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Abstract 

Background/Purpose  

Optical colonoscopy is the gold standard for detection and 

prevention of Colorectal cancer. However, any lesion outside 

the field of view of the camera during colonoscopy is missed, 

and can develop from a polyp into a cancer or from a small 

cancer into a large, metastatic cancer. Hence, viewing the colon 

mucosa as much as possible is desirable. The ultimate goal is to 

use the reconstruction results to mark the area likely unobserved 
during colonoscopy where polyps may be hidden. 

Materials and Methods:  

This paper presents a novel method for reconstructing (i) a 3D 

virtual colon structure from a sequence of 2D colonoscopic 

images and (ii) the endoscope camera navigation path. Unlike 

existing work that focus on reconstruction of accurate colon 

surface for a computer-aided surgery, this work focuses on 

estimating the alignment of the colon haustral folds, thickness 

and protrusion of the folds, and the camera path for computer-

aided screening colonoscopy to inspect as much as possible of 

the colon mucosa.  

Results:  

On endoscopy video of a synthetic colon model, we achieved at 

least 73% and 90% accuracy in estimating the directions of 

camera translation and rotation motions, respectively. The 

average percentage of the depth error is about 10% (8.5/85.8) of 

the average depth of all the folds seen in all the image 

sequences. The average percentage of the circumference error is 

about 10% (17/178.2) of the average circumference of all the 

folds seen in all the image sequences. The results are promising 
and give further insight to address this challenging problem. 

Conclusions:  

We present the work on reconstruction of a colon structure and 

endoscope motion from a colonoscopic image sequence for 

screening colonoscopy. We overcame several challenges such as 

the scale difference of consecutive reconstructed models, 

estimating closed fold contours from tracked fold edges, and 

registering the models. As future work, we will investigate a 

multi-frame registration approach to further reduce the depth 

and circumference estimation errors by registering nearby 

frames that are more similar in fold shape together.  
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1. Introduction 

Colorectal cancer (CRC) develops in 

the mucosa of the largest hollow organ, the 

colon. Despite the fact that over 14 million 

colonoscopies are performed each year in 

the US [1] still about 49,000 people die 

annually of CRC [2]. The vast majority of 

these CRCs are thought to develop from 

missed polyps, especially adenoma-type 

polyps. The colon is a complex, non-rigid 

hollow organ with multiple sharp 

angulations. It is about 150 cm long nested 

inside the abdominal cavity. Although the 

core shape is tubular, the organ contains 

mucosal folds, called haustrae, and a number 

of angulations, called flexures, that create a 

shape that is anything but a simple tube. In 

addition, haustrae and flexures are not 

evenly disturbed along the longitudinal axis 

of the colon; haustrae are larger and deeper 

in the right colon whereas most of the 

angulations are present in the left colon. 

Polyps or small cancers are difficult to view 

when located between or behind haustrae.  

Optical colonoscopy (OC) is the gold 

standard for detection and prevention of 

CRC. During the insertion phase of 

colonoscopy, a flexible endoscope with a 

fish-eye camera at the tip is gradually 

inserted into the anus and advanced as far as 

possible inside the colon, preferably all the 

way to the cecum and the terminal ileum of 

the small intestine. During the withdrawal 

phase, the endoscopist should gradually 

withdraw the endoscope to see as much as 

possible of the colon mucosa to find 

abnormalities.  

A therapeutic operation (e.g., 

polypectomy) can be performed during the 

procedure using instruments. Any lesion 

outside the field of view (FoV) of the 

camera during the entire examination is 

missed and can develop from a polyp into a 

cancer or from a small cancer into a large, 

metastatic cancer. Hence, viewing the colon 

mucosa as much as possible is desirable.  

Although the endoscopist has a global 

concept about the likely shape of the colon, 

the actual shape and structure of a specific 

patient's colon can vary widely from this 

global concept; therefore the endoscopist 

does not have prior knowledge of a specific 

patient's colon structure before colonoscopy.  

Our ultimate goal is to be able to 

reconstruct the entire colon structure on the 

fly and provide feedback of the area likely 

missed once each major section of the colon 

has been inspected. The endoscopist can 

then visit the area. We realize that the 

ultimate goal is ambitious since there are 

many frames that cannot be used such as 

blurry frames, frames showing instruments, 

stool, and water injection. Camera motion is 

not constant. The colon has many twists and 

turns. Due to these challenges, we focus on 

reconstruction from a short sequence of 

clear images with slow camera motion in 

this paper. 

Our research problem in a broad sense 

is similar to the problem of recovering an 

architectural structure of an indoor 

environment (e.g., a 3D floor plan of rooms) 

using images inside the rooms. The recent 

solution in that domain requires 3D scanning 

of objects inside the room provided that the 

distance of the objects from the 3D scanner 

is at a known fixed position [3]. The 

solution for this problem is not constrained 

by execution time. Furthermore, the camera 

position is known.  

Previously, we introduced Iterative 

Geometric Region Expansion [4], a hybrid 

technique based on image processing and 

geometric interpolation, to detect closed 

contours of colon folds from a single 

colonoscopic image with the lumen seen in 

the image. Because of the geometric 

interpolation, our method can handle part of 

the fold that is flat or partially occluded, 

which is common. We proposed two 

methods to reconstruct a 3D virtual colon 

from a single colonoscopic image [5, 6]. 
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Depth-from-shape (DfS) estimates the depth 

(the distance from the camera) of the fold 

contour from shape [5]. DfS requires the 

fold shape to be close to a perfect circle. We 

then investigated the depth from brightness 

intensity (DfI) [6] method, which does not 

require such assumptions. Like other 

existing works in colon surface 

reconstruction, we assume that the colon 

surface except at specular spots is 

Lambertian. Prior to the application of DfI, 

we calibrated the brightness intensities of 

the pixels on the detected fold contours to 

account for an uneven distribution of 

brightness intensities for the pixels of the 

object surface at the same depth.  

In this paper, we present a novel 

method to reconstruct a 3D virtual colon 

from a sequence of colonoscopic images. 

We focus on estimating the alignment of the 

colon haustral folds, the fold thickness 

(width) and fold protrusion (height) of the 

folds, and the camera path, for computer-

aided screening colonoscopy to inspect as 

much as possible of the colon mucosa. 

Existing 3D reconstruction methods for 

generic objects such as structure-from-

motion [7-14], multiview stereo [15, 16], 

shape-from-shading [17-39] determine the 

structure/surface of an object from images of 

the external view of the structure. For 

computer-aided surgery, shape-from-

shading (SfS) [40], shape-from-motion 

(SfM) [41], combined SfS and SfM [42], 

and a motion-based technique [43] were 

proposed to reconstruct the colon surface, 

not the overall structure of the colon. 

Recently, surface reconstruction methods 

using a hybrid approach have also been 

proposed [44, 45, 60]. In screening 

colonoscopy, camera motion is not constant, 

which makes it difficult to for existing 

shape-from-motion methods to perform 

well. Furthermore, commonly used 

colonoscopes have a single fish-eye camera, 

not stereo camera. Therefore, reconstruction 

from stereo views is not possible. Estimation 

of the depth of the fold contour from the 

camera based on intensity is our only 

solution but it is full of challenges. For 

instance, points on the same fold contour 

may not be on the same plane. Different 

illumination levels happen across 

subsequent frames. With reconstruction 

from brightness intensity, we have different 

sizes (scales) of the reconstructed models 

that need to be registered into a single 

virtual colon. 

Our contribution is a new 

reconstruction method by (i) tracking edges 

of fold contours across frames, which helps 

reducing errors due to motions unrelated to 

camera movement such as water bubble or 

instrument motions, (ii) application of 

Umeyama’s least-squares estimation of 

transformation parameters [46] to derive 

transformation matrices of camera 

translations and rotations as well as scaling 

factors to register the local reconstructed 

models of varying scales into a single global 

model, and (iii) merging the reconstructed 

models into a single global model, which 

deals with the flat and occluded part of the 

fold contours.  

On endoscopy video of a synthetic 

colon model, we achieved promising results 

of at least 73% and 90% accuracy in 

estimating the directions of camera 

translation and rotation motions, 

respectively. The mean normalized errors of 

fold depths among three sections of the 

synthetic colon are from 3% to 20.75%. The 

mean normalized errors of fold 

circumferences are from 7.5% to 14.58%. 

The performance is sensitive to how well the 

fold contour shape matches the real contour 

shape. Because it relies on tracking, the 

method cannot handle very fast motion or 

abrupt change between successive frames.  

The remainder of the paper is 

organized as follows. Section 2 summarizes 

the related work. Section 3 presents the 

proposed method. Section 4 discusses 



Medical Research Archives, Vol. 5, Issue 6, June 2017 

Reconstruction of a 3D Virtual Colon Structure and Camera Motion for Screening Colonoscopy 

Copyright 2017 KEI Journals. All Rights Reserved                                                                       Page │4 

experimental design and results. Sections 5 

and 6 provide discussions and the 

conclusion and the description of the future 

work. 

2. Related Work 

In recent years, there are several 

advances in endoscopic image analysis for 

different types of endoscopy procedures and 

for different purposes such as abnormality 

detection, quality measurements, and 

content-based retrieval. We limit our 

discussion to those related to 3D 

reconstruction and categorize them as 

follows. 

2.1. Virtual colonoscopy assisted 
colonoscopy 

This category can be divided into two 

sub-categories. (1) Use of discretized points 

on the centerline of a reconstructed virtual 

colon by CT Colonography (CTC) to find 

corresponding discretized points in the 

shortest path of the endoscope [47, 48]. The 

major assumption is that the endoscope 

during colonoscopy follows the shortest path 

and the colon shape during CTC and OC is 

the same. (2) A tracking method of colon 

folds [49] to align VC and OC images. 

Temporal volume flow, region flow 

(matching of pixel blocks instead of 

individual pixel matching), and incremental 

egomotion estimation were used. The 

evaluation was done on rigid colon models 

built from LEGOs. The method is capable of 

tracking colon folds in about 3,600 frames 
and took 2-5 minutes.  

2.2. Colon surface reconstruction 

Methods for colon surface 

reconstruction based on shape-from-shading 

(SfS) [40], shape-from-motion (SfM) [41], 

combined SfS and SfM [42], and a motion-

based technique [43] are not suitable to 

reconstruct a tubular colon structure. SfS 

would wrongly express the lumen as 

relatively far surface. SfM requires 

consistent slow motion and rigid objects to 

be effective, which is not common during 

colonoscopy.  

2.3. Cylinder structure reconstruction 

The work in [50] models a colon 

segment as a circular cylinder of 3D circles 

(not necessarily corresponding to colon 

folds). Alignment of neighboring circles and 

distance among them are determined by 

optimizing smoothness energy difference 

between the projected flow of the 

neighboring circles and the actual optical 

flows between neighboring images. The 

technique can generate a small 3D colon 

segment, but has the following inherent 

limitations. (i) Some colon segments (e.g., 

transverse colon) are not circular. (ii) The 

technique assumes that the neighboring 

circles are not occluded; however, partial 

occlusion is typical. (iii) It does not model 

colon fold thickness and fold protrusion, 

which is important for identifying areas 

likely unobserved during colonoscopy. 

In summary, except our prior work, 

there is no existing hardware or software 

technology to create from 2D colonoscopic 

images a hollow colon structure with 

important details: fold thickness, protrusion, 
depth, and alignment among folds. 

2.4. Our Prior Work: Depth 

estimation from intensity 

We assume that the colon surface is 

Lambertian surface except at specular 

points. The depth estimation consists of two 

key steps: (i) brightness intensity calibration 

and (ii) estimation of the distance from the 

camera (depth) based on the brightness 

intensity of each pixel on a fold contour. 

Intensity calibration is required because 

surface at the center of the image is brighter 

than that at the border of the image even 



Medical Research Archives, Vol. 5, Issue 6, June 2017 

Reconstruction of a 3D Virtual Colon Structure and Camera Motion for Screening Colonoscopy 

Copyright 2017 KEI Journals. All Rights Reserved                                                                       Page │5 

when the surface is at the same distance 
from the camera [6].  

The implication of DfI is that when an 

image has lower illumination, the 

reconstructed colon model is larger since the 

distance from the camera is farther and the 

reverse projection vectors of points on the 

fold contour expand more. Fig. 1 illustrates 

two different models A and B reconstructed 

from images with different illumination. 

Therefore, our 3D registration method must 

be able to register colon models of different 

scales, which is atypical for 3D registration. 

Model A 

reconstructed 

using a bright 

image

Model B 

reconstructed 

using a dark 

image

y

x

 

Fig. 1. Impact of illumination on the scales 
of the colon models 

2.5. Our Prior Work: 3D virtual colon 

rendering and the unseen area identified 

After the 3D coordinate of each point 

on each fold contour is estimated, we build 

two types of surface: (i) surface of colon 

folds and (ii) surface between folds (or wall 

surface) using several features extracted 

from the images and geometrical relations 

between neighboring folds. We use Cubic 

Bézier curves [51] for interpolation of the 

surface and creation of the triangle mesh 

model.  

While we can use OpenGL to render 

the virtual colon easily, OpenGL does not 

have an API to query for faces of the 

triangles outside the field of view of the 

camera. These faces form the unobserved 

areas. At each frame, given the camera 

position, up vector, and look at vector, we 

identify the unobserved area as follows. For 

each triangle face of the colon model that 

has not been marked as inspected in the 

previous frames, we check three conditions: 

(i) if the face is facing the camera (at the 

origin of the coordinate system), (ii) if the 

face is within the camera field-of-view, and 

(iii) if there are no obstacles from the face to 

the endoscope. The first condition is 

satisfied if the angle difference (in the range 

of [0, 180]) between the normal of the 

triangle face and the vector from the camera 

to the center of the triangle face (the line of 

sight of the face) is greater than 90°. The 

second condition is satisfied if the angle 

difference between the line of sight of the 

face and the camera direction is at most half 

of FOV of the camera. The last condition is 

satisfied if the distance of the triangle face 

from the camera is same as the OpenGL-

provided depth (Z-value) of the 

corresponding pixel in the viewport. Every 

pixel in a viewport has its own depth value 

indicating the distance of the closest object 

from the camera in that direction. If all the 

three conditions are satisfied, the triangle 

face is marked as inspected. If any of the 

three conditions is not satisfied, we count 

that polygon as an unobserved polygon. The 

percentage of the unobserved areas of the 

model is the percentage of the number of 

unobserved triangle faces to the total 

number of faces in the model. 

3. Materials and Methods 

We focus on reconstruction of a 

virtual colon structure and camera motions 

from a sequence of consecutive endoscopic 

images with low motion. Fig. 2 shows the 

three major components: fold edge tracking, 

model registration, and fold contour 

completion. The fold edge tracking step 

establishes the correspondence of edges 

across frames and assigns them the same 

global edge ID. The edges are later 

combined to lengthen the contour of the 
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colon fold to which the global edge is 

assigned. This is to leave a small missing 

portion of the contour as much as possible 

for estimation. The model registration step 

derives the camera motion for each frame 

from the tracked edges. The fold contour 

completion step forms the closed contour by 

estimating the missing part of it using 

computational geometry. After all the fold 

contours and information are completed, we 

use our prior methods to render the model 

and unobserved areas [6]. 

Fold Edge 
Tracking

Model 
Registration

Fold Contour 
Completion

Image 
stream

Fold 
information

Global 
edges

Colon model  
and camera 
motion 

 

Fig. 2.  Components of the system for 

obtaining fold contour information and 

camera motions 

3.1. Fold Edge Tracking 

For each frame, we preprocess the 

image using the pre-processing step of 

reference [4] that removes images that are 

unlikely to have fold contours, cuts edges 

with sharp turns, removes edges that are too 

short, and keeps only the inner edge of a 

thick fold. Due to limited space, refer to [4] 

for more details. We do not use images 

without colon fold contours for 

reconstruction because these images do not 

contribute to the understanding of the colon 

structure. The output of this step is the 

estimated center of the innermost fold and 

edges that are likely fold edges. To track a 

fold edge across successive frames, we 

sample a number of pixels along each fold 

edge of the current frame and find the 

corresponding points (so called “tracked 

points”) with similar characteristics in the 

next frame using Pyramid Lucas-Kanade 

(LK) tracking algorithm [52]. Other optical-

flow tracking algorithms with low 

significant processing overhead may be 

used. A good feature point to track for LK 

tracking is a point with strong derivative 

values in two orthogonal directions. Linear 

edges are not good candidates for tracking 

because they have strong derivative values 

in one direction only. However, fold edges 

are typically curve edges and for each edge, 

we sample pixels at an equal distance apart 

to reduce the possibility of having collinear 

sampled pixels for tracking. We select new 

points to track every frame and use them to 

locate corresponding points (tracked points) 

only in the subsequent frame since the 

tracked points may not locate on any fold 

edge of the frame. We use the tracking 

results to assign a global edge ID to each 

edge, depending on whether the edge in the 

current frame corresponds to an edge in its 

previous frame as follows. Because the 

tracked points may not fall exactly on the 

edge of the current frame i, we first label 

each tracked point and its eight connected 

neighbors in frame i with the global edge ID 

of the corresponding edge in frame i-1 (i.e., 

global edge ID of the edge used to find these 

tracked points). If any edge pixel in frame i 

is at the same pixel as one of the labels, the 

edge pixel is assigned that edge label. An 

edge is either assigned the lowest value (i.e., 

lowest global edge ID indicating older age) 

among the labels assigned to its edge pixels 

or is given a new unique global edge ID if 

its edge pixels are not assigned any labels 

(i.e., not overlapping with any edges in the 

previous frame). Fold edge tracking across 

frames continues until the tracking error 

exceeds a threshold TH_TRACK_ERR. Any 

motion vectors whose length in a 

perspective view is greater than a threshold 
TH_VALID_MV are discarded. 

3.2. Model Registration 

This process involves five steps. We 

define a local colon model for each frame as 

a set of 3D points located relatively from the 

camera in a local 3D coordinate system with 
the camera position at the origin.  



Medical Research Archives, Vol. 5, Issue 6, June 2017 

Reconstruction of a 3D Virtual Colon Structure and Camera Motion for Screening Colonoscopy 

Copyright 2017 KEI Journals. All Rights Reserved                                                                       Page │7 

3.2.1. Build a local model 

These points are first estimated in the 

first step by the application of DfI on the 

pixels on the detected fold contours in the 

frame using an algorithm for building a local 

model of a frame. Fig. 3 shows example 

results of the local models. Therefore, there 

are as many local colon models as the 

number of frames in a video segment. The 

global coordinate system is derived from the 

first input frame. The local model of the 

subsequent frame is registered with the 

global model reconstructed from all its prior 

frames using the correspondence among 

points of the models from fold edge 

tracking. The challenges are as follows. The 

local models do not have identical shape 

even for the same part of the colon due to 

noise in input images, DfI estimation errors, 

and colon mobility. Each local model may 

cover slightly different folds. Recall that DfI 

gives different model scales for different 

illumination in images. To overcome these 

challenges, we use the least-squares 

approach by Umeyama [46] to estimate 

transformation parameters of the local 

models to the global model such that the 
transformation error is minimized. 

  

  

      Frame i-1 and Model Mi-1 built from frame i-1                               Frame i and Model Mi built from frame i  

Fig. 3.   Two consecutive images of the inside of an Olympus synthetic colon and the 

corresponding local models. Green dots show the sample points used for tracking in frame i-1 

and the corresponding tracked points in frame i. Red, green, and blue axes represent x, y, and z 

axes, respectively. Black dots are the green dots mapped to corresponding 3D coordinates. 

3.2.2. Calculation of transformation 

matrices 

This is done in two steps: (1) 

calculating transformation parameters by 

registering a local model of frame i (Mi) to 

its previous local model (Mi-1) and (2) 

computing transformation parameters to 

register Mi to the global model by 

accumulating all the transformation 

parameters from the first frame up to frame 

i. Therefore, we can obtain the camera 

motions between consecutive frames all the 

way up to frame i.  

Let Mi = {pij} where pij is a point j on a 

model i where i = 1, 2, …, m; j = 1, 2, …, n. 

The local model Mi is reconstructed from 

frame i using DfI. We assume that between 

two consecutive frames, there is at most one 

camera transformation. We use Umeyama’s 

solution [46] that gives the least squared 

error to derive the camera transformation 

since this method supports different model 

scales and robust against corrupted data 

points. Note that other 3D rigid registration 

methods that do not restrict the two models 

being registered to be the same scale can be 

used.  While there are recent development in 

non-rigid 3D registration methods [53-59], 

but these methods cannot handle the 

significant difference between the model 

sizes. 
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Instead of finding the transformation 

matrix between adjacent frames, one can 

employ a multi-frame registration approach 

by considering a range of frames to find the 

best model with the least transformation 

error. For example, we can find the best 

matching frames that may not be 

consecutive frames such as when the camera 

looks away to the side and comes back to 

look down the colon lumen. This multi-

frame registration approach should produce 

a better colon model with the trade-off of 

increased processing time. We would still 

need to derive the camera motion between 

consecutive frames. We leave this for future 
work.  

3.2.3. Camera motion calculation 

We obtain the camera position at 

frame i (C
L

i) from repeated applications of 

the translation matrices from registering 

adjacent frames starting from the first frame 

to the current frame i. We obtain the camera 

view vector (C
V

i) and the camera up vector 

(C
U

i) at frame i. The camera up vector is 

perpendicular to the camera view vector and 

can express camera torque motion. Let C
V

1 = 

(0, 0, -1) be the initial camera view vector; 

let C
U

1=(0, 1, 0) be the initial camera up 

vector; and C
L

1 = (0, 0, 0) is the initial 

camera location in the local coordinate 

system. 

3.2.4. Merging M
G

i to a single global 
model G 

This step is needed as the global 

model of each frame is not exactly the same 

due to transformation errors although we 

have attempted to minimize the errors. We 

merge edges of the same global edge ID of 

the two models in three steps. First, we find 

a 3D representative curve (RC) for each 

edge in a given model M
G

i because the 

points on the same edge may not necessarily 

be at the same depths from the camera due 

to depth estimation errors and 

transformation errors. Starting from the first 

point to the last point on the edge, we 

replace the depth of the point with the 

average depth between the depth of this 

point and that of its immediate neighboring 

point on the edge. Fig. 4(b) shows the result 

of this step to the model M
G

i in Fig. 4(a). 

Second, each RC of M
G

i is assigned the 

global edge ID of the edge from which the 

RC is derived. 

 

(a) 

 

(b) 

Fig. 4.  Example of derived representative 

curves (RCs). (a) Model M
G

i, (b) RCs in 

Model M
G

i 

Third, we merge the RCs of M
G

i with 

those of the global model G using an 

algorithm for merging the local model M
G

i 

to the global model G. For each pair of RCs 

with the same global edge ID, one from M
G

i 

and the other from the global model G, the 

reference RC is first chosen to be the longer 

edge of the pair so that fewer points on the 
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colon fold contour need to be estimated in 
the subsequent step.  

3.2.5. Completing fold contours 

There are several challenges to 

complete a fold contour in 3D space. For 

instance, short RCs are likely mis-detected 

blood vessel edges or are the results of 

wrong tracking. Several RCs are also 

located near each other. To overcome these 

challenges, we detect and discard noise RCs 

in the global model G before grouping the 

remaining ones and connecting the RCs in 

the same group to generate a closed fold 
contour for each group. 

Step 1: Select important RCs: We 

discard any RC shorter than a threshold, 

TH_VALID_RC_LENGTH. The length of 

an RC is the sum of the Euclidean distance 

between 3D coordinates of the neighboring 

points on the RC. In decreasing order of RC 

lengths, for each RCi, we find an RCj (where 

j ≠ i) closer to RCi than a threshold, 

TH_DIST_BTW_RC, and discard this 

shorter RCj since we already have the longer 

representative curve RCi. To calculate the 

distance between RCi and RCj, for each 

point in RCi, we find the nearest point in the 

RCj based on the Euclidean distance among 

them. The average of these distances is the 

distance between RCi and RCj. 

Step 2: Make all points on the same 

selected RC on the same representative 

plane (RP): Let the center of the RP be at 

the mid-point of its RCs and the RP be 

perpendicular to the vector from the center 

of the innermost fold (CIF) to the center of 

RP as shown in Fig. 5(a). Next, we project 

all the points on the RC on the RP along 

their reverse projection to CIF as illustrated 
in Fig. 5(b).  

CIF

RCRP

 

(a) 

CIF

 

(b) 

Fig. 5. Diagram showing a representative 

plane (RP) of a given RC 

Step 3: Find an average representative 

plane of a group of RPs: Let the current RP 

be the RP with the lowest global ID (with 

the oldest edge). The oldest edge is the same 

edge detected in the earliest frame. Recall 

that the 3D reconstruction is aimed to be 

used during the withdrawal phase when a 

careful inspection of the colon is expected. 

During the withdrawal phase, the camera is 

expected to move more backward than 

forward. The older edge appears closer to 

the camera in an earlier frame and is 

gradually seen as an inner fold in a later 

frame until it is disappeared. We apply our 

DfI using the edge information detected in 

its oldest frame as our DfI performs better 

when the edge is an outer edge closer to the 

camera. We group the RP whose Euclidean 

distance from the current RP is within a 

threshold, TH_DIST_BTW_RP. If at least 

two RPs are in the group, we compute the 

average RP of the group. Next, we project 

all the points on the RPs in the same group 

to this average RP along the reverse 

projection vector of each point. The RPs in 

the group are excluded from further 
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grouping. We repeat the same process until 

all RPs are considered. Note that several 

RCs may fall on the same average RP plane, 

possibly reducing the unknown portion of a 

colon fold on this plane. This and the 

previous step can also be done together. 

Step 4: Create a closed fold contour: 

Each RCj has its start tip sj and the end tip ej. 

To create a smooth curve to close a gap 

between a start tip of one RC and the end tip 

of the other RC, we draw a Cubic Bézier 

curve if the gap is small as follows. We first 

compute the estimated center c of the fold 

contour as the average location of all the end 

points of all the RCs in the RP. We start 

pairing RCj with RCi that has the smallest 

angle ∠ei c ej between the end tip ei of the 

RCi, c, and the start tip sj of the RCj.  

To draw a Bézier curve between ei of 

RCi and sj of RCj, we compute the tangent 

lines: one for ei and the other for sj, using 

the tip and the k
th

 point on the RC from that 

tip. The value of k was determined 

empirically. We select a control point on 

each tangent line at the distance d from the 

tip where d = control_prop * Euclidean 

distance between ei and sj. If the Euclidean 

distance between the two control points is at 

most the distance between sj and ei, we draw 

a Bézier curve to connect the two tips using 

the two calculated control points. On the 

other hand, if the distance is larger than that 

between sj and ei, we do not draw a Bézier 

curve in order to prevent an unsmooth 

contour because the two tangential lines do 

not meet. In this case, we attempt to adopt 

the shape of the nearest fold contour by 

assuming that the fold shape is quite similar. 

The details of this method are as follows. 

Step 5: Shape adoption: We calculate 

the range (polar angle [0, 360°)) uncovered 

by RCi which is [θi, θj] where θi is the polar 

angle of ei and θj is the polar angle of sj as 

shown in Fig. 6. We select the closest RC in 

other RPs that overlap with the range [θi+α, 

θj –α]. Then, we project the points on the 

overlapping segment of the selected RC on 

this RP on their reverse projection vector. 

The margin α is to allow a smooth curve 

between RCi and the adopted curve segment 

where α = (θj – θi) * margin_prop. Next, we 

connect the adopted segment and the two 

tips of the RCi using Bézier curves to close 

the gap. If there is no RC in any other RPs to 

adopt the shape from or the uncovered polar 

angle after the shape adoption is still at least 

the threshold angle, we discard this RC from 

fold contour completion. The values of 

control_prop and margin_prop and 

thresholds were determined experimentally.  

We repeat this process until we can no 

longer pair any remaining RC in this RP. If 

we cannot generate a closed fold contour on 

the RP, we discard the RP. We continue 

processing the remaining RPs until all the 

RPs have been considered. 

Note that RP is perpendicular to the 

vector from the camera to CIF. We re-

project the fold contour completed on an RP 

to the plane that the fold is actually lying on 

by fitting all the points on real RCs (not the 

Bézier curves or shape adoption) from the 

contour to a plane using the least squares 

fitting algorithm. Once the 3D fold 

information is obtained, we use our previous 

methods [6] for creating colon walls 

between fold contours and for rendering the 

virtual colon when a user invokes. 

θi

θj
α

α

ei

sj

c

Target range 

to adopt shape

 

Fig. 6.  Shape adoption; sj and ei denote the 

start tip of RCi and end tip of RCi, 

respectively 
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4. Experimental Design and Results 

We developed our software in C++ 

with OpenCV 2.1 and OpenGL. We 

evaluated the effectiveness of our technique 

on estimating the directions of reconstructed 

camera motions and the reconstructed colon 

structures.  

Ground truth: Because there are no 

real 3D data of the colon during 

colonoscopy, we used an Olympus synthetic 

colon as in [6]. The synthetic colon has three 

sections: two straight sections and one curvy 

section in between. Our domain expert 

measured the depth of folds and the fold 

circumference ground truth from the outside 

of the synthetic colon. The domain expert 

inspected the inside of the synthetic colon 

by repeatedly performing a full insertion 

(from the beginning to the end of the 

synthetic colon) followed by a full 

withdrawal (from the end to the beginning 

of the synthetic colon). We used 562 and 

456 images of the synthetic colon for 

evaluation of camera motion reconstruction 

and reconstruction of the colon structure, 

respectively. These images were captured at 

the frame rate of 29.97 fps at the resolution 

of 720x480 pixels using an Olympus 

colonoscope. To obtain the ground truth for 

evaluation of the camera motion direction in 

x, y, z axes and scaling direction, we 

manually reviewed the videos and noted the 

camera motion directions and scaling 

direction as the ground truth. 

Note that the measurements taken 

from the outside of the synthetic colon may 

be different from those taken from the inside 

of the synthetic colon during the inspection 

but these measurements are closest 

measurements attainable. Although the 

curvy section of the colon (section 2) has 

several colon folds, most images of the 

inside of this section are blurry or either 

show only the colon mucosa or distorted 

folds due to the endoscope movement into 

this section. For the images with the lumen 

in the curvy section, only two folds were 

seen. 

Parameters and values: We used the 

parameter values for DfI as in [6] and used 

the following parameter values:  

TH_TRACK_ERR=1500, 

TH_VALID_MV=50, k = 5, TH_DIST = 

0.005, TH_VALID_RC_LENGTH = 0.4, 

TH_DIST_BTW_RC = 0.07, 

TH_DIST_BTW_RP = 0.1, control_prop = 

0.4, margin_prop = 0.25.  

These values were determined based 

on experiments to give good results using a 

different image set not included in the image 

set for evaluation. 

4.1. Evaluation of camera motion 
direction estimation 

Camera motion consists of translation 

and rotation. Camera translation and rotation 

are obvious during colonoscopy. Scaling, 

however, is not because of the actual change 

in the colon scale, but is the result of DfI 

where the depth of the reconstructed colon 

fold depends on the brightness intensity as 

mentioned previously.  

In Tables 1-3, ‘ID’ denotes the start 

frame of the image sequence and ‘#frames’ 

denotes the number of frames used in a 

study case. For a sequence of 10 frames, 

there are 9 pairs of frames to derive camera 

motion from as the first frame is the 

reference. We originally wanted to use at 

least 30 frames per case; however, we found 

that 30 frames include more than one type of 

camera motion in some cases. Therefore, in 

our evaluation, we only selected cases where 

each sequence shows a single camera 

motion. ‘GT’ denotes the ground truth 

camera direction only since we cannot 

measure the exact amount of camera motion. 

Our performance metric is accuracy defined 

as the percentage of correct estimations by 

the software over the total number of 
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estimations. For each case, let score (S) be 

the total number of correct estimations of 

camera motion directions (in x, y, and z axes 

including no motion) by our software.  

4.1.1. Evaluation on camera 

translation direction 

For the z-axis, the camera direction is 

either backward (B/+), forward (F/-), or no 

motion (N). For the y-axis, the direction is 

either up (U/+), down (D/-), or no motion 

(N). For the x-axis, the direction is right 

(R/+), left (L/-), or no motion (N). Table 1 

shows the normalized camera motion in the 

x-axis, y-axis, and z-axis, and the score 

counting the total number of correct 

estimations in the three axes. For each case, 

the score is between 0 and 3. With small 

motion, it is difficult to observe the motion 

direction from watching the image sequence. 

Based on observation, we treated the case 

that the absolute normalized camera motion 

along an axis less than 0.2 (20% of the 

distance the camera moved) as no motion.  

Table 1 shows that the technique gave 

22 out of 30 correct camera translation 

directions under the set threshold for no 

motion. The accuracy is 73% (22/30). For 

case ID 13253, the camera direction in each 

of the three axes is correct. The score is, 

therefore, three. The absolute normalized 

score in the x-axis is 0.03 less than 0.2; the 

software determines that there is no clear 

motion, which is also correct according to 

the ground truth. Only in the z-axis, the 

software found a significant camera forward 

movement, which is the same as the ground 

truth. Five out of ten cases show correct 

camera directions in all three axes.  

 

Table 1. Effectiveness of estimation of camera translation directions on 10 sequences of 239 

frames of synthetic colon images. Nor. x, y, and z capture the normalized distance (Cal. Distance 

/Cal. Abs travel distance omit from the table) with the direction of the translation in x-axis, y-

axis, and z-axis, respectively. The camera direction in the x-axis is denoted with right (+)/left(-), 

in the y-axis with up(+)/down(-), and in the z-axis with backward(+)/forward(-) 

ID, #frames GT 

(x/y/z) 

Nor. X Nor. Y Nor. Z Score 

 4984,18 R/U/N 0.24 (R) 0.22 (U) -0.95 (F) 2 

 6165,31     L/N/B -0.47 (L) 0.01 (N) 0.88 (B) 3 

 6846,21 N/N/B -0.18 (N) 0.74 (U) -0.66 (F) 1 

12521,19 N/U/F -0.01 (N) 0.62 (U) -0.78 (F) 3 

12915,31 N/N/B 0.85 (R) 0.29 (U) 0.44 (B) 1 

13253,31 N/N/F -0.03 (N)  0.06 (N) -1.00 (F) 3 

13284,31 N/N/F -0.11 (N) -0.17 (N) -0.98 (F) 3 

13437,14 R/N/F 0.42 (R) 0.28 (U) -0.87 (F) 2 

16074,30 L/D/B -0.22 (L) 0.68 (U) -0.70 (F) 1 

17355,13 N/D/B -0.18 (N) -0.21 (D) 0.96 (B) 3 

Accuracy 22/30=73% 

 

4.1.2. Evaluation on camera rotation 

direction 

We decompose the rotation matrix into 

an individual rotation matrix for each axis. 

For this evaluation, the GT of the rotation 

about the x-axis (Up, Down), the y-axis 

(Left, Right), and the z-axis (Counter 

Clockwise, Clockwise), respectively are 

determined for each image sequence. When 
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the camera rotation about an axis is less than 

about 7°, it is difficult to observe the 

rotation about that axis from watching the 

corresponding image sequence. Therefore, 

when the absolute computer generated score 

is less than 7°, we treated such a rotation as 

no rotation. Tables 2 shows results of 

individual sequences and the accuracy of 
90% (27/30). 

Table 2. Effectiveness of estimation of the camera rotation directions on 10 sequences of 190 

frames of synthetic colon images in the x-axis: Up (+)/ Down (-), in the y-axis: Left (+)/Right (-), 

in the z- axis: counter-clockwise denoted as CC (+)/clockwise denoted as C (-); N: no camera 
motion 

ID, #frames GT x y z Score 

6080,31 D/L/CC -45.7 (D) 36.3 (L) -17.8 (C) 2 

6937,9 N/R/N 3.5 (N) -26.5 (R) -2.4 (N) 3 

6973,28 N/L/CC 2.4 (N) 11.7 (L) 16.6 (CC) 3 
12017,11 D/L/N -7.8 (D) 9.8 (L) 1.4 (N) 3 

12143,8 U/R/N 20.6 (U) -28.5 (R) -64.3 (C) 2 

12230,16 D/L/N -31.2 (D) 27.5 (L) 2.5 (N) 3 
12521,19 U/L/N 25.74 (U) 8.7 (L) 0.1 (N) 3 

12805,31 U/R/C 16.9 (U) -10.4 (R) -17.1 (C) 3 

12863,11 D/R/N -28.8 (D) -45.9 (R) 11.2 (CC) 2 

12872,26 U/N/C 10.3 (U) 2.6 (N) -26.9 (C) 3 

Accuracy 27/30=90% 
 

4.1.3. Evaluation of scaling 

When an image has low illumination, 

the reconstructed colon model is large since 

the distance from the camera is far and the 

reverse projection vectors expand. For a 

brightly illuminated image, the 

reconstructed model is small. When we have 

an image sequence showing images with 

lower illumination to brighter illumination, 

we have a small reconstructed colon model 

(reconstructed from the brighter frame that 

comes later in time such as model A in Fig. 

1 to register with a large reconstructed colon 

model (reconstructed from the darker frame 

that happens earlier in time such as model B 

in Fig. 1; the scale increases in this case 

(scale>1). We denote this case as Dark-

Bright (D-B). Similarly, we need to scale 

down (scale<1) when the image sequence 

showing images changing from bright to 

dark, denoted as (B-D). Table 3 shows the 

accuracy of 100%, which is a very good 

result despite the fact that the total amount 

of light put out by an endoscope processor is 

typically automatically adjusted to be within 
a range (auto lamp illumination mode). 

We also evaluated the effectiveness of 

the algorithms on endoscopic images of the 

real colons. Out of 30 directions in 10 

sequences (3 directions per sequence) of 201 

images total, the software detected 26 

correct rotation directions, resulting in an 

accuracy of 86.6%. The performance on 

images from the synthetic colon is better 

than that on the real colon images because 

images of the synthetic colon are easier to be 

processed. Folds in the synthetic colon are 

not as complex as those in the real colon 

images. In terms of scaling direction, our 

software calculated scaling direction 

correctly for 90% (9/10) for 135 real colon-

images. Only one sequence out of ten cases 

that the software detected no direction but 

the ground truth has a positive scaling factor 

(Dark-Bright). The individual results for 

rotation directions and scaling on real colon 
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images are omitted to keep the article in 
reasonable length. 

4.2. Evaluation of the reconstructed 

colon structures 

We consider the reconstructed depth 

and the reconstructed circumferences for 

three different sections of the synthetic 

colon. We use MAD calculated as the mean 

absolute difference of measurements 

between the reconstructed model and the 

ground truth considering all the folds seen in 

the image sequence. We first selected the 

physical scaling factor that gave the least 

MAD against the ground truth and scaled 

every fold in the reconstructed model to the 

ground truth using the same scaling factor. 

Note that this physical scaling factor is to 

scale the reconstructed model in logical 

units to the physical synthetic colon in 

millimeters. It is different from the scaling 

factor calculated to register two 

reconstructed models reconstructed from 

images with different illuminations. For 

instance, in Table 4, the physical scaling 

factor matching fold 2 to its corresponding 

fold in the synthetic colon gave the least 

MAD and was chosen to scale all the folds 

in the section. Tables 4-6 show the 

evaluation results for one image sequence in 

the first straight section, the curve section, 

and the last straight section, respectively. In 

Table 4, the first fold has the largest 

normalized error in both depth estimation 

(16/25) and circumference estimation 

(50/166). Fold 2 has the least error because 

it was used to derive the scaling factor. Later 

folds tend to have lower normalized errors 

as well.  

Table 7 shows the results with more 

sequences from each section. We observed a 

better recall of fold edges in the straight part 

of the colons than our previous technique 

that builds a virtual colon from a single 

endoscopic frame. The average depth MAD 

and circumference MAD on the synthetic 

colon are 8.5 mm and 17 mm, respectively 

and 94.7% of the folds seen in colonoscopy 

can be reconstructed. During the curvy 

section of the colon (section 2), only a few 

folds are shown in the corresponding image 

sequence, resulting in a small depth MAD 

and circumference MAD. Although 100% of 

the folds seen are reconstructed from the 

image sequences in this section, this section 

of the synthetic colon actually has more 

folds. These folds were not seen 

continuously in one long image sequence 

since the model was deformed by the 

endoscope during withdrawal. The 

conditions are different from real-life where 

a more pliable colon wall would allow more 
folds to be discovered. 

 

Table 3. Effectiveness of scaling on 10 sequences of 163 frames of synthetic colon images; GT 

ground truth---Bright to Dark (B-D) or Dark to Bright; the calculated scale (Cal. Scale) for B-D 

(<1) and for D-B (>1) 

ID, 

#frames 

GT Start frame / End frame Cal. 

Scale 

ID, 

#frame

s 

GT Start frame / End frame Cal. 

Scale 

4815,31 B-

D  

  

0.43  

(B-D) 

12038,8 B-

D  

  

0.65 

(B-D) 

4885,31 D-

B  

  

1.09 

(D-B) 

12054,9 D-

B  

  

1.59 

(D-B) 
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12521,1

9 

D-

B  

  

2.16 

(D-B) 

12075,8 B-

D 

  

0.75 

(B-D) 

11937,1

9 

D-

B  

 

1.74 

(D-B) 

12110,8 D-

B  

  

1.07 

(D-B) 

11963,2

0 

B-

D  

  

0.66 

(B-D) 

12145,8 B-

D  

  

0.57 

(B-D) 

Accuracy 10/10=100% 

 

Table 4. Case 12900 (section 1 – straight); Circf represents circumferences. The depth and 

circumference of the reconstructed model after scaling to physical units was done. 
*
 denotes the 

fold used to give the scaling factor for the entire model. 

 Ground truth 

(mm) 

Reconstructed 

model 

Absolute Difference 

Depth Circf. Depth Circf. Depth Circf. 

Fold 1 25 166 41 216 16 50 

Fold 2* 51 190 51 190 0 0 

Fold 3 75 184 65 198 10 14 

Fold 4 118 160 96 158 22 2 

Fold 5 138 160 124 132 14 28 

MAD (mm) 13 19 

 

Table 5. Case 12320 (section 2 - curve); Circf represents circumferences. The depth and 

circumference of the reconstructed model after scaling was done. *denotes the fold used to 

obtain the scaling factor for the entire model. 

 Ground truth 

(mm) 

Reconstructed 

model 

Absolute Difference 

Depth Circf. Depth Circf. Depth Circf. 

Fold 1 53 160 55 184 2 24 

Fold 2* 85 160 87 160 2 0 

MAD (mm) 2 12 

Table 6. Case 16203 (section 3 - straight); Circf represents circumferences. The depth and 

circumference of the reconstructed model after scaling was done. *denotes the fold used to 

obtain the scaling factor for the entire model. 

 Ground truth 

(mm) 

Reconstructe

d model 

Absolute 

Difference 

Depth Circf. Depth Circf. Depth Circf, 

Fold 1* 41 180 50 180 9 0 

Fold 2 67 190 61 155 6 35 

Fold 3 93 185 99 147 6 39 

Fold 4 112 168 109 166 4 2 

Fold 5 140 100 121 145 19 45 

MAD (mm) 9 24 
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Table 7.  Overall results; MAD represents the mean absolute difference in mm. considering all 

the folds seen in each image sequence; recall of folds represents the ratio of the number of 

reconstructed folds and the number of actual folds seen in each image sequence. MAD is in mm. 

Section 

ID 

Case 

ID 

Depth 

MAD 

Circf. 

MAD 

Recall 

of folds 

# 

Frames 

1 6955 13 33 5/5 35 

6990 10 30 5/5 38 

12900 13 19 5/5 145 

20399 9 25 3/5 77 

19024 5 12 4/4 58 

2 12320 2 12 2/2 22 

12117 8 0 1/1 29 

18753 12 11 3/3 20 

3 16203 9 24 5/5 18 

15940 4 4 3/3 24 

Avg. 8.5 17 
36/38 

(94.7%) 
 

 

The average percentage of the depth 

error is about 10% (8.5/85.8) of the average 

depth of all the folds seen in all the image 

sequences. The average percentage of the 

circumference error is about 10% (17/178.2) 

of the average circumference of all the folds 

seen in all the image sequences. The errors 

are considered small. We cannot quantify 

the performance of the technique using 

endoscopy images of real colons since there 

is no available ground truth that can be 

measured. Fig. 7 shows an example of 

reconstruction on a sequence of endoscopic 

images from a real colon where some colon 

folds have triangular shape. 

5. Discussion and Limitation 

Overall, the test result shows that the 

proposed technique produces directions of 

endoscope translation motion in at least 73% 

in agreement with the ground truth. The 

technique performs much better at 90% 

accuracy for estimating rotation directions. 

For colon structure reconstruction 

evaluation, we tested our software with 

several sequences of images with overall 

illumination changes across the images in 

the sequence. The illumination changes 

impact the change in the scale of the local 

reconstructed colon models that form the 

global colon model. Our experiments show 

that, when considering the directions of 

scaling (up or down), we can scale the 

models correctly in at least 90% of the 

studied cases. The correct camera translation 

and rotation estimations and the colon 

structure with details fold protrusion and 

width are important for determining which 

area of the colon has been inspected and 

which has not, which has significant 

implication on the ability to give direct 
feedback to the endoscopist.  

We found that the fold edge tracking 

step plays an important role to the 

performance of the reconstruction of the 

colon structures. Even though we eliminate 

several noise edges, some noise edges from 

instrument, polyp, etc. remain. If the 

remaining edge being tracked is not an edge 

of a fold, but of other noises, we get a wrong 

colon shape as a result. We will revise the 
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preprocessing step of our previous work to 

better remove noise edges. In our current 

implementation, many steps such as the fold 

edge tracking and labeling tracked edges are 

not optimized for speed. Because out-of-

focus frames happen frequently, interrupting 

the reconstruction, multiple small 3D virtual 

colon segments are expected and they are to 

be registered together. Without any 

additional hardware, the registration will 

require matching of salient features in the 

images in the two nearest virtual colon 

segments and registration of these segments.  

6. Conclusion and Future Work 

We present the work on reconstruction 

of a colon structure and endoscope motion 

from a colonoscopic image sequence for 

screening colonoscopy. Given the difficulty 

of the problem, we still have to address a 

few more problems as discussed in Section 

5. Nevertheless, we overcame several 

challenges such as the scale difference of 

consecutive reconstructed models, 

estimating closed fold contours from tracked 

edges, and registering the models. We 

evaluated our proposed technique in two 

aspects: endoscope motion reconstruction 

and colon structure reconstruction. For the 

evaluation of motion reconstruction, we 

compared the software generated camera 

translation and rotation directions with 

ground truth motion directions. As future 

work, we will investigate a multi-frame 

registration approach to further reduce the 

depth and circumference estimation errors 

by registering nearby frames that are more 

similar in fold shape. We have not found 

any existing colonoscopy simulators that 

provide the measurements of the inside 

circumference of the colon fold and the 

shape of the fold. Developing such a 

realistic synthetic ground truth has been a 

challenging problem by itself. A 3D colon 

model from existing CT Colonography data 

is unlikely to match well with the colon 

structure during colonoscopy since the colon 

poses are different. Using a cylinder with 

flat surface without colon fold protrusion or 

fold thickness does not give a realistic colon 

model to develop computer-assisted 

technology to improve colonoscopy quality 

in practice. Under consultation with the 

domain expert, we will investigate 3D 

printing of a 3D colon model where the 

model is reconstructed using manually 

labeled fold contours of colonoscopy images 

of the real colon. The reconstruction should 

give us relative fold alignment, fold depth, 

fold protrusion, and fold thickness at each 

point on a fold, which we can scale the 
model to a physical unit and print the model. 
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(a)                                                                                (b) 

 

(c)                                                                                 (d) 

 

(e)                                                                             (f) 

Fig. 7. (a) One of the input images; (b) Green edges indicate that the fold edge is tracked through several previous 

frames. Short red lines indicate the motion of the tracked points. White numbers are global edge ID assigned to each 

edge. (c) Front view of the completed contour G in the global coordinate system reconstructed from multiple frames. 

(d) Rendered G; red, green and blue lines represents x-, y- and z-axes of the global coordinate system, respectively. 

(e) Wireframe of G; fold contours are marked with yellow color. Gray cylinder represents the endoscope. (f) Green 

area represents the unobserved area under the reconstructed camera motion on the reconstructed colon model (e); 

red and blue lines from the endoscope indicate the line of sight and the up vector, respectively. 
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