(MSKCC).  Systematic genomics data 

analyses based on the TCGA data sets have 

revealed diverse cancer subtypes bearing 

distinct dysfunctional biomarkers (4-6), 

which are believed to be responsible for 

heterogeneous drug response. Another two 

projects, i.e., the Cancer Cell Line 

Encyclopedia (CCLE) (7) and Genomics of 

Drug Sensitivity in Cancer (GDSC) (8) were 

reported in 2012 to show the association of 

genomics biomarkers and drug response of 

about 1000 cancer cell lines. The drug 

response data and genomics profiles of these 

cancer cell lines are publically available 

(CCLE URL: 

https://portals.broadinstitute.org/ccle/home 

and GDSC URL: 

http://www.cancerrxgene.org/). Therefore, 

personalized treatment (precision medicine) 

or health care should be designed or tailored 

for individual patients based on unique 

biomarkers embedded in the personal 

genomics data as well as the lifestyle and 

environment factors (9). In early 2015, the 

precision medicine initiative (PMI) was 

launched by president Barack Obama (10). 

One of the short-term goals of PMI is to 

expand the precision medicine in cancer 

research to find new and more effective 

treatments for various kinds of cancer 

patients based on the increased knowledge 

of the heterogeneity and landscape of cancer 

genetics. Since it is challenging to select 

effective drugs from thousands of FDA 

approved drugs and investigational drugs 

with for individual patients and cancer 

subtypes bearing distinct and complicated 

genome mutations and variations, genomics 

data-driven computational approaches are 

needed urgently to associate personal 

genomics data with optimal drugs (11) or 

drug combinations (12).  

For easy understanding, in this 

study, drug repositioning that discovers new 

uses or new indications of existing drugs 

(FDA approved and investigational drugs) 

(13) will be used to represent discovering 

optimal drugs for individual patients or 

cancer subtypes based on personal genomics 

profiles. Though a set of computational 

approaches and data resources have been 

reported for drug repositioning (11). 

However, it remains an open problem to find 

(reposition) the new and more effective 

drugs for individual cancer patients based on 

the personal genomics data. There are two 

major challenges. First, there is no effective 

drug that can directly target on the 

dysfunctional or mutated genes. Secondly, 

cancer is a complex disease that is not 

controlled by single gene defects, but 

regulated by a group of coordinated genes 

(14). The aim of this study is to provide an 

overview of the genomics data-driven drug 

repositioning. Some widely used 

computational approaches and 

pharmacogenomics data resources for drug 

https://gdc.cancer.gov/
http://www.cbioportal.org/
https://portals.broadinstitute.org/ccle/home
http://www.cancerrxgene.org/
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repositioning are summarized and discussed 

in the following sections. 

 

2. Reverse gene expression signature 

based drug prediction 

In 2006, the ―Connectivity Map‖ data was 

reported in Science (11) that proposed to 

connect drugs, genes and diseases via the 

‗similarity‘ among gene expression 

signatures (i.e., a set of gene selected based 

on fold change or p-value) in a set of tumor 

cell lines caused by perturbations of 

chemical (drugs) and genetic (genes) 

reagents. The gene expression signatures of 

diseases can be obtained by comparing the 

gene expression between disease tissues and 

normal tissues. To estimated the similarity 

score between two given gene expression 

signatures, the Gene Set Enrichment 

Analysis (GSEA) (15) approach is widely 

used. Figure 1 illustrates the reverse GSEA 

score based drug repositioning in CMAP. 

Connectivity Map (CMAP) is the most 

widely used and successful approach and 

data resource for drug repositioning (11), 

which has been widely used to reposition 

drugs for various types of cancers (16, 17). 

The CMAP data resources and tools for 

repositioning drugs using CMAP are 

accessible at URL: https://clue.io/. With the 

disease gene signature, users can query 

(reposition) drugs directly from the above 

CMAP website. More CMAP data and other 

perturbation data sets can be found at The 

Library of Network-Based Cellular 

Signatures (LINCS) Program URL: 

http://lincsportal.ccs.miami.edu/dcic-portal/.  

 

 

 

 

 
 

Figure 1: Illustration of drug repositioning using CMAP and GSEA. 

https://clue.io/
http://lincsportal.ccs.miami.edu/dcic-portal/
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Many improved gene expression signature 

based approaches have been reported based 

on the GSEA approach in CMAP. Since the 

gene expression signature based drug 

repositioning results closely depend on the 

selection of gene signatures, the random 

disease signatures were generated to 

statistically evaluate the performance of a 

drug on the selected disease signature 

(compared with the scores on the random 

disease signatures) (18). Multiple gene 

signatures might be able to generate more 

reliable drug repositioning results. For 

example, integrative meta-analysis was 

proposed to integrate multiple drug ranking 

lists (obtained from multiple gene signature 

inputs) in (19). Also, the gene expression 

signatures can be combined with drug 

targets as well as chemical similarity of 

drugs to improve the drug repositioning 

performance (20).  To learn more about drug 

repositioning, the NCI dream challenges 

(URL: http://dreamchallenges.org/project-

list/closed/) also provided a few data sets of 

predicting drug response as well as drug 

combination (cocktails) response (21). Sage 

Synapse (URL: https://www.synapse.org/) 

hosts the data sets and provides 

computational resources for the convenient 

data access, analysis and solution sharing 

with different research groups.

.  

3. Network-based drug repositioning 

As aforementioned that cancer is a complex 

disease that is not controlled by single gene 

defects, but regulated by a group of 

coordinated genes (14). Thus network 

medicine or network-based approaches 

should be used to reposition drugs (14, 22). 

In (22), network-based proximity was used 

to study the distance between drug targets 

and disease genes, and concluded that the 

effective drugs‘ targets are localized in the 

network neighborhood of the disease genes. 

This observation indicates a new way of 

drug repositioning by prioritize drugs whose 

targets are nearby the disease genes or 

disease signaling network (22, 23). 

 The disease associated genes can be 

obtained from the OMIM database (24) and 

the GWAS catalog (25). Also the disease 

associated genes can be conveniently 

obtained from DisGeNET (a database of 

gene-disease associations) (26) (DisGeNET 

URL: 

http://www.disgenet.org/web/DisGeNET/me

nu). On the other hand, there are a set of 

protein-protein interaction and signaling 

pathway database (27) can be used as the 

background disease signaling network, e.g., 

BioGRID (28) (URL: 

http://thebiogrid.org/download.php), 

STRING (29) (URL: http://string-db.org/) 

and KEGG (30) (URL: 

http://www.genome.jp/kegg/pathway.html). 

Some computational approaches have been 

reported to construct the disease specific 

signaling networks by integrating the gene 

expression and disease associated genes on 

the background signaling network (31-35). 

In the following, as an example, a 

Glioblastoma (GBM) disease signaling 

network was constructed.   

The gene expression data of GBM 

proneural subtype (the data were extracted 

from TCGA with IDH1 mutation 14 

samples) (36) were obtained by using the R 

Package 'cgdsr'. In addition, the top 30 

reported GBM associated genes were 

obtained from DisGeNET database (26). 

The protein-protein interaction data was 

obtained from the BioGRID database (28) as 

the background signaling network, and the 

self-interaction edges were removed. Then 

the belief propagation algorithm (33) was 

employed to construct the disease signaling 

network by modeling the signaling flow 

starting from the specified disease ―root‖ 

genes and linking them to up-regulated 

genes on the BioGRID background 

signaling network. The top 30 ranked GBM-

associated disease genes from the 

DisGeNET database were used as root 

nodes. Mathematically, Given the BioGRID 

background network, G = (V, E), the sub-

network, G' = (V', E'), is constructed to 

minimize the cost function: 

http://dreamchallenges.org/project-list/closed/
http://dreamchallenges.org/project-list/closed/
https://www.synapse.org/
http://www.disgenet.org/web/DisGeNET/menu
http://www.disgenet.org/web/DisGeNET/menu
http://thebiogrid.org/download.php
http://string-db.org/
http://www.genome.jp/kegg/pathway.html
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where ce (cost of edge) is 1.0,  λ = 0.1, and 

bi is the evidence score combining gene 

expression fold change and p-value as 

follows:      , (   is the z-score of the i-th 

gene). 

Figure 2 shows the constructed     signaling 

network of the GBM subtype. Cytoscape (a 

widely used network visualization software 

with a large number of plug-ins for network-

based analysis) was used to visualize the 

constructed signaling network (Cytoscape 

URL: http://www.cytoscape.org/). 

 

 

 

To reposition drugs, drugs‘ targets 

will be firstly mapped onto the back-ground 

network, and then calculate the drug targets 

and disease genes distance as reported in 

(22); or map the drug targets on the 

constructed signaling network, and then 

drugs will be prioritized (12, 34) using the 

betweenness, closeness and page-rank 

centrality metrics (37, 38). Drug target 

information can be obtained from DrugBank 

 
 

Figure 2: Constructed signaling network of GBM. There are 155 genes and 287 
edges. Cytoscape software was used to visualize the signaling network. 

http://www.cytoscape.org/
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(39) (URL: https://www.drugbank.ca/) and 

STITCH (40) (URL: http://stitch.embl.de/) 

database and other resources (41). Figure 3 

shows the targets of Dasatinib obtained from 

STITCH. In addition to single drug 

repositioning, synergistic drug combinations 

can also be repositioned computationally 

using the network-based approach, e.g., 

DrugComboRanker and GenSynNET (37, 

38), as well as other approaches, e.g., 

Combinatorial Drug Assembler (CDA) (42, 

43), DrugPairSeeker (DPS) (44).  

 

 

 

 

 

 

 

 

3. Clinical interpretation of genetic 

mutations 
With the comprehensive data analysis of the 

molecular profiling of a large number of 

cancer patients, the genetic heterogeneity 

and mutational landscape of various types of 

cancer are being revealed. These diverse 

genetic mutations were reported to be  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3: Targets of Dasatinib obtained from STITCH 

database. 

https://www.drugbank.ca/
http://stitch.embl.de/
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associated with heterogeneous drug 

responses of individual patients in clinical. 

For example, the BRAF inactivating 

mutation was reported as a biomarker of 

Dasatinib sensitivity response in non-small 

cell lung cancer (45). There are a number of 

data resources available to facilitate the 

clinical drug selection based on patients‘ 

genetic mutations. For example, ClinVar 

(46, 47) (URL: 

https://www.ncbi.nlm.nih.gov/clinvar/) at 

the National Center for Biotechnology 

Information (NCBI). ClinGen (The Clinical 

Genome Resource.) (48) (URL: 

https://www.clinicalgenome.org/about/). 

MD Anderson Cancer Center‘s Personalized  

 

Cancer Therapy Knowledgebase (URL: 

https://pct.mdanderson.org/) and Precision 

Medicine Knowledgebase (URL: 

https://pmkb.weill.cornell.edu/). In 2017, the 

open-source CIViC (clinical interpretation 

of variants in cancer) (49) (URL: 

http://civicdb.org/) was released for public 

access. Figure 4 shows the ‗NRAS‘ 

mutation query results from CIViC database. 

As can be seen, there are a few drugs have 

been reported to be associated to the NRAS 

mutation, but the Trust Rating (TR) and 

Evidence Level (EL) of some drugs are very 

low indicating more evidence needed to 

support the clinical use. 

 

  

 

 

 

These data resources have been used to 

provide clinical evidence to guide the 

precision personalized treatment of cancer 

patients. For example, Foundation Medicine 

(URL: 

https://www.foundationmedicine.com/), 

which is a precision medicine company, has 

been providing precision medicine solutions 

based on the entire coding sequence of 315 

cancer-related genes and introns from 28 

genes often rearranged or altered for solid 

tumor cancers. However, the landscape and 

heterogeneity of cancer genetic mutations 

are complicated. Multiple distinct genetic 

mutations often appeared in individual 

patient‘s genome profiling. Thus it remains 

a challenging and open problem to associate 

precision medicine to individual patients 

base on the personal genome profiles. 

Therefore, sophisticated computational 

approaches are needed urgently to identify 

the accurate drugs precisely for individual 

 
 

Figure 4: Query results of ‘NRAS mutation’ from CIViC database. 

https://www.ncbi.nlm.nih.gov/clinvar/
https://www.clinicalgenome.org/about/
https://pct.mdanderson.org/
https://pmkb.weill.cornell.edu/
http://civicdb.org/
https://www.foundationmedicine.com/
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patients. The known clinical evidence can be 

used as the valuable training data to evaluate 

and improve the computational approaches. 

 

4. Summaries and conclusions 

The era of precision medicine especially in 

cancer has been coming due to the advance 

of the next generation sequencing 

technology. Many studies have been 

reported to discover the diverse and 

complicated driver biomarkers of various 

cancer subtypes and individual patients, 

which provide the basis for precision 

medicine or personalized medicine. 

However, precision medicine remains an 

open problem, as it is challenging to select 

the optimal drugs and drug combinations for 

individual patients with diverse and 

complicated genome mutation and variation 

patterns. Novel and sophisticated 

computational approaches will play 

important roles in precision medicine, and 

are needed urgently to accurately associate 

optimal drugs and drug combinations to 

individual patients based on their unique 

genome mutation and variation patterns. In 

this study, some widely used computational 

approaches and pharmacogenomics data 

resources for drug repositioning are 

reviewed and discussed to provide an 

overview of this field and help readers 

understand the topic of computational drug 

repositioning and precision medicine 

conveniently.   
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