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SUMMARY 

In this paper, we consider a single-arm phase II trial 

with a time-to-event end-point. We assume that the 

study population has multiple subpopulations with 

different prognosis, but the study treatment is expected 

to be similarly efficacious across the subpopulations. 

We review a stratified one-sample log-rank test and 

present its sample size calculation method under some 

practical design settings. Our sample size method 

requires specification of the prevalence of 

subpopulations. We observe that the power of the 

resulting sample size is not very sensitive to 

misspecification of the prevalence. 
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Introduction1

Phase II trials are to sort out efficacious experimental therapies before proceeding to large

scale phase III trials. The patient population of a phase II trial often consists of multiple

subpopulations, called strata, with different prognosis. In this case, the final decision on the

study treatment should adjust for the heterogeneity of the patient population.

If we randomize patients between a control arm and an experimental arm, then the

distribution of patient characteristics defining the strata is expected to be similar between

the two arms, so that a univariate analysis ignoring the heterogeneity of patient population

is still valid, e.g. Jung (2013). In order to expedite the procedure, however, phase II cancer

clinical trials are traditionally designed using a single-arm design treating patients with an

experimental treatment only whose efficacy will be compared with a historical control. In a

single-arm phase II trial, we hardly can expect the distribution of patient characteristics to

be similar to that of a historical control.

Stratified analysis is a popular statistical method to handle the heterogeneity of a study

population. One of the most common primary endpoints in phase II cancer clinical trials

is tumor response which is a binary variable indicating the size of an index tumor has

changed substantially during or following treatment (Simon 1989, Jung et al. 2004). When

the clinical outcome is tumor response, London and Chang (2005) and Sposto and Gaynon

(2009) propose stratified testing method for single-arm phase II trials. Jung, Chang and

Kang (2012) investigate the impact of the standard unstratified testing on type I error and

power control when the prevalence of strata are misspecified at the design stage.

Sometimes, tumor response is not appropriate as an endpoint. For examples, in studies

of adjuvant chemotherapies, the tumor is completely resected before chemotherapy, so that

tumor response is not a meaningful endpoint. Also, tumor response is not a good endpoint for

cytotoxic therapies which are meant to prevent the growth of tumor rather than shrinking it.

In these cases, a reasonable endpoint is a time to event, such as disease recurrence recurrence

or death. Because of the loss to follow-up or termination of the study, event times may be

censored. Following the standard terminology, we will use time-to-event, failure time, and

survival time as synonymous in this paper.
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The one-sample log-rank test (Woolson 1981; Berry 1983; Finkelstein et al. 2003) has

been used for single-arm phase II trials to compare the survival distribution of an experi-

mental therapy with that of a historical control. Kwak and Jung (2013) proposed optimal

two-stage designs for single-arm phase II trials to be analyzed with the one-sample log-rank

test.

In this paper, we review a stratified one-sample log-rank test for single-arm phase II trials

with heterogeneous patient populations, and propose its sample size calculation method. The

sample size calculation requires specification of the prevalence of strata at the design stage

of a phase II trial. We investigate the impact of the erroneously specified prevalence on

the statistical power of single-arm phase II trials. We demonstrate our methods with a real

phase II cancer clinical trial.

Stratified One-Sample Log-Rank Test2

Suppose that there are J strata with different survival distributions because of different risk

levels. For strata j(= 1, ..., J), let Λ0j(t) denote the cumulative hazard function of a selected

historical control which are obtained from a previous study or by a retrospective record

study. If, for the historical control, we assume an exponential distribution with hazard rate

λ0j, then we have Λ0j(t) = λ0jt.

On the other hand, let Λj(t) denote the unknown cumulative hazard function of the

experimental therapy for stratum j. We want to test

H0 : Λj(t) ≥ Λ0j(t) for all j = 1, ..., J

against

H1 : Λj(t) < Λ0j(t) for some j = 1, ..., J.

Let nj denote the number of patients from stratum j, and n =
∑J
j=1 nj the total sample

size. For patient i(= 1, ..., nj) in stratum j, Tji and Cji denote the survival and censoring

times, respectively, that are independent within each stratum. In a real clinical trial, we

observe censored survival time Xji = min(Tji, Cji) and event indicator δji = I(Tji ≤ Cji).

We define event and at risk processes Nji(t) = δjiI(Xji ≤ t) and Yji(t) = I(Xji ≥ t),
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respectively, for each patient in stratum j, and Nj(t) =
∑nj

i=1Nji(t) and Yj(t) =
∑nj

i=1 Yji(t)

for stratum j.

Under H0 for large n, the stratified 1-sample log-rank test

W = n−1/2
J∑
j=1

∫ ∞
0
{dNj(t)− Yj(t)dΛ0j(t)}

is approximately normal with mean 0 and its variance can be consistently estimated by

σ̂2 = n−1
J∑
j=1

∫ ∞
0

Yj(t)dΛ0j(t)

refer to, e.g., Fleming and Harrington (1991). So, we reject H0 with one-sided α if Z =

W/σ̂ < −z1−α, where z1−α denotes the 100(1− α) percentile of the standard normal distri-

bution.

Note that, for stratum j, Oj ≡
∫∞
0 dNj(t) =

∑nj

i=1 δj is the observed number of events. Let

S0j(t) = exp{−Λj0(t)} denote the survivor function of survival times in stratum j under H0

and G(t) = P (Cji ≥ t) denote the survivor function of the common censoring distribution.

Since n−1j Yj(t) uniformly converge to S0j(t)G(t),

Ej ≡
∫ ∞
0

Yj(t)dΛ0j(t) ≈ −
∫ ∞
0

G(t)dS0j(t) = P (Tji < Cji|H0)

is the expected number of events under H0. Hence, the standardized test statistic is expressed

as
W

σ̂
=

J∑
j=1

Oj − Ej√
Ej

.

Sample Size Calculation3

Sample size calculation is one of the key components of a study design for clinical trials.

To this end, we propose a method to calculate the required sample size of the stratified

one-sample logrank test, n =
∑J
j=1 nj, for a specified power under a specific alternative

hypothesis H1 : Λj(t) = Λ1j(t) for j = 1, ..., J .

Let γj = nj/n denote the expected prevalence of stratum j (γj > 0 and
∑J
j=1 γj = 1),

S1j(t) = exp{−Λ1j(t)} denote the survivor function of Tji under H1. Under H1, n
−1Yj(t)
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uniformly converges to γjG(t)S1j(t), so that σ̂2 converges to

σ2
0 =

J∑
j=1

γj

∫ ∞
0

G(t)S1j(t)dΛ0j(t). (1)

Under H1, W is approximately normal with mean

√
nω ≡

√
n

J∑
j=1

γj

∫ ∞
0

G(t)S1j(t)d{Λ1j(t)− Λ0j(t)}

and variance

σ2
1 =

J∑
j=1

γj

∫ ∞
0

G(t)S1j(t)dΛ1j(t) = −
J∑
j=1

γj

∫ ∞
0

G(t)dS1j(t). (2)

Note that σ2
1 equals the probability that a patient has an event during the study period when

H1 is true, and ω = σ2
1 − σ2

0.

Hence, under H1, we have
W

σ̂
≈ W −

√
nω

σ1
× σ1
σ0

and (W −
√
nω)/σ1 is approximately N(0, Using this result, we can derive the power1).

function for given n,

1−β = P (
W

σ̂
< −z1−α|H1) ≈ P

(W −√nω
σ1

< −
√
nω

σ1
− σ0z1−α

σ1

∣∣∣H1

)
= Φ

(
−
√
nω

σ1
− σ0z1−α

σ1

)
where Φ(·) is the cumulative distribution function of the standard normal distribution. By

solving this equation and replacing ω = σ2
1 − σ2

0, we obtain the required sample size

n =
(σ0z1−α + σ1z1−β)2

(σ2
1 − σ2

0)2
. (3)

We consider more practical situations that will simplify the formula (3) in the following

subsections.

3.1 Proportional hazards model with a common hazard ratio across
strata

Suppose that the survival distributions between experimental and historical control therapies

have a proportional hazards model within each stratum. Furthermore, suppose that we

                       Medical Research Archives, Vol. 5, Issue 7, July 2017
Phase II Trials for Heterogeneous Patient Populations with a Time-to-Event Endpoint

Copyright 2017 KEI Journals. All Rights Reserved   Page │5 



expect similar efficacy improvement across the strata, so that we assume a common hazard

ratio across strata, i.e. Λ0j/Λ1j = ∆ for j = 1, ..., J . Then, from (1) and (2), we have

σ2
0 = ∆σ2

1 and ω = (1−∆)σ2
1. Under this assumption, (3) is simplified to

n =
(
√

∆z1−α + z1−β)2

σ2
1(∆− 1)2

. (4)

Since σ2
1 = P (T < C|H1) is the probability that a patient experience an event during the

study, the expected number of events at the analysis time, D = nσ2
1, is expressed as

D =
(
√

∆z1−α + z1−β)2

(∆− 1)2
. (5)

Under uniform accrual and exponential survival models3.2

Exponential distribution has been one of the most popular parametric models in survival

analysis because it fits real survival data relatively well and the computation is easy. Suppose

that in the statistical testing we assume exponential survival distributions for the historical

control, i.e. dΛ0j(t) = λ0jdt. For the sample size calculation, we assume exponential survival

distributions for both experimental and historical control therapies with hazard rates λhj

under Hh for h = 0, 1. The survival and cumulative hazard functions are given as Shj(t) =

exp(−λhjt) and Λhj(t) = λhjt, respectively. Note that exponential distributions satisfy the

proportional hazards assumption.

Furthermore, we assume that patients are accrued with a constant rate during period a

and followed for an additional period of b after completion of accrual. Then, the censoring

distribution is U(b, a+ b) with survivor function G(t) = P (C ≥ t) = 1 if t ≤ b; = (a+ b)/a−
t/a if b ≤ t ≤ a+ b; = 0 otherwise. Under these assumptions, we have

σ2
1 = 1−

J∑
j=1

γj
e−bλ1j

aλ1j
(1− e−aλ1j). (6)

Similarly, we can show that

σ2
0 =

J∑
j=1

γj
λ0j
λ1j
{1− e−bλ1j

aλ1j
(1− e−aλ1j)}. (7)

Note that σ2
0 is equal to σ2

1 when λ0j is replaced by λ1j. By plugging (6) and (7) in (4), we

calculate a sample size under uniform accrual and exponential survival model.
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If we further assume a common hazard ratio ∆ = λ0j/λ1j as in the previous subsection,

we have σ2
0 = ∆σ2

1 and ω = σ2
1 − σ2

0 = (1−∆)σ2
1. Hence, (4) is expressed as

n =
(
√

∆z1−α + z1−β)2

σ2
1(∆− 1)2

(8)

which has the identical form of (4) but with a simpler expression (6) for σ2.

3.3 When Accrual Rate is Given in stead of accrual period

In the previous subsections, we have assumed (i) uniform accrual during accrual period a, (ii)

exponential survival model, and (iii) constant hazard ratios ∆ = λ01/λ11 = · · · = λ0J/λ1J .

In this subsection, we assume that (i’) accrual rate r is given instead of accrual period a in

addition to the other assumptions. Note that (i’) is more reasonable assumption than (i)

because we can estimate the accrual rate based on the number of patients visiting the study

institution recently, while accrual period depends on accrual rate and required sample size

which is unknown.

From (6), σ2
1 = σ2

1(a) is a function of unknown variable a. By replacing n with a× r in

the left side of (8), we obtain an equation on a,

a× r × σ2
1(a) =

(√∆z1−α + z1−β
∆− 1

)2
or, simply

a× r × σ2
1(a) = D (9)

from nσ2
1 = D. In order to use (9), we should calculate D by (5) first. We solve one of these

equations using a numerical method, such as the bisection method with respect to a. Let a∗

denote the solution to the equations. Then, the required sample size and number of events

are obtained as n = a∗ × r and D = a∗ × r × σ2
1(a∗), respectively.

Example: We consider a single-arm phase II clinical trial for pancreatic cancer patients to

investigate weekly nab-paclitaxel plus gemcitabine, compared with gemcitabine only as the

historical control. The study population consists of two subpopulations (J = 2), one with

metastatic disease (j = 1) and the other with locally advanced disease (j = 2). The primary

endpoint of the study is progression-free survival (PFS). We will not be interested in the
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experimental therapy if its median PFS is θ01 = 4 months or shorter for the metastatic

disease group and θ02 = 6 months or shorter for the locally advanced disease group. And,

we will be highly interested in the experimental therapy if its median PFS is θ11 = 6 months

or longer for the metastatic disease group and θ12 = 9 months or longer for the locally

advanced disease group. We assume an exponential PFS for the historical control therapy

in the statistical testing and for both historical control and experimental therapies in this

sample size calculation. So, the annual hazard rates corresponding to these medians are

λ01 = 2.079, λ02 = λ11 = 1.386, and λ12 = 0.924. The hazard ratio is commonly ∆ = 1.5

for the both disease groups. We expect an annual accrual of 60 patients from metastatic

disease group and 30 patients from locally advanced disease group, i.e. r = 90 per year and

(γ1, γ2) = (2/3, 1/3). We plan an additional follow-up period of b = 1 year. Then, for 90%

power, the stratified one-sample log-rank test with 1-sided α = 0.05 requires D = 45 events

(progressions or deaths) from (5) at the final analysis and n = 57 patients from (9).

We have generated 10,000 simulation data sets of size n = 58 under the design settings

of the null and alternative hypotheses, and observed an empirical type I error rate of 0.041

(to be compared with α = 0.05) and a power of 0.864 (to be compared with 1− β = 0.9).

Impact of Misspecification of Prevalence3.4

In the sample size calculation of a phase II trial, an accurate specification of the prevalence

of each strata may be critical to maintain an appropriate statistical power while we may

control the type I error accurately using a stratified test statistic regardless of the observed

prevalence. The sample size of a standard phase II trial is usually so small that the prevalence

specified at the design stage can be quite different from that observed when the study is

conducted.

We investigate the impact of misspecification of prevalence of strata at a sample size

calculation. We assume the design setting of Example 1 except the prevalence. Let γ1j

denote the prevalence specified for sample size calculation and γ2j the true one or the one

observed from the study. We calculate the sample size n assuming prevalence of (γ11, γ12)

and calculate the power of this sample size when the true prevalence is (γ21, γ22).

Table 1 reports the power of the sample sizes calculated for specified prevalence γ11 when
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the true prevalence is γ21 for stratum 1.

If the specified prevalence is identical to the observed one (the diagonal of Table 1),

then we have the power of the nominal 1 − β = 0.9. The lower diagonal cells of Table 1

denote the power of sample size calculated by overestimating the prevalence of the high risk

group (stratum 1). In this case, the sample sizes are underpowered compared to the targeted

1 − β = 0.9 since the trial will observe less events than expected at the study design. For

example, if we design a trial assuming a prevalence of γ11 = 0.7, but observe γ21 = 0.4 from

the trial, then we will have a power of 0.885. Overall, however, we observe that the impact

of misspecified prevalence on statistical power is moderate over the wide range of specified

and true prevalence. If the prevalence of the high risk group is overestimated (the upper

diagonal of Table 1), then we have enough power. Anyhow, at the design stage of a trial, it

will be safe to check the power of the calculated sample size for a wide range of prevalence,

and to plan a sample size recalculation before completing accrual if necessary.

Discussions4

In this paper, we have considered design of phase II clinical trials when the patient population

consists of multiple subpopulations, called strata, with different prognosis. We assume that

the study therapy is expected to be similarly beneficial for all strata. If the study therapy

is expected to be efficacious only for a subset of strata (e.g. different disease type), then the

eligibility criteria should be appropriately defined to exclude the strata that would not be

expected to have the benefit of the study therapy.

We have proposed to account for the heterogeneity of patient population using a stratified

testing method for single-arm phase II clinical trials with a time-to-event outcome, such as

progression-free survival. We also present a sample size calculation method for the stratified

test to be used when designing such trials.

When designing a trial to be analyzed using a stratified test, it is required to specify the

prevalence of strata. Jung, Chang and Kang (2012) have shown that unstratified testing can

severely distort the type I error and power when the prevalence of strata is different from

the real one. In this paper, however, we observe that the power is not much influenced by
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misspecification of the prevalence as far as the type I error rate is accurately controlled by

using a stratified analysis.
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Table 1: Power of the sample size calculated by specifying a prevalence of γ11 for stratum 1

when the true prevalence is γ21

True Prevalence,Specified γ21
γ11 0.90.80.70.60.50.40.30.20.1

0.9350.9320.9280.9240.9190.9150.9100.9050.9000.1
0.9310.9280.9230.9190.9150.9100.9050.9000.8950.2
0.9270.9230.9190.9150.9100.9050.9000.8950.8890.3
0.9230.9190.9140.9100.9050.9000.8950.8890.8830.4
0.9190.9140.9100.9050.9000.8950.8900.8840.8780.5
0.9140.9100.9050.9000.8950.8900.8840.8780.8720.6
0.9100.9050.9000.8950.8900.8850.8790.8730.8670.7
0.9050.9000.8950.8900.8850.8790.8730.8670.8610.8
0.9000.8950.8900.8850.8790.8740.8670.8610.8550.9
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