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Introduction 

Myocardial ischemia is a leading cause of 

death in developed countries and progresses 

continuously in emerging countries. Today, 

the only available treatment to reduce infarct 

size and to improve the clinical outcome after 

myocardial ischemia remains the restoration 

as rapidly as possible of the blood flow 

(reperfusion) in the occluded coronary 

arteries (by angioplasty, thrombolysis or 

surgery). However, the efficacy of this 

clinical strategy is limited because the 

restoration of blood flow in the ischemic 

myocardium paradoxically generates cellular 

lesions which are called "reperfusion injury". 

These lesions are mainly related to the 

massive cellular influx of Ca
2+

 and the 

production of reactive oxygen species 

(ROS). In the past decades, major efforts 
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have converged to find new 

"cardioprotective" pharmacological ap-

proaches that can be combined with 

reperfusion methods in order to reduce the 

lesions of reperfusion and thus the morbidity 

and the mortality following acute myocardial 

infarction (AMI).
1
 

This has been made possible by the 

enormous progresses that have been 

performed to decipher the cellular signaling 

pathways leading to cardioprotection after 

myocardial infarction and these advances 

provided several ways to develop 

pharmacological protective agents.
1
 

It is now well-established that the major cause 

of cell injuries during cardiac ischemia-

reperfusion is the increase in the 

mitochondrial membrane permeability 

generated both by the formation of channels 

across the outer membrane and the opening of 

the mitochondrial transition pore (mPTP).
2,3

 

This is a process whereby the inner 

mitochondrial membrane becomes permeable 

to solutes (For review see 
4
). Its opening is 

detrimental for the cell as it causes 

mitochondrial swelling, loss of membrane 

potential, inhibition of oxidative 

phosphorylation and may result in rupture of 

outer mitochondrial membrane leading to cell 

death.
5,6

  

The limitation of mitochondrial membrane 

permeability during the reperfusion of the 

ischemic myocardium represents, therefore, a 

major objective to attenuate lethal reperfusion 

injury and to get the most benefit from 

reperfusion strategies. In the present review, 

we will discuss pharmacological strategies 

(1) acting on signaling pathways and/or 

endogenous factors which promote 

mitochondrial membrane permeabilization 

or (2) targeting mitochondrial channels 

involved in the permeabilization. This review 

does not provide a coverage of the cellular 

and mitochondrial events occurring during 

cardiac reperfusion after a prolonged period 

of ischemia since this has been well-

reviewed in previous articles.
7-10

 

1. Pharmacological strategies targeting 

signaling pathways involved in 

mitochondrial membrane permeabili-

zation 

The discovery of the cardioprotective effect 

of ischemic preconditioning, i.e., non lethal 

brief episodes of ischemia-reperfusion 

preceding a prolonged ischemic period, was 

a major step to decipher the mechanisms 

leading to cell death during reperfusion 

injury and the signaling pathways 

responsible for cytoprotection.
1
 Ischemic 

preconditioning which was originally 

described by Murry et al. is one of the most 

powerful strategies to protect the heart 

against lethal reperfusion injury.
11

 Studies 

demonstrated that ischemic preconditioning 

causes the release of four G protein-coupled 

receptors agonists, adenosine, bradykinin, 

opioid and sphingosine that activates a 

cascade of cardioprotective kinases named 

the “Reperfusion Injury Salvage Kinase” or 

RISK pathway.
12

 Although there is still 

some debate, this cascade includes 

PI3kinase, Akt, ERK1/2 and downstream 

proteins such as glycogen synthase kinase-

3β (GSK-3β), protein kinase G (PKG), Bad 

or endothelial nitric oxide synthase (eNOS). 

Other studies showed that protein kinase C 

(PKC) and mitochondrial ATP-sensitive 

potassium channels also belong to the 

ischemic preconditioning signaling 

pathway.
13,14

 Subsequently, another 

signaling pathway named the Survivor 

Activating Factor Enhancement (SAFE) 

pathway that is activated independently of 

the RISK pathway was identified. It is 

initiated by the Tumor necrosis factor alpha 

and involves the activation of the signal 

transducer and activator of transcription 3 

(STAT-3)
15

 but appears to play a more 

important role in larger animals than in 

rodents.
16
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Although the overall signaling pathway is 

not completely understood, it is now 

accepted that these actors converge to 

mitochondria to prevent the formation of the 

mPTP which is considered to induce much 

of cell death in the heart in the first minutes 

of reperfusion. The mechanism by which the 

RISK pathway inhibits mPTP is unclear, but 

several candidates have been proposed 

which may act in concert to mediate mPTP 

inhibition.
17,18

 

Similarly to ischemic preconditioning, 

postconditioning (reperfusion-reocclusion 

cycles at the onset of reperfusion) and 

remote preconditioning (brief periods of 

ischemia applied in a distant tissue) promote 

cardioprotection mediated by a kinase 

response and a limitation of mPTP 

opening.
19-22

 However, recent studies 

suggest that the cardioprotection induced by 

remote and postconditioning could be 

independent from the RISK pathway in large 

animals.
16-22

 

Nevertheless, activation of RISK and SAFE 

pathways provides a possible therapeutic 

intervention to inhibit mPTP opening and to 

protect the heart at reperfusion and several 

pharmacological strategies have been used. 

1.1. Targeting of the RISK pathway 

Adenosine was the first G protein-coupled 

receptor ligand shown to mimic the 

cardioprotective effect of ischemic 

preconditioning when administrated prior to 

coronary occlusion in the animal.
23 

This 

experimental investigation was followed by 

two small clinical trials showing myocardial 

protection when adenosine was 

administrated at high doses during AMI as 

an adjunct to angioplasty and 

thrombolysis.
24,25

 Two larger randomized 

controlled studies also observed a reduction 

in infarct size
26,27

 but this pharmacological 

strategy failed to improve clinical 

outcomes.
27

 However, a recent meta-analysis 

evaluating all randomized trials, comparing 

intracoronary adenosine administration 

versus placebo in ST-segment myocardial 

infarction (STEMI) patients undergoing 

primary percutaneous coronary intervention 

(PCI), demonstrated a clinical benefit for 

adenosine in hard endpoints, such as adverse 

cardiovascular events.
28

 

Opioid receptors also activate the RISK 

pathway and morphine promotes potent 

cardioprotection in experimental studies 

when administrated upon reperfusion.
29 

This 

cardioprotective effect involves the 

inhibition of the mPTP.
30

 In a clinical study, 

morphine improved the protective effect of 

remote preconditioning during PCI.
31

 In a 

more recent study, Zhang et al. showed that 

morphine may provide enhanced 

cardioprotection against ischemia-

reperfusion injury in children undergoing 

corrections of Tetralogy of Fallot but this 

study concerned only a small number of 

children.
32

 However a recent trial failed to 

reduce infarct size in STEMI patients.
33

 

Other G protein-receptor ligands such as the 

growth factor urocortin and the glucagon-

like peptide-1 confirmed the link between 

the activation of the RISK pathway and the 

induction of a cardioprotective effect.
34,35

 

This link exists also for a variety of other 

pharmacological agents activating 

membrane receptors. Experimental studies 

demonstrated that TGF-1, insulin, insulin 

growth factor and erythropoietin elicited 

cardioprotection through the activation of 

the RISK pathway when administrated at 

reperfusion (for review see 36). Among 

these drugs, erythropoietin gave birth to 

several preclinical studies (for example 37-

40) but also to some clinical trials. In patient 

with STEMI, the administration of high 

doses of erythropoietin did not show 

cardioprotective effect
41-44

 whereas low 

doses of the drug appeared to be beneficial.
45

 

A large clinical study has been conducted 

but the results have not yet been published.
46

 



Panel M. et al. Medical Research Archives, vol. 5, issue 10, October 2017 Page 4 of 31 

Copyright 2017 KEI Journals. All Rights Reserved  http://journals.ke-i.org/index.php/mra 

Besides to the drugs acting through membrane 

receptor mediated mechanisms, a number of 

agents confer cardioprotection by activating 

components of the RISK pathway 

downstream to these receptors. This is the 

case of statines which, in addition to their 

lipid lowering properties, were shown to 

stimulate different kinases belonging to the 

RISK pathway
47-49

 but also to activate the 

mitochondrial KATP channel through nitric 

oxide production.
50

 Statins were investigated 

in clinical trials leading to mixed results.
43,51,52

 

Another pharmacological strategy is to 

directly target PKC which plays a crucial role 

in drug-induced cardioprotection. Epsilon-

PKC is a primary cardioprotective PKC 

isoform, whereas delta-PKC promotes injury. 

In a recent clinical study, a selective inhibitor 

of delta-PKC, which reduced infarct size 

during ischemia-reperfusion in animal 

models, diminished myocardial necrosis and 

improved reperfusion in a pilot study during 

primary PCI
53

 but did not reduce biomarkers 

of myocardial injury in a larger trial.
54

 

1.2. Targeting of the SAFE pathway 

The discovery of the SAFE pathway is more 

recent but its components are also the target of 

drugs that mimic conditioning and offer the 

opportunity to promote cardioprotection at 

reperfusion. In this context, high density 

lipoproteins, glyceryltrinitrate, cariporide, 

resveratrol and melatonine were shown to 

protect the heart against ischemia-reperfusion 

damage by activating the SAFE pathway and 

thereby inhibiting mPTP opening.
55-58

 It is 

important to emphasize that crosstalk between 

the RISK and the SAFE pathways have been 

described
59

 and some drugs first considered as 

selective activators of the RISK pathway also 

stimulate the SAFE pathway. For example, 

recent data indicate that the cardioprotective 

effect of morphine is also mediated by 

STAT3-activation
60

 and Brulhart-Meynet et 

al. demonstrated that Akt, STAT3 and 

ERK1/2 were similarly activated by high 

density lipoproteins.
61

 In the same way, 

erythropoietin-induced cardioprotection in a 

rodent model of prolonged hypothermic 

global ischemia-reperfusion injury seems to 

be mediated via activation of the SAFE 

cytoprotective signaling pathway.
62

 

Similarly, the cardioprotective effect of 

atorvastatin is related to the inhibition of 

mPTP opening secondary to the activation of 

TNF-α and the JAK/STAT pathway in early 

reoxygenation of the human myocardium, in 

vitro.
63

 

2. Pharmacological modulation of 

endogenous factors inducing mPTP 

It is well-established that mitochondrial Ca
2+

 

overload is essential to activate mPTP 

opening at reperfusion and that other factors 

such as adenine nucleotide depletion, high 

phosphate concentrations and more 

particularly ROS are involved in the 

formation and/or in the regulation of the 

pore. These factors enhance the sensitivity of 

the mPTP for Ca
2+

 that possesses binding 

sites in the mitochondrial inner membrane 

facing the matrix.
5 

Therefore, inhibiting 

mitochondrial Ca
2+

 overload and limiting 

ROS, the primary activators of mPTP 

opening during cardiac ischemia-

reperfusion, are relevant objectives to protect 

the heart. 

2.1. Calcium 

The majority of the studies indicate that 

cellular Ca
2+

 rises during ischemia and 

precedes irreversible injury of the cell.
64 

This 

is in agreement with the observation that 

hearts issued from mice lacking the Na
+
/Ca

2+
 

or the Na
+
/H

+
 exchanger which both 

contribute to the rise in cellular Ca
2+

 during 

ischemia have decreased injury after 

ischemia-reperfusion.
65-66 

Inhibitors of these 

exchangers have been shown to limit 

ischemia-reperfusion injury
67-69

 and this 

constitutes an interesting strategy to 

attenuate mitochondrial Ca
2+

 overload and 

mPTP opening
70,71

. Besides limiting Ca
2+

 

accumulation, inhibition of Na
+
/H

+ 
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exchanger decreases intracellular pH which 

is also known to inhibit mPTP opening 

during early reperfusion.
9
 

Another way to limit Ca
2+

 overload is to act 

on the sarcoplasmic reticulum. The 

sarcoplasmic reticulum is an important 

cellular Ca
2+

 sink which regulates cytosolic 

Ca
2+

 and improving sarcoplasmic reticulum 

Ca
2+

 handling has been shown to protect 

mitochondria against mPTP opening and to 

reduce ischemic injury.
72,73 

In this context, 

recent results revealed that the interaction 

between sarcoplasmic reticulum and 

mitochondria
74

 could play a role in 

mitochondrial Ca
2+

 overload at reperfusion 

and could constitute a target to protect 

cardiomyocytes against reperfusion injury.
75-

77
 

Since Ca
2+

 is a key inducer of mPTP opening, 

inhibition of mitochondrial Ca
2+

 uniporter, the 

protein responsible for mitochondrial Ca
2+

 

uptake
78

, was considered as a possible target. 

According to this hypothesis, Miyamae et al. 

reported that ruthenium red, a selective 

inhibitor of the Ca
2+

 uniporter, improved 

cardiac function in isolated rat hearts 

subjected to ischemia-reperfusion.
79 

This was 

confirmed with the use of a selective and 

potent mitochondrial Ca
2+

 uniporter 

blocker.
80,81 

This is in line with the results of 

Kwong et al. demonstrating that hearts from 

mice lacking the mitochondrial Ca
2+

 

uniporter produced mitochondria resistant to 

mPTP opening upon Ca
2+

 overload and these 

hearts were protected from acute ischemia-

reperfusion injury.
82 

Taken together, these 

data suggest that acute inhibition of the Ca
2+

 

uniporter could be an interesting therapeutic 

approach to protect against cell death. 

However, opposite results indicate that it is 

necessary to better understand the 

mechanisms governing cell survival and 

cellular responses due to the loss of Ca
2+

 

uniporter before developing therapies 

designed to prevent mitochondrial Ca
2+

 

overload.
83

 

2.2. Reactive oxygen species (ROS) 

Mitochondria are one of the key initiators of 

cellular ROS production. Electron leakage 

from the electron transport chain during 

respiration is generally considered as the main 

source of mitochondrial ROS but several other 

mitochondrial enzymatic systems have been 

found to produce ROS.
84 

In physiological 

conditions, ROS formed within mitochondria 

are eliminated by powerful antioxidant 

systems.
84 

During post-ischemic reperfusion, 

the sudden influx of oxygen leads to a burst of 

ROS
85,86

 which can overwhelm endogenous 

antioxidant systems. ROS produced during 

early reperfusion have been shown to be 

primary activators of mPTP and 

cardiomyocyte death.
87

 The sensitization of 

mPTP along with an increase in mitochondrial 

protein carbonylation during myocardial 

ischemia emphasizes the role of the oxidative 

stress.
88

 

The question is how an increase in ROS 

production can affect mPTP opening? Former 

studies performed in isolated mitochondria 

have mentioned the role of oxidation-

reduction of critical protein residues which 

could influence mPTP opening.
89 

More 

particularly, the oxidation of thiol functions 

and cysteine residues, which is considered as 

an important mechanism to regulate protein 

structure, was described on proteins supposed 

to be involved in the formation of the pore or 

in the regulation of its opening. This concerns 

the adenine nucleotide translocase
90,91

, 

cyclophilin D (CypD) 
92

, ATP synthase
93

 or 

complex I of the respiratory chain.
94

 The 

oxidation of cardiolipin can also contribute to 

the effect of ROS on mPTP opening. Indeed, 

cardiolipin is specific of mitochondria and is 

the main lipid of the inner membrane. 

Cardiolipine is located close to the sources of 

ROS production and contains high level of 

unsaturated fatty acids susceptible of lipid 

peroxidation. Oxidized cardiolipine was 

shown to sensitize heart mitochondria to 

mPTP opening.
95
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Therefore, the use of antioxidant agents has 

emerged as a relevant approach to limit mPTP 

opening and thus ischemia-reperfusion injury. 

In addition, it was recently suggested that the 

contribution of ROS might be more necessary 

than Ca
2+

 overload to maintain sustained 

mPTP opening and cell death at reperfusion
96

, 

reinforcing the suitability of this approach.  

It should be noted that the reduction of 

oxidative stress was suggested to contribute to 

the cardioprotective effect of several 

therapeutic drugs such as the substrate of 

oxidative-phosphorylation pyruvate
97-99

, the 

non-selective ß-adrenoceptor antagonist 

carvedilol
100,101

 or the anaesthetic drug 

propofol widely used in cardiac surgery.
102,103

 

Several strategies aimed at scavenging ROS 

or increasing their degradation using a wide 

range of natural antioxidants or 

pharmacological agents inhibit mPTP 

opening and display cardioprotective effects 

in different in vitro and ex vivo model of 

ischemia-reperfusion.
104-107 

However, the 

translation of these successful laboratory 

results to the clinical setting remains 

inconsistent.
108-110 

It should be noted that a 

recent clinical trial associating N-acetyl-

cysteine with nitrate therapy showed reduced 

infarct size in STEMI patients undergoing 

PCI.
111 

Adlam et al. demonstrated that 

targeting antioxidant to mitochondria can 

reduce reperfusion injury but that the 

protective effect is lost when the antioxidant 

agent did not accumulate into 

mitochondria.
112 

This can explain the 

absence of effect of antioxidants since a lot 

of these drugs exhibit low bioavailability and 

low selectivity. Thus, they do not reach 

mitochondria or require high dosage to reach 

mitochondria in vivo. In this case, high doses 

of antioxidant agents, such as polyphenols 

for instance, can act as prooxidants
113

, 

leading to cellular dysfunction and cell 

death. The challenge is, therefore, to target 

antioxidants to mitochondria and to reduce 

the deleterious consequence of off-target 

subcellular localization. 

Several approaches have been reported (see 

reviews 
86,101,114,115

) and here we just 

mention them briefly. The first one uses the 

high selective mitochondrial membrane 

potential as a selective system to deliver 

molecules to the organelle. Lipophilic 

cations are conjugated to antioxidant 

compounds which are sufficiently lipophilic 

to cross lipid bilayer membranes. These 

substances can be selectively taken up into 

the mitochondria by the large, negative 

inside, inner membrane potential.
116 

A 

disadvantage of this strategy is that the 

molecules need a certain level of membrane 

potential and thus viable mitochondria to 

accumulate inside the organelle. These drugs 

include alpha tocopherol (MitoVit E), 

ubiquinone (MitoQ), SNO (MitoSNO), 

tempol (MitoTempol), resveratrol (Mito-

resveratrol) and plastoquinone (SkQs 

compounds). A number of experimental 

studies indicate that these drugs could 

constitute a valid approach to limit cardiac 

reperfusion-injury.
112,117-119 

The second 

mitochondrial delivery drug system are 

peptides engineered to facilitate the crossing 

through the mitochondrial inner membrane. 

These peptides are mitochondrial penetrating 

peptides
120

, hemigramicidin-TEMPO conju-

gates
121

 and Szeto-Schiller (SS) peptides.
122

 

SS-peptides are today the most promising 

peptides to reduce ischemia-reperfusion 

injury. SS-peptides include a sequence motif 

targeted to mitochondria and enter the 

mitochondria in a potential-independent 

manner. Their antioxidant effect is due to the 

presence of basic amino acids, tyrosine and 

dimethyltyrosine, which are effective at 

scavenging ROS. These peptides reduce 

mitochondrial ROS production, inhibit 

mPTP opening and prevent the release of 

cytochrome c from mitochondria.
123 

They 

were shown to reduce infarct size in rats 

when they were administrated before 

ischemia
124

 or at reperfusion.
122

 One of these 

peptides was also shown to stabilize the 

interaction between cardiolipine and 

cytochrome c and to improve oxidative 
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phosphorylation.
125

 This effect can also 

contribute to the anti-ischemic effect of these 

drugs. However, in a recent clinical trial, 

administration of this peptide at the time of 

PCI failed to reduce infarct size.
126

 

It should be kept in mind that ROS also exert 

physiological role. Therefore, we cannot 

disregard the importance of physiological 

low concentrations of ROS which are 

necessary for signaling processes. 

Determining the threshold separating the 

physiological from the pathological level of 

ROS remains a major objective which could 

help to develop antioxidant agents efficient 

during myocardial ischemia-reperfusion. 

3. Pharmacological control of mPTP 

opening 

mPTP is thought to be a multiprotein complex 

which forms and opens under conditions that 

prevail at the time of reperfusion such as Ca
2+

 

overload, oxidative stress, adenine nucleotide 

depletion, high phosphate concentrations or 

membrane depolarization.
5
 mPTP was 

originally thought to form at contact sites 

between inner and outer membranes, 

involving the Voltage Dependent Anion 

Channel, the Adenine Nucleotide Transporter 

and the Phosphate Carrier. However, genetic 

ablation of those putative components 

successively ruled out their participation in the 

structure of the pore.
127,128

 Recently, a new 

hypothesis proposes that ATP synthase might 

form the core of the pore, either by 

dimerization or by detachment of the c 

subunit. Nevertheless, a common agreement 

considers that opening of the mPTP is under 

the control of CypD. CypD is a soluble matrix 

protein which catalyses or stabilizes the open 

state of mPTP. The crucial role of CypD has 

been demonstrated by the deletion of the gene 

in mice, allowing mitochondria to sustain 

higher Ca
2+

 concentrations by desensitizing 

mPTP.
129,130

 

 

3.1. Targeting CypD 

3.1.1. Cyclosporin A and its derivatives 

The first demonstration of the impact of CypD 

inhibition on pore opening was made by the 

observation that cyclosporin A (CsA), an 

immunosuppressant agent targeting all 

cyclophilins, inhibits mPTP opening. CsA 

binds tightly to cyclophilins and inhibits 

peptidyl-prolyl-cis-trans-isomerase (PPiase) 

activity. In mitochondria, interaction of CsA 

and CypD results in inhibition of PPiase 

activity and inability of CypD to bind to 

membrane proteins. This results in pore 

closure. Since the observations made by 

Crompton and colleagues
131

, CsA has been 

proven to be protective in several in vitro, ex 

vivo and in vivo models although several 

failures were reported in larger animals (for a 

review, see
132

). A proof of concept clinical 

trial demonstrated that administration of 2.5 

mg/kg at the time of PCI is 

cardioprotective.
133

 This was associated with 

reductions in biomarker release and adverse 

remodeling at 6 month post PCI.
134

 Based on 

these encouraging results, CIRCUS 

(Cyclosporin to ImpRove Clinical oUtcome in 

STEMI patient), a phase III placebo-

controlled trial including 975 patients failed to 

demonstrate any beneficial effect of CsA 

administration on every endpoint.
135

 Another 

phase III clinical trial, CYCLE, also failed to 

recapitulate the beneficial effects of CsA.
136

 

These negative results have been extensively 

commented elsewhere (e.g.
137-139

) and raise 

major concerns toward the clinical use of CsA 

in mPTP based pathologies. 

Enhancing mitochondrial biodisponibility 

might help to counteract the side effects 

observed with CsA and could enlarge its 

therapeutic window. To this end, a 

mitochondrial targeted CsA (mtCsA) 

designed to minimize non CypD interactions 

in cells was developed by the Crompton’s 

group. They combined CsA with a 

triphenylphosphonium cation to specifically 

target mitochondria.
140,141

 This improved 
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cytoprotection in a simulated ischemia-

reperfusion model by lowering the maximal 

concentration needed to inhibit mPTP opening 

and decreasing cellular toxicity.
141

 Following 

the same principle, JW47, a CsA derivative 

coupled with a quinolinium cation 

demonstrated reduced cellular toxicity and 

afforded significant protection in a mouse 

model of encephalomyelitis by selectively 

inhibiting CypD.
142

 Recently, the use of 

nanoparticles to address CsA to ischemic 

myocardium yielded promising results.
143

 

Indeed, encapsulated CsA accumulated in the 

mitochondria of the ischemic area, resulting in 

a decrease in infarct size in mice at lower 

concentrations than CsA alone.  

CsA has also been modified to provide 

derivatives devoid of immunosuppressant 

activity by modifying the residues normally 

interacting with calcineurin. This is the case 

for NIM811 (N-methyl-4-isoleucine-CsA) 

which inhibits mPTP opening
144,145

 and 

exerts protective effect in various models of 

diseases where mPTP plays a major role such 

as post-cardiac arrest syndrome in 

rabbits
146,147

, traumatic brain injury in rats and 

mice
148,149

 or cardiac and liver ischemia-

reperfusion.
150,151

 Debio-025 (N-Me-Val-4-

CsA, alisporivir) is another CsA derivative 

lacking the immunosuppressant activity which 

demonstrated cardioprotective effects.
152

 

Other cyclic polypeptides unrelated to CsA 

have been described as mPTP inhibitors. 

Sanglifehrin A (SfA) is a cyclic polypeptide 

which exerts immunosuppressant activity 

independently from calcineurin interaction. As 

compared to CsA, SfA binds differently on 

CypD and shows important difference in its 

mechanism of action. Indeed, SfA inhibits 

PPIase function but does not inhibit the 

binding of CypD to mitochondrial membranes 

and especially to ANT.
153

 SfA inhibits mPTP 

opening as potently as CsA, suggesting that 

inhibiting PPIase activity, rather than CypD 

binding to the mPTP components, is the key 

event in this mPTP inhibition strategy. 

Antamanide is a cyclic decapeptide derived 

from the fungus Amanita phalloides which 

has been described to exert 

immunosuppressant activity by interacting 

with CypA but not calcineurin.
154

 In this 

context, it has been supposed that antamanide 

could also inhibit CypD and therefore block 

mPTP opening. Antanamide antagonizes 

mPTP opening in vitro by inhibiting CypD 

PPIase activity although it displays a ten times 

lower affinity for CypD than CsA.
155

 

Nevertheless, all of these drugs have 

limitations which hamper their clinical use. 

Indeed, they have severe side effects including 

nephrotoxicity, neurotoxicity and 

hepatotoxicity which limit their use in vivo.  

3.1.2. New small molecules inhibiting CypD 

Recently, the discovery of new non peptidic 

small-molecules inhibitors of cyclophilins 

(SMCypI) unrelated to CsA or SfA have been 

described.
156

 These compounds were designed 

by fragment based drug discovery and aimed 

at inhibiting cyclophilins PPIase activity with 

submicromolar activity. These inhibitors are 

non-toxic small molecules devoid of 

immunosuppressive effects. In addition, one 

can imagine coupling them to lipophilic 

cations to develop their mitochondrial 

selectivity similarly to previous antioxidant 

agents, to bypass the other cellular 

cyclophilins and increase their selectivity for 

CypD. Based on this molecular scaffold, two 

groups developed small inhibitors of CypD 

which demonstrated cytoprotection in cellular 

models of acute pancreatitis
157

 and UV-

associated retinal degeneration
158

 by inhibiting 

mPTP opening although they have not been 

tested in vivo yet. The cardioprotective 

properties of these molecules remains 

currently under investigation. 

Another group identified the 4-

aminobenzenesulfonide scaffold as a CypD 

inhibitor.
159

 Their compound, C-9, binds to 

CypD and inhibits PPiase activity with a 

micromolar IC50. This allowed the inhibition 
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of Ca
2+

 induced mitochondrial swelling. In 

vitro, C-9 prevented mitochondrial 

dysfunction induced by Aβ peptide in 

neuronal cells as demonstrated by the 

restoration of ATP content and cytochrome c 

oxydase function. Moreover, C-9 did not exert 

toxic effect on cellular cultures even at high 

concentrations (100 µM).  

As CypD is only a modulator of mPTP 

opening, its inhibition decreases the 

susceptibility of opening rather than totally 

blocking it. Indeed, in mitochondria devoid of 

CypD, pore opening can still be observed at 

higher Ca
2+

 concentrations. Hence, inhibiting 

CypD may not be sufficient to afford 

protection in case of severe stimuli, 

emphasizing the needs for other targets as 

well.  

3.2. mPTP inhibitors that do not interact 

with CypD  

As previously described, CypD inhibition 

displays limitations and a number of groups 

try to identify inhibitors acting through other 

modulators of the pore or directly interacting 

with a pore component although the exact 

structure of the pore remains elusive. 

3.2.1. TSPO ligands 

An example is the 18 kDa translocator protein 

(TSPO), an outer membrane protein which 

has been shown to interact with putative 

components of the mPTP.
160

 Several studies 

have demonstrated that TSPO ligands, such as 

SSR180575 and 4’-chlorodiazepam, exert 

cardioprotective effects.
161,162

 This effect was 

associated with a limitation of the 

permeability of mitochondrial membrane to 

cytochrome c and Apoptosis Inducing Factor. 

4’-chlorodiazepam also increased the 

resistance of mitochondria to Ca
2+

-induced 

mPTP opening. A similar profile was 

observed with TRO40303. TRO40303 is a 

ligand which was originally selected using a 

cell-based screening assay aimed to identify 

small molecules that maintain survival of 

trophic factor-deprived rat motor neurons.
163

 

TRO40303 binds specifically to the 

cholesterol site of TSPO and exhibits 

cytoprotective properties in various cell types. 

TRO40303 was shown to inhibit mPTP 

opening in isolated cardiomyocytes.
164

 It has 

to be noted that TRO40303 does not decrease 

mitochondrial sensitivity to Ca
2+

 as assessed 

by the measurement of mitochondrial Ca
2+

 

retention capacity, indicating that it might 

inhibit mPTP opening by an indirect 

mechanism of action. This is in line with the 

data of Sileikyte and co-workers who 

demonstrated that TSPO is not required to 

regulate mPTP opening in TSPO KO mouse 

heart.
165 However, a new indirect mechanism 

was recently described. Paradis et al. (2013) 

showed that the reperfusion of an ischemic 

myocardium was associated with an 

accumulation of cholesterol into 

mitochondria and a concomitant strong 

generation of auto-oxidized oxysterols 

resulting from the oxidation of cholesterol 

by ROS.
166

 The TSPO ligands 4’-

chlorodiazepam and TRO40403 abolished 

the mitochondrial accumulation of 

cholesterol and the formation of oxysterols, 

reduced oxidative stress and prevented 

mPTP opening at reperfusion.
166

 They 

remained efficient in hypercholesterolemic 

conditions.
167

 This new and original 

mechanism may contribute the 

cardioprotective properties of TSPO ligands. 

In vivo, administration of TRO40303 reduced 

reperfusion injury in rats
164,168

 but the 

cardioprotective effect of the drug was not 

confirmed in a clinical trial (MITOCARE) 

which demonstrated no benefit in patients 

when TRO40303 was administrated at the 

time of PCI.
169

 

3.2.2. Ubiquinones 

Several ubiquinones have been described as 

mPTP inhibitors while others are mPTP 

inducers. Indeed, mPTP might possess a 

quinone binding site which controls the Ca
2+

 

sensitivity.
170

 The most potent ubiquinone 

Ub0 increases the Ca
2+

 retention capacity in a 
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larger extent than CsA suggesting that 

ubiquinones do not act by inhibiting CypD. 

Another argument is that Ub5 is able to 

antagonize the inhibition afforded by Ub0 but 

not that afforded by CsA. Inhibition by 

ubiquinones is not limited to Ca
2+

-induced 

mPTP but is also observed with other inducers 

such as atractyloside, oxidative stress and 

mitochondrial depolarization.
170

 The exact 

mechanism of action by which ubiquinones 

inhibit mPTP opening is not known but, as 

they also interfere with the electron transport 

chain, it has been suggested that ubiquinones 

act as electron acceptor and exert antioxidant 

effect.
171

 Nevertheless, the most active 

ubiquinone Ub0 has never been tested in vivo, 

except as a mitochondrial targeted 

ubiquinone, mitoQ, which is cardioprotective 

by limiting oxidative stress.
112

 Ub10, which is 

as potent as CsA, has been previously 

described to improve cardiac functional 

recovery in an isolated perfused rabbit heart 

model of ischemia-reperfusion
172

 but the 

authors did not mention the inhibition of 

mPTP as the protective mechanism involved. 

The preservation of ATP observed may 

suggest that mitochondria remain functional at 

the time of reperfusion which is consistent 

with pore closure. Cardioprotective effects of 

Ub10 have been extensively studied in the 

past, including a clinical trial demonstrating 

the benefit of Ub10 administration following 

myocardial infarction.
173

 

3.2.3. Cinnamic anilides 

High throughput screening of commercially 

available small molecules libraries, based on 

isolated mitochondrial swelling, has led to the 

discovery of at least four classes of new, 

direct, low molecular weight mPTP inhibitors. 

The first class of these compounds was 

reported in 2014 by Fancelli and colleagues 

who demonstrated the potency of cinamic 

anilides derivatives.
174

 Cinnamic anilides 

inhibited mitochondrial swelling induced by 

various mPTP known inducers such as Ca
2+

 

overload, oxidative stress and chemical cross 

linkers in isolated mitochondria. The 

compounds enhanced mitochondrial Ca
2+

 

retention capacity more efficiently than CsA. 

The higher Ca
2+

 retention capacity observed 

suggests a CypD independent mechanism of 

action and this was confirmed by the additive 

effects produced by the association of CsA 

and cinamic anilides. In vivo, treatment with 

cinamic anilides at the time of reperfusion was 

able to limit infarct size in a rabbit model of 

ischemia-reperfusion but there was no 

difference with CsA.
172

 GNX-4728, a 

cinnamic anilide derivative also demonstrated 

protective effect in a mouse model of 

amyotrophic lateral sclerosis as it slowed the 

disease progression and improved motor 

function by limiting mPTP-mediated 

neurodegeneration.
175

 A possible explanation 

of the mechanism of action of cinamic 

anilides was proposed by Richardson and 

Halestrap.
176

 Their data suggest that these 

drugs might inhibit mPTP opening by 

interacting at the Ca
2+

 binding site between 

the Adenine Nucleotide Translocase and the 

inorganic phosphate carrier and thereby 

stabilizing the “c” conformation which favors 

mPTP closure.  

3.2.4. Isoxazoles  

Screening of the NIH Molecular Libraries 

Small Molecule Repository using Ca
2+

-

induced mitochondrial swelling followed by 

structure-activity relationship optimization led 

to the identification of isoxazoles as powerful 

mPTP blockers with picomolar inhibitory 

activity.
177

 They inhibited mPTP in both 

mouse liver mitochondria and Hela cells 

demonstrating that their effect is not species-

specific. Isoxazoles do not target CypD as 

mitochondria treated with isoxazoles 

exhibited at least a three-fold higher Ca
2+

 

retention capacity than with CsA and 

association of isoxazoles and CsA resulted in 

a synergistic effect. According to the most 

recent hypothesis on mPTP structure, F1F0-

ATP Synthase might form the core of the 

pore. Effect of isoxazoles on F1F0-ATP 
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Synthase was thereby assessed and the authors 

demonstrated that isoxazoles do not interfere 

with mitochondrial respiration suggesting that 

isoxazoles do not target F1F0-ATP Synthase. 

The most efficient analogue demonstrated 

beneficial effect in a zebra fish collagen VI 

myopathy model as it improved motor 

function and muscle structural organization. 

However, the use of isoxazoles in murine and 

larger animal models is hampered by the 

instability of the compounds which are rapidly 

degraded. 

3.2.5. Benzamides  

Along with isoxazoles, Roy and colleagues 

identified benzamide scaffold as a potential 

mPTP blocker by high throughput screening 

and further derived the hit compounds to 

increase their mPTP inhibitory effect.
178

 

Phenylbenzamides were able to inhibit 

mitochondrial swelling induced by various 

mPTP inducers and increased Ca
2+

 retention 

capacity as potently as isoxazoles but in a 

greater extent than CsA. This effect was still 

present in mitochondria isolated from CypD 

null mice, demonstrating a CypD-independent 

mechanism of action. However, in vivo use of 

benzamides is hampered by their cellular 

toxicity as they decrease inner membrane 

potential and ATP synthesis. 

3.2.6. ER-000444793 

Finally, another group identified the 

compound ER-000444793
179

 which was 

shown to delay mitochondrial depolarization 

in response to Ca
2+

 overload and to increase 

Ca
2+

 retention capacity, indicating that ER-

000444793 inhibits mPTP opening. 

Experiments performed on purified CypD 

demonstrated that ER-000444793 inhibiting 

properties do not rely on inhibition of CypD 

enzymatic function. 

Taken together, these recent data are rather 

encouraging after the CIRCUS and CYCLE 

trials failure, showing that there is still a place 

for new mPTP inhibitors. These data 

demonstrate that mPTP can be efficiently 

inhibited by other mechanism independent 

from CypD. Such compounds could also bring 

new insights in elucidating the exact mPTP 

molecular identity. However, the lack of 

knowledge of the mPTP structure remains 

the main obstacle to develop novel mPTP 

inhibitors. 

4. Pharmacological control of 

mitochondrial outer membrane 

permeability 

Although mPTP opening is a well established 

mechanism mediating cell death during 

myocardial ischemia-reperfusion, clinical 

trials aiming to inhibit mPTP failed to 

demonstrate positive results. As mentioned 

above, several explanations have been 

proposed to explain these failures but a 

possibility is that mPTP inhibition is not 

sufficient per se to improve clinical outcome. 

Indeed, other mechanisms which can 

permeabilize mitochondrial membrane in the 

absence of mitochondrial depolarization and 

release proapoptotic agents from the 

mitochondrial intermembrane space have 

been described.
180-182

 They include the 

formation of a channel by the proapoptotic 

members (Bax/Bak) of the Bcl-2 family 

proteins which control mitochondrial 

membrane permeabilization
2
. This channel 

seems to correspond to the mitochondrial 

apoptosis-induced channel MAC.
183,184

 Mouse 

models of this family of proteins have 

revealed their importance during myocardial 

ischemia-reperfusion. Over-expression of Bcl-

2 in mice, Bax deletion or interference with 

Bax activation attenuate apoptosis and reduce 

infarct size, while reduction of Bcl-2 levels 

suppresses the protection afforded against 

injury
185-189

. Therefore, targeting Bcl-2 family 

proteins or inhibiting the MAC channel 

appears attractive to develop anti-ischemic 

agents which could act through a gain of 

antiapoptotic or a loss of proapoptotic 

function. Several molecules that inhibited 

cytochrome c release and apoptosis triggered 

by induction of the Bax channel were 
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identified
190,191

 but they were not investigated 

in animal models.  

Similarly, Hetz et al.
192

 identified two small 

Bax channel inhibitors which prevented 

cytochrome c release, mitochondrial 

depolarization and blocked apoptosis of 

neurons in an animal model of ischemic brain 

injury but to our knowledge these molecules 

have not been evaluated in animal models of 

myocardial ischemia-reperfusion. More 

recently, a promising approach used a 

chemical inhibitor of dynamin-related protein 

(Drp1) which regulates Bax/Bak 

mitochondrial outer membrane 

permeability.
193

 This inhibitor, the 

mitochondrial division inhibitor 1, afforded 

neuroprotection in vitro and in vivo
194

 and was 

effective to protect against myocardial 

ischemia-reperfusion injury only when 

administrated before the induction of 

ischemia.
195

 Using a nanoparticle delivery 

system which improved the delivery of the 

drug to the myocardium, Ishikita et al.
196

 

demonstrated that the intravenous 

administration of the mitochondrial division 

inhibitor 1 in vivo at the time of reperfusion 

reduced ischemia-reperfusion injury in wild-

type but also in CypD knock-out mice. 

Another candidate for mitochondrial 

membrane permeabilization is the voltage-

dependent anion channel (VDAC). VDAC is 

the main permeability pathway for 

metabolites through the mitochondrial outer 

membrane
197

 and is important for 

communication between the mitochondria and 

the rest of the cell. This probably explains the 

large number of proteins and small molecules 

interacting with this channel.
198 

VDAC 

interacts with pro- and anti-apoptotic proteins 

of the Bcl-2 family members and one of its 

isoforms (VDAC1) has been involved in the 

mitochondrial release of proapoptotic proteins 

independently of mPTP opening
199-201

 

whereasVDAC2 attenuates cell death
202

 in 

part by binding and inactivating the Bcl-2 

family member Bak.
203

 This highlighted 

VDAC as a potential therapeutic target in 

ischemia-reperfusion. According to this idea, 

a cell permeable peptide corresponding to the 

BH4 domain of Bcl-XL, which had been 

reported to close VDAC and to prevent the 

VDAC-mediated release of cytochrome c
204

, 

was shown to attenuate ischemia-reperfusion 

injury in rat hearts
205

. However, the studies on 

VDAC did not lead to more therapeutic 

development in ischemia-reperfusion 

probably because a lot of questions remain 

concerning the function and the regulation of 

the channel in vivo. 

5. Inhibition of mitochondrial membrane 

permeability: from basic science to 

effective clinical therapy. 

Since the identification of the cardioprotective 

effect of preconditioning by Murry et al.
11

, 

three decades of basic science allowed to 

demonstrate the central role of mitochondrial 

channels in the induction of myocardial 

injuries and to propose pharmacological 

agents or conditioning strategies for reducing 

infarct size. Numerous animal model studies 

have clearly demonstrated the potentiality of 

these approaches to reduce the extent of 

myocardial injury and clinical pilot studies 

displayed promising results
53,133

. However, 

larger multicentric studies annihilated the 

encouraging results generated by these proof-

of-concept trials and, for example, no 

protective effect could be observed with 

CsA
135,136

 or the delta-PKC inhibitor 

decasertib
54

. In the same way, the TSPO 

ligand TRO40303 which displayed 

cardioprotective effects in animal models was 

ineffective in a clinical study.
169

 Up to now, 

the translation of pharmacological or other 

approaches issued from experimental studies 

into clinical application remains negative.
46,206

 

Different reasons can be evoked to explain 

these failures
138,139

 such as pharmacokinetic 

and pharmacodynamic issues in STEMI 

patients, patient recruitments but also the 

concomitant use of other drugs during PCI 

that possess per se cardioprotective effects 
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such as the anesthetic propofol or the P2Y12 

platelet inhibitors. 

Given that a number of different 

pharmacological interventions limiting 

mitochondrial membrane permeability have 

demonstrated positive results in preclinical 

studies (Figure 1) and that multiple factors are 

involved in its induction, the combination of 

pharmacological strategies acting on these 

different targets appears as a realistic 

approach to reduce myocardial reperfusion 

injury. A good example is the recent clinical 

trial associating an antioxidant, N-

acetylcysteine, with nitrate therapy.
111 

 

Figure 1: Pharmacological strategies aimed at limiting mitochondrial membrane 

permeabilization during myocardial ischemia-reperfusion. 

Schematic representation of pharmacological strategies targeting mitochondrial membrane 

permeabilization either by limiting the formation of Mitochondrial Apoptosis-induced Channel 

(MAC/Bax) or by inhibiting the opening of the mitochondrial permeability transition pore (mPTP). 

CypD: Cyclophilin D ; ROS: Reactive oxygen species ; RISK: Reperfusion Injury Salvage Kinase ; 

SAFE: Survivor Activating Factor Enhancement ; MCU: Mitochondrial Calcium Uniporter; 

SMCypI: small-molecule cyclophilins inhibitors 

→ : induction 

┴ : direct (plain) or indirect (dotted) inhibition 
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