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ABSTRACT 

Hepatocellular carcinoma (HCC) is one of the most common causes of death from cancer 

worldwide. The poor prognosis of HCC is due to high recurrence rate mainly caused by 

intrahepatic metastasis. Paxillin was known to be a central adaptor protein for mediating focal 

adhesion (FA) signal required for HCC progression. However, target therapy aiming at paxillin 

seems unfeasible due to its ubiquitous tissue expression and essential biological functions. Within 

the paxillin superfamily, hydrogen peroxide inducible clone-5 (Hic-5) is the most homologous to 

paxillin. This review summarises the recent findings relevant to the differential biochemical and 

biological roles of Hic-5 and paxillin. Given the structure similarity between Hic-5 and paxillin, 

Hic-5 shares many of the characteristics of paxillin, including the localization of Hic-5 at focal 

adhesions and similar FA binding factors.  However, some of the regulatory mechanisms and 

molecular functions of Hic-5 are rather different from those of paxillin. These might explain the 

differential roles of both adaptors in regulating various pathophysiological processes. 

Interestingly, both adaptors might play distinct but complementary roles in tumor progression. 

Due to the more limited tissue distribution of Hic-5, it can be a more suitable therapeutic target 

for preventing HCC progression. 
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Introduction  

Hepatocellular carcinoma (HCC) is one of the 

most common causes of death from cancer 

worldwide. The mortality rate is very high in 

China, Taiwan and Southeast Asia[1]. Recently, 

the incidence of HCC was increasing in 

countries such as Japan, Italy, France, 

Switzerland, United Kingdom and the United 

States[2]. The poor prognosis of HCC is due to 

high recurrence rate mainly caused by 

intrahepatic metastasis (about 80%) or 

extrahepatic metastasis (about 20%)[3]. 

Therefore, prevention of metastasis is critical 

for HCC management. To address the issue, the 

suitable molecular targets within the molecular 

pathways leading to HCC metastasis are needed 

to be identified. 

Tumor metastasis occurs via complicated 

processes, including epithelial mesenchymal 

transition (EMT), migration and invasion of 

primary tumor, followed by intravasation, 

extravasation and colonization at the metastatic 

loci. The tumor microenvironment in HCC 

contains a lot of metastatic factors produced by 

interaction of primary cell with inflammatory 

cells, stromal cell and extracellular matrix [4, 

5]. Some of the metastatic factors including 

transforming growth factor (TGF) [6], 

hepatocyte growth factor (HGF) [7, 8], vascular 

endothelial growth factor (VEGF) and 

epidermal growth factor (EGF) [9] and integrin 

engagement [10-15], are capable of triggering 

HCC progression. A lot of signaling 

components in the FA such as RacGTPase [16, 

17], focal adhesion kinase (FAK) [18-22], Src 

[23], Pyk2 [24] and paxillin [25] are known to 

be responsible for mediating HCC progression 

triggered by these metastatic factors. 

 

Among the aforementioned FA signal 

components, Paxillin is responsible for 

mediating signal cross talk between integrin and 

metastatic factors [27]. The role of paxillin in 

tumor progression of HCC has been 

demonstrated in a lot of studies. Paxillin 

phosphorylation at Ser178 mediated by Jun N-

terminal kinase (JNK) was involved in the HGF 

[30] and P21-activated protein kinase (PAK) 

triggered tumor progression of HCC [31]. 

Recently, paxillin was found to be a mediator 

for the actopaxin-triggered HCC metastasis 

[25]. 

 

Within the paxillin superfamily, Hic-5 

(hydrogen peroxide inducible clone-5), is the 

most homologous to paxillin. Hic-5 was initially 

identified as one of the TGF1 and hydrogen 

peroxide-inducible genes [32]. As paxillin, Hic 

5 is also an adaptor molecule essential for 

triggering progression of tumors [33, 34] 

including HCC [35]. This review summarizes 

the recent findings relevant to differential 

biochemical and biological roles between Hic-5 

and paxillin in mediating a lot of cellular 

phenotypes. Specifically the complementary 

role of both adaptors in tumor progression is 

addressed. Moreover, the possibility of Hic-5 to 

be a promising therapeutic target for prevention 

of HCC metastasis is highlighted. 

 

Comparison of the biochemical properties 

between Hic-5 and paxillin  

Differential structure and binding properties  

 

Paxillin comprises numerous discrete 

structural domains for scaffolding FA 

components in response to integrin engagement 

and growth factors [36]. The C-terminal half of 

paxillin contains four LIM domains, serving as 

binding sites for several structural and 

regulatory proteins such as tubulin and the 

protein tyrosine phosphatase (PTP) PEST. The 

N-terminus of paxillin is composed of five 
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leucine- and aspartate-rich LD motifs (LD1-

LD5), with multiple tyrosine, serine and 

threonine phosphorylation sites for recruiting a 

lot of signal molecules including Src tyrosine 

kinase, focal adhesion kinase (FAK), receptor 

for activated C kinase 1(RACK1), JNK, p-38 

and Abl. Hic-5 shares the same 11-exon 

genomic organization as paxillin with minor 

differences in the number of LD domains in the 

N-terminal region (five for paxillin and four for 

HIC-5) [36].   

Given the structure similarity between Hic-5 

and paxillin, Hic-5 shares many of the 

characteristics of paxillin, including the 

localization at FA and similar FA binding 

factors such as protein tyrosine kinase 2 beta 

(PYK2), c-Src tyrosine kinase (Csk), FAK, Arf 

GAP1 (GIT-1) [37] and PTP-PEST [38]. 

However, there are paxillin interacting FA 

components such as Crk and Src which can not 

bind Hic5. One distinct binding activity of Hic-5 

was ascribed to its LIM domain by which Hic-5 

may form LIM-LIM hetero-oligomers with 

LIM-only proteins such as PINCH or CRP2 

[41]. In contrast, LIM4 of paxillin cannot form 

oligomers and does not interact with PINCH or 

CRP2 [41].  

 

Differential phosphorylation pattern involved 

in FA signaling 

 

The phosphorylation patterns of Hic-5 and 

paxillin induced by extracellular stimuli are also 

rather different. Upon integrin engagement, 

paxillin becomes tyrosine phosphorylated, 

primarily on tyrosine residues 31 and 118 (Y31 

and Y118, respectively at LD1), in a FAK- and 

Src-dependent manner, resulting in activation of 

a lot of critical signal cascades for cell spreading 

and motility [42, 43]. In contrast, Hic-5 does not 

exhibit the aforementioned phosphorylation 

patterns probably due to lack of cognate tyrosine 

residues. However, phosphorylation of Hic-5 

may occur through PYK2 following 

hyperosmotic stress [47] and platelet activation 

[48]. 

 

In addition to the discrepancies of the 

molecular structure, interaction and 

phosphorylation pattern for FA signaling as 

described above, there are a lot of different 

biochemical properties between both Hic-5 and 

paxillin including tissue specific distribution, 

regulation of gene expression, interaction with 

critical signal cascade, and the impacts on 

cellular phenotypes.   

Differential tissue specific distribution between 

paxillin and Hic-5  

Tissue expression of paxillin is broader than that 

of Hic-5 

   Whereas paxillin is ubiquitously expressed in 

most tissue and cell types, Hic-5 is enriched 

only in certain tissue such as smooth muscle (in 

particular the vasculature), large intestine and 

uterus and relatively high in the lung and spleen 

[33]. This implicates that the biological roles of 

paxillin are broader than Hic-5. Indeed, paxillin 

ablation causing early embryonic lethality, while 

Hic-5 knockout exhibits only very mild vascular 

defects [33].  

 

Differential pattern of inducible gene expression 

between paxillin and Hic-5 

One distinct regulatory mechanism of Hic-5 is 

the inducible gene expression by a lot of 

extracellular stimuli.  In the most early studies, 

Hic-5 gene expression was found to be induced 

by reactive oxygen species (ROS) [59], as its 

name suggests. Hic-5 expression can also be 

induced during TGF1-induced senescence of 
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osteoblastic cell line [32], angiotensin II-induced 

abdominal aortic aneurysm (AAA) development 

[60], methylmercury-induced ER stress [61] and 

Escherichia coli-induced prostatic inflammation 

[62]. Also, epithelial expression of Hic-5 in 

mouse and human prostate tissues was elevated 

after castration, leading to epithelial regression 

through the repression of c-myc gene [63]. In 

contrast, the evidence regarding inducible gene 

expression of paxillin was very rare, with only 

one report demonstrating that paxillin mRNA is 

induced by TGFβ as shown on a retrovirus-

mediated gene trap screen [64]. 

Differential impacts of Hic-5 and paxillin on 

intracellular signal cascades 

The impacts of Hic-5 gene expression on 

essential signal cascades are more prominent 

than those of paxillin. Whereas Hic-5 gene 

expression and nuclear translocation can be 

induced by ROS as described above, it appears 

that Hic-5 may also positively regulate ROS 

generation in the focal adhesion [65]. In this 

context, Hic-5 serves as an adaptor for 

association of TRAF4 and p47
phox

 which initiate 

Rho GTPase activation required for NADP 

oxidase-dependent-ROS production. The ROS 

generated in turn targets the redox-sensitive 

phosphatase PTP-PEST in FA, establishing a 

positive feedback cycle that facilitates Rac1 

activation leading to sustained MAPK activation 

and cell migration [65]. Similarly, whereas 

TGFβ was known to be an inducer of Hic-5 [66, 

67], TGFβ-induced signaling can also be 

positively regulated by Hic-5. Previously, Hic-5 

was found to promote TGFβ-induced signaling 

by binding to and inactivating the inhibitory 

Smads, Smad3 [68] and Smad7 [69] leading to 

enhanced TGF-β/ Smad2 signaling required for 

EMT. Also, Hic-5 may bind to Smads 1, 5 and 

8, for repressing bone morphogenetic protein 

(BMP) signaling [70].  In addition, Hic-5 may 

serve as a scaffold protein that specifically 

activates the MAPK cascade. For example, in a 

model for abdominal aortic aneurysm (AAA), 

Hic-5 interacted specifically with JNK and its 

upstream kinase MAPKK4 to trigger the 

downstream signaling [60].  

Differential impacts of Hic-5 and paxillin on 

cellular phenotypes 

   Given the aforementioned discrepancies of Hic-

5 and paxillin in biochemical properties, it is 

anticipated to find the divergence of both 

adaptors in regulation of cellular phenotypes 

such as cytoskeletal organization, cell adhesion, 

cell migration and cell growth. Whereas paxillin 

is well known to be required for cell adhesion, 

Hic-5 may suppress excess changes in 

cytoskeleton structure by antagonizing paxillin 

[71, 72]. The regulation of cell growth by 

paxillin and Hic-5 is also antagonistic. In 

general, paxillin is responsible for transducing 

both adhesion-dependent and independent 

growth signaling [73-75]. On the contrary, Hic-

5 serves as one of the fail-safe system for the 

adhesion dependence of cell growth by 

negatively regulating the cell cycle positive 

regulator, cyclin D1 [41]. 

  The role of Hic-5 and paxillin in tumor 

progression  

Distinct but complementary roles of Hic-5 and 

paxillin in tumor progression 

 

As described in previous section, paxillin is 

well known to be involved in tumor progression, 

ascribed to its crucial role in mediating focal 

adhesion signaling [73]. Recently, the role of 

Hic-5 tumor progression was also emerging [33, 

77, 78]. Both paxillin and Hic-5 expressed in a 

variety of invasive/metastatic cancers, including 
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breast, lung, and prostate tumors and are regarded 

as potential prognostic markers and therapeutic 

targets [33]. However, due to the differential 

biochemical and biological properties, the 

mechanisms for the two adaptors in triggering 

tumor progression are also rather divergent. 

Whereas tyrosine phosphorylation of paxillin is 

essential for mediating EMT and cell migration 

[79, 80], gene expression of Hic-5 was required 

for these processes [65, 81]. In the cell culture 

systems, Hic-5 is highly detectable in 

mesenchymal cell lines but absent in epithelial 

cell lines. Moreover, Hic-5 expression can be 

induced by TGFβ leading to EMT, invadopodia 

formation, cell migration, and invasion [67]. This 

is ascribed to that Hic-5 can bind and inactivate 

the inhibitory Smads to enhance TGF- receptor 

signaling as described above [68-70]. In addition, 

the induction of Hic-5 expression by TGFβ was 

dependent on RhoA/ROCKI [79]. Furthermore, 

ectopic expression of Hic-5 is sufficient to 

promote normal mammary cells to undergo EMT 

in the absence of TGF-β [67] and stimulate cell 

migration of NMuMG cells [34]. In contrast, 

overexpression of paxillin is unable to induce the 

transition to mesenchymal phenotype [82]. In 

spite of these discrepancies, it appears that both 

adaptors may contribute metastatic change in a 

concerted manner. This notion was supported by 

the evidence that Hic-5 may cooperate with 

paxillin to regulate metastasis of breast cancer 

[78]. Also, the FA structure protein vinculin is 

able to interact with paxillin and Hic-5 via Rac1 

and RhoA, respectively, required for FA turn 

over and cell migration[83].  

 

 The potential role of Hic-5 in HCC progression 

 

The involvement of paxillin in HCC 

progression is evident as described in the 

Introduction section. Recently, the role of Hic-5 

is also emerging. One report demonstrated that 

the expression and phosphorylation of Hic-5 

were upregulated in HCCs overexpressing 

proline-rich tyrosine kinase 2 (Pyk2) [35], a 

member of the FAK family known to be 

involved in HCC metastasis [24, 84, 85]. Also, 

TGF-β, which can induce Hic-5 for malignant 

transformation [67], is recently highlighted to be 

one of the critical metastatic factors triggering 

HCC progression [86-88]. In our recent report, 

we found Hic-5 mediated ROS-JNK signaling 

and serve as a potential therapeutic target for 

prevention of HCC progression [89]. In this 

study, Hic-5 positively cross-talks with ROS to 

trigger sustained ERK (MAPK) signaling for 

HCC progression induced by hepatocyte growth 

factor (HGF) (see Scheme in Fig.1). Notably, 

ROS is also a well-known mediator of tumor 

progression including HCC [89-91]. Together, 

these studies implicated that Hic-5 is one of the 

key factors in HCC progression. 
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Fig. 1 Proposed mechanism for Hic-5 to regulate ROS-mediated sustained signaling in a positive 

feedback circuit 

 

 
 Fig. 1 Constitutive or HGF-induced ROS generation triggers ERK(MAPK) activation, leading to gene 

expression of Hic-5, which then contribute to sustained ROS generation and signaling transduction 

required for cell migration of HCC. This signal circuit was delineated by using inhibitors or siRNA 

against the indicated signal components. Circles with red, yellow and green represent inhibitors of ERK 

(PD98059), ROS scavenger (catalase) and Hic-5 siRNA, respectively. In the relevant experiments, 

activities (in case of ERK and ROS) or expression (in case of Hic-5) of each component in the circuit can 

be suppressed by inhibitors of the two upstream components. Cell migration is prevented by all inhibitors. 

HGF: hepatocyte growth factor.  

 

 

 

 

Conclusions and perspectives 

Since Hic-5 is the most homologous to 

paxillin, it can be expected that both adaptors 

share similar biological properties. However, a 

lot of the regulatory mechanism and molecular 

function of Hic-5 are not shared by paxillin 

(summarized in Table 1). Importantly, both 

adaptors play distinct but complementary role in 

tumor progression. Due to the more limited 

distribution of Hic-5, it can be a more promising 

therapeutic target than paxillin for preventing 

HCC progression.       
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Table 1.  Comparison of Pathophysiological charateristics of paxillin and Hic-5 

 

 
Pathophysiological  

Chrateristics          Hic-5     paxillin 

 

Tissue distribution           limited                  Ubiquitous 

   

Stimulators ROS, TGFβ, HGF  
and others  

 

Multiple growth 

factors/cytokines 

/integrin engagement 

Regulatory mechanisms Gene expression (major) 
/phosphorylation (rare) 

Phosphorylation 
(major)/Gene 

expression (rare) 

Effect on Cell growth Safe guarding  
adhesion dependence of  

cell growth (-) 

Anchorage- dependent  
and independent cell 

growth (+) 
Effects  
on FA phenotype 

EMT/ migration (+) EMT/migration (+) 

 Cell spreading (-) Cell spreading (+) 

 Cytoskeletal change (-) Cytoskeletal change 

(+) 
   
Involvement in tumor 

progression 
metastasis of  breast  
cancer (+) 

metastasis of breast 

cancer (+) 
 HCC progression (+) HCC progression (+) 

(+), and (-) represent positive and negative regulation, respectively, of the indicated phenotypes by Hic-5 or paxillin; 

ROS:reactive oxgen species; HCC hepatocellular carcinoma  
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