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Abstract 

Continuous monitoring and analysis of skeletal muscles‟ contractility have been extensively 

associated with sensing and bio-signal processing technologies and increasingly demanded by 

applications in the fields of sports, control and interaction, rehabilitation and medical care. While 

most existing approaches are confined in isometric studies in clinics or laboratories, researchers 

have been devoted in recent years towards continuous monitoring and analysis of skeletal 

muscles‟ contractility in motion. This paper aims to provide an overview of current status of non-

invasive sensing technologies for monitoring skeletal muscles‟ activation, up-to-date findings on 

observing and characterizing the force-length and force-velocity relationships, and various 

existing activation-contractility models. In addition, this paper evaluates various sensing 

technologies for muscle activation, indicates challenges for bio-mechanical modeling on 

activation-contractility, and makes recommendations on future developments in continuous 

monitoring and analysis of skeletal muscles‟ contractility in-motion. 
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1 Introduction 

As the motors of the human motions and 

stabilizers of joint positions, skeletal muscles 

have attracted great interests of researchers on 

their contractile properties and characteristics. 

The bio-mechanical analysis of the contractility 

has been constantly required and extensively 

incorporated in the areas of rehabilitation and 

medical care, control and interactions, as well 

as sports training 
[1-5]

.  However, direct 

measurements of muscle contractility are 

impossible, and inverse dynamics analysis only 

provides a net output of moment by all 

surrounding skeletal muscles around a joint.  In 

order to determine the tension of individual 

muscles, using a variety of sensing technologies 

to link the muscle activation to contractility 

based on bio-mechanical models (Figure 1) 

remains the only feasible choice. 

 

 

Figure 1. Typical Hill-type modeling process for activation-contractility relationship 

 

Hence, this review delivers a conflation of up-

to-date researches on monitoring the activation 

of skeletal muscles as well as the determination 

of force-length and force-velocity relationships, 

both are essential for the bio-mechanical 

modeling of activation-to-contractility, and 

presents the merits and challenges for in-

motion monitoring of muscle contractility. 

Since studies of contraction in impaired 

muscles, such as neuromuscular diseases and 

fatiguing contraction, were reviewed 

somewhere else 
[6-13]

. In this paper we mainly 

focus on  non-fatigue muscle contractions of 

healthy subjects.  

2 Monitoring Muscle Activation  

2.1 Classical approaches 

Skeletal muscles‟ contraction is generally 

accompanied by three typical kinds of bio-

physical behavior, namely the polarization-

depolarization of sarcolemma, vibration of 

tensioned muscle fiber, shortening in length 

while expansion in cross-sectional area of the 

muscle fiber. Accordingly three types of non-

invasive approaches for monitoring muscle 

contraction include electrical (surface 

electromyography), mechanical 

(mechanomyogram), and morphological 
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(computed tomography, magnetic resonance 

imaging, ultrasound, etc.) 
[1, 14-16]

. Over the past 

decades, efforts have been made to track 

muscle contraction continuously by correlating 

bioelectricity of superficial skeletal muscles 
[3, 

17-21]
, low-frequency oscillation of firing muscle 

fibers 
[21-23]

, as well as changing in specified 

morphology parameters of muscles during 

contraction 
[24-28]

,with muscular contraction 

status (mostly indexed by contractile force). 

One thing should be noted is that, among all 

these attempts, the majority of quantitative 

researches are merely limited to isometric 

contractions. According to Hill‟s theory of 

muscle contraction, contractility is affected by 

activation of skeletal muscle and the status of 

contraction, apart from the maximum voluntary 

contraction of skeletal muscle(s). Isometric 

contractions are convenient because with fixed 

muscle length or joint position, the so-called 

„monitoring of muscle contraction‟ is in 

essence the monitoring of indexes of muscle 

activation, which have been realized by the 

aforementioned three types of sensing 

technologies. However, as a successful index of 

activation for motion, the following aspects of 

each technology need to be considered: (1) the 

nature of the activation–force relationship, (2) 

stability of acquisition for all contraction modes. 

Further for activation-contractility modeling, 

elaborations of the influence factors on 

dynamic muscle contractions shall also be 

observed. 

2.1.1 Surface electromyography (sEMG) 

sEMG provides information on individual 

muscle‟s bio-physical activity, which has been 

correlated with contractile force. sEMG collects 

the action potential through electrodes attached 

to the skin surface at the middle of the muscle 

belly 
[29]

. As a composition of action potentials 

of multiple motor units, sEMG signal has been 

widely applied for both clinical and research 

purposes 
[30]

. In particular, sEMG has been 

extensively used to study the muscular 

functions and muscles‟ coordination. The 

research scope of this area mainly consists of 

the following four aspects, where the 1
st
, 3

rd
 

and 4
th

 aspects are related to the contractility of 

skeletal muscles:  

1. isometric contraction, maximal 

voluntary contraction (MVC) and the 

relationship between sEMG and 

contractile force 
[10, 21, 31-34]

; 

2. healthy skeletal muscles‟ anatomical 

function during assigned movements or 

sports, jointly with other synchronized 

bio-signals 
[11, 35-38]

; 

3. muscle fatigue 
[39]

; 

4. computational and clinical studies of 

sEMG on assisting occupational 

rehabilitation, including sEMG-to-

motion modeling 
[3, 35, 40-43]

. 

  

In an oscillation wave-shape, the sEMG signals 

can be analyzed and interpreted in frequency 

domain and time domain, the absolute 

amplitudes („envelop‟ or the outline) of the 

later is related to the intensity of contraction. 

For a simple comparison analysis, the 

magnitudes of sEMG representing the gross 

innervation, with which the skeletal muscle 

works, avoiding the influences of non-

reproducible components of sEMG at different 

time-intervals 
[44, 45]

. For continuous monitoring 

purpose, it is preferable to normalize the in-

motion amplitude with Maximum Voluntary 

Contraction (MVC) to index the level of muscle 

activation 
[3, 35, 40]

. High correlation between the 
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normalized sEMG and force generation has 

been reported constantly in both linear and 

nonlinear patterns. A typical relation is 

monotonic and curvilinear, a higher sEMG is 

needed for a further unit increase in contractile 

force 
[21, 46, 47]

. For static tests, when both sEMG 

and force are normalized to their respective 

maximum values, some muscles tend to show 

an apparent linear EMG-force relationship 
[48, 

49]
. The investigation of such relationships is 

important since sEMG has been used for 

assisting EMG-to-motion applications based on 

biomechanical models 
[40, 42, 50]

.  However, there 

are two pertinent problems, especially for in-

motion application. The first is that sEMG 

signals are sensitive to the size, number and 

firing rate of muscle units, which undermines 

the role of sEMG as representative index for 

the intensity of selected muscles‟ contraction, 

not to mention that sEMG signals are strongly 

influenced by conditions of detection, such as 

the skin humidity, contact resistances, both are 

difficult to maintain constant in fierce motions.  

The dependence on the instrumentation and 

acquisition procedures may have influences, 

which have been extensively discussed 

elsewhere 
[51-53]

. Secondly, a recent work shows 

that the sEMG normalization is limited and 

inaccurate especially for high-velocity dynamic 

tasks, which implies that the optimal 

normalization methods should be muscle and 

task-dependent 
[46]

. Because concentric 

contractions shorten the muscle length, the 

location between muscle and sEMG electrodes 

may be changed. Moreover, the status of 

muscle contraction, such as length and 

shortening velocity, also affects the sEMG 

signal 
[54, 55]

. Up to now, the quantitative studies 

have been limited on isometric contractions for 

limited time duration. Hence, although sEMG 

is now the most common noninvasive approach 

to monitor skeletal muscles‟ activation, it still 

confronts several challenges as an index of 

muscle activation in motion.  

2.1.2 Mechanomyography (MMG) 

MMG signals represent the vibrations of active 

muscle fibers during contraction, which can be 

detected by piezoelectric sensors 
[9, 56]

, 

microphones 
[57, 58]

, accelerometers
[47, 59, 60]

  and 

laser distance sensors 
[61, 62]

 .The oscillations, 

reported as prominently influenced by the 

global firing rate of motor units 
[63-65]

, reflect 

the mechanical counterpart of the electrical 

activity of the motor unit as measured by 

sEMG 
[19]

. Compared with sEMG, MMG 

signals cover a wider physiological range of 

motor units, even the underlying muscles, only 

that the waves oscillate as discrete bursts rather 

than continuous tones 
[66]

. Furthermore, the 

placement of MMG sensors is not required to 

be precise or specific 
[67]

, and MMG signals are 

not influenced by changes in the skin 

impedance and sweating 
[68]

.  

MMG studies on muscle activities are 

numerous, including characterization of 

neuromuscular disorders 
[6, 69, 70]

, development 

of prosthesis and/or switch control 
[64, 65, 71, 72]

, 

activity of motor units
[73-76]

, examination of 

mechanical properties during exercises 
[77, 78]

, 

and rehabilitation systems 
[79]

.  Temporal and 

spectral components of MMG signals with 

difference levels of contraction have been 

employed to determine muscle strength and 

stiffness. Studies of MMG versus isometric 

torque of human elbow indicate that the 

relationship between MMG amplitude and 

isometric torque is linear for lower-strength 

subjects and cubic for higher-strength subjects 
[80-82]

. It was reported that the RMS of MMG 

decreases at high levels of force due to 
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mechanical fusion of MU activity while the 

mean power frequency of MMG increases 
[83, 84]

.  

As an alternative promising monitoring 

approach for muscle contraction, however, 

MMG has not been developed fully as it cannot 

determine the activation level of muscle to 

reflect contractility. Existing studies on MMG 

are confined to a small sample size of healthy 

population 
[64, 85]

. Recently, A recent study 

combining sEMG and MMG has facilitated 

new understanding of the electromechanical 

coupling of skeletal muscles 
[21, 22, 75, 86]

. Noise 

contamination is also a major barrier for MMG. 

Low-frequency (5-100 Hz) MMG is not perfect 

for in-motion monitoring of muscle 

contractions, due to the fact that the low-

frequency components of MMG are easily 

mixed with human movements. On the other 

hand, the high-frequency components of MMG 

are contaminated by nearby vibrating muscle 

fibers or environmental noises 
[68]

.  

2.1.3 Tomographic imaging methods 

Skeletal muscle‟s architecture alters with 

contraction 
[87]

, as muscle fibers shorten and 

simultaneously change the morphology of the 

entire skeletal muscle. Imaging methods such 

as the ultrasound (ultrasonography), 

computerized tomography (CT), and magnetic 

resonance imaging (MRI) have all been 

implemented to detect morphological 

deformation of skeletal muscles in real-time. 

Through on-line or post imaging processing, 

architectural parameters of skeletal muscles can 

be quantitatively identified, such as the changes 

in cross-section area  
[24-26, 88]

 and muscle 

volume 
[27, 28]

 , muscle thickness and fiber 

pennation 
[20, 21, 89]

, through image processing of 

cross-sectional area of skeletal muscles. Those 

architectural parameters have been reported as 

index of contractile force during isometric 

contraction, and correlations between the 

morphological parameters and generated joint 

torque were achieved 
[15, 20, 21, 90]

. Being low-

cost, non-ionizing, stable, and available for 

deep muscles, ultrasonography has been widely 

applied in researches covering: 

1. Correlations among change of CSAs 

(cross-sectional areas), expansion of 

muscle size and contractile force have 

been reported frequently 
[28, 29, 88, 91-98]

; 

2. Shortening fascicle length and 

increasing pennation angle were also 

reported to be highly correlated to 

skeletal muscle‟s contraction 
[99-103]

; 

3. Muscular movement or displacement 

was detected with in-vivo ultrasound 
[104, 105]

; 

4. Potential of muscle fatigue evaluation 

and prosthetic control using the 

ultrasound has been discussed 
[106]

, 

providing more comprehensive 

information than using sEMG only. 

5. Muscle thickness extracted from CSA 
[107]

 have been jointly studied and found 

correlated with other indexes of muscle 

contraction 
[21, 91, 101, 108-110]

. 

Corresponding image tracking 

algorithms have been developed for in-

motion detecting. For relaxed skeletal 

muscle, muscle thickness was also 

observed in close relationship with joint 

angle due to the shortening of muscle 

length.  

 

The 1
st
, 2

nd
, and 5

th
 items are related to 

monitoring of muscle contraction. In particular, 
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for the biceps brachii (major components of 

elbow flexors), Hodges 
[111]

 found that the 

muscle thickness has a negative exponential 

relationship with sEMG signal, i.e., the muscle 

thickness increases with sEMG almost linearly 

in low-contraction (<30% MVC) while much 

slower in high-contraction condition. This 

observation was confirmed by Akagi 
[112]

, Abe 
[113]

, and Zheng‟s group 
[20, 21]

, who developed a 

system to record and analyze ultrasound images, 

force, joint angle and sEMG simultaneously. 

However, due to the difficult fixation of 

ultrasound sensor in dynamic conditions, 

almost all the studies were restrained in static 

(isometric) and quasi-static conditions.  

Attempts have been made to establish the 

relationship between the measured  muscle  size  

(eg,  thickness  and/or  cross-sectional area) and  

the level and timing of muscle activation 
[114]

.  

The level of muscle activation was determined 

by comparing the size of a contracted muscle to 

its size during rest. Using measured muscle size 

from static ultrasound images as an indication 

of muscle activation, however, has limitations. 

The level of muscle activation depends not just 

on a muscle‟s size, but on initial muscle 

(fascicle) length, amount of tendon stretch, type 

of contraction (isometric, concentric, or 

eccentric), muscle fiber pennation angle, and  

forces from surrounding tissues 
[115]

 
[116, 117]

. Up 

to date, there have not been sufficient studies 

on examining the reliability and validity of 

ultrasound for quantifying muscle activation 

during research and clinical practice 
[118]

.  

2.2 New technologies for monitoring muscle 

contraction 

New sensors and sensing technologies have 

illustrated great promises for monitoring and 

analyzing skeletal muscles‟ contraction. From 

recent papers published between 2014 and 2018, 

as shown in Table 1 and Figure 2, 

tensiomyography, optic sensors, novel 

ultrasound sensors, piezoelectric sensors and 

large-deformation strain sensors have been 

reported.  

Table 1 Summary of new sensing technologies for monitoring muscle contractions 

References 
Type of sensor 

used 
Principles Remarks 

[119-123]
 Tensiomyography 

Radial muscle belly 

displacement under 

electrical stimulus is 

analyzed for neuro-

muscular function of 

muscle 

For evaluating 

contraction only; 

Superficial muscle only; 

Isometric mode only; 

[124-128]
 

LED & photo 

detector 

Light absorption and 

reflection by muscle fibers 

vary during contraction; 

Tissue oxygenation 

decreases in contraction 

Qualitative monitoring 

of muscle contraction 
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[129, 130]
 

Wearable 

ultrasound  

piezoelectric PVDF 

sensor 

Muscle thickness increases 

during contraction 

Qualitative monitoring 

of muscle contraction; 

Isometric mode only; 

[13, 131]
 

Piezoelectric 

sensor 

Modulus of muscle 

increases in tension 

For analysis and 

evaluation of contraction 

only; 

Lack of dynamic study; 

[132-135]
 

Large-deformation 

strain sensor 

Expansion of CSA of 

muscle fibers during 

contraction 

Model for activation-

contraction; 

Involving both isometric 

and kinetic modes. 

 

 

 

Figure 2. (a) Tensiomyography sensor 
[121]

; (b) electro-optical muscle sensor 
[125]

; (c) piezoelectric 

sensor 
[131]

 and (d) upgraded soft strain sensor 
[134]

  

Tensiomyography  
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Tensiomyography (TMG, sometimes the MC 

sensors) is a portable non-invasive method to 

assess in vivo passive muscle contractile 

properties 
[136]

. Inspired by MMG, 

tensiomyography uses a high-precision digital 

transducer placed on muscle surface to capture 

waveforms integrating parameters such as 

maximum radial displacement of the muscle 

belly and contraction time 
[137, 138]

. Compared to 

MMG techniques, TMG signals are not affected 

by slight muscle pretension, and thus have a 

higher signal-to-noise ratio.  

TMG has been used for evaluation of muscular 

fatigue
[12]

, impairment 
[139]

, as well as muscular 

changes/adaptations 
[140]

. Variations of TMG-

derived parameters show significant correlation 

with changes in MVC 
[123]

.  TMG has been 

appreciated by strength and conditioning 

coaches, physiotherapists, and sport scientists, 

who preferentially seek accurate and practical 

assessment methods which do not disturb their 

professional routines 
[141, 142]

. However, TMG 

has a number of shortcomings. First, studies of 

TMG have been confined in isometric mode, no 

dynamic application is yet possible. Secondly, 

TMG is not able to assess deep muscles. Finally, 

congestion due to training may affect the 

accuracy of TMG data.  In summary, due to the 

lack of in-motion monitoring ability and 

stability, TMG can serve as an evaluation tool 

of contractile properties such as muscle fatigue 

and capability, other than monitoring muscle 

contraction.  

Optical sensors 

Optical sensing devices for muscle contraction 

consist of light emitting diode (LED) and photo 

detector (photodiodes) 
[124-126]

. The working 

principle is to measure the change in intensity 

of back scattered light from skeletal muscle 

tissue, which is caused by myosin proteins‟ 

crystalline properties during contraction. 

Recent work 
[124]

 shows that photodiodes can 

also derive the tissue oxyhemoglobin 

absorption from the measured light intensity, 

i.e., the steady decrease in the tissue 

oxygenation during ischemia. However, studies 

on optical sensors are still in initial stage, 

especially as a tool for assessing muscle 

contractility.  

New wearable piezoelectric ultrasound sensors 

Inspired by conventional ultrasound methods, 

simple and wearable sensing devices have been 

designed for monitoring muscle contraction by 

quantifying muscle thickness and active muscle 

stiffness, respectively. Examples include disk-

shaped ultrasound device 
[109]

 and piezoelectric 

sensor-based reasoning device 
[103]

. The latter is 

more of an evaluation tool of contractile 

properties while the wearable ultrasound sensor 

needs to prove its stability of signal in dynamic 

conditions.  

Anthropometric measurement devices 

Involving measurements of various 

dimensional descriptors of human body, 

anthropometry has been widely used in 

industrial and clothing design, ergonomics and 

human fitness evaluation 
[143]

.  Muscle size 

from anthropometric measurement (e.g. limb 

circumferences) has been found to correspond 

to the muscularity 
[108, 144-149]

, i.e., higher 

muscular strength is associated with greater 

limb circumference and vice versa. Since the 

thickness, identified from the muscle cross-

sectional area, has been frequently reported as 

architectural index for skeletal muscle‟s 

contraction 
[21, 91, 101, 108-110]

, the change in limb 

circumference induced by expansion of cross 

sectional area may be another index. 
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Correlations between the limb circumference 

and torque at MVC have been reported, 

moreover, most of which were obtained at 

static or quasi-static conditions 
[132, 145, 150, 151]

.  

The anthropometric measurement renders a 

number of wearable sensing devices that 

facilitate long-term continuous monitoring in 

dynamic conditions.  A mechanical armband 

with steel wires  was demonstrated 
[152]

 for 

measuring the circumference of human forearm 

in-motion, and found an apparent linear 

relationship between forearm circumferences 

and grip force, which is in agreement with the 

strength-size research findings 
[153, 154]

. By 

using  a muscle circumference sensor  (with 

metal wires), Kim
[132]

 proposed a preliminary 

Hill-based model for human upper arm, elbow 

torque was predicted from the measured mid-

upper-arm circumference with significant 

estimation error. There was no in-depth studies 

published supporting the arbitrary replacement 

of sEMG with measured mid-upper-arm 

circumference as a new „activation level‟. Other 

factors should be further studied, such as the 

joint position and speed of flexion. 

Nevertheless, these works have inspired 

developments of wearable monitoring systems 

for deformation of muscle during contraction. 

However, the measurement devices were rigid, 

interfering with muscle activity. A new type of 

strain sensors has been commercially available 

for large repeated deformation up to 60%, high 

sensitivity and good accuracy 
[14, 155-160]

. They 

were made from elastic fabrics coated with 

elastomer/carbon nano-particles composite. 

Wang 
[133]

 used a measurement device with 

these fabric strain sensors and studied the 

relationship between upper arm circumferential 

strain and elbow flexion, in isometric, 

isokinetic and isotonic flexions. He has 

obtained empirical relationships between the 

circumferential strain and contraction torque 
[133]

, in addition, a biomechanical model for 

kinetic flexions was proposed based on the 

observations of force-length and force-velocity 

relationship 
[134]

. The model was validated for 

isokinetic contractions for moderate speeds.  As 

the derivation of force-velocity relationship was 

based on slow or median speed, lack of 

experimental evidence on contraction at high-

shortening speeds (>10 m/s or 450°/s), there is 

still a question unanswered, that is, how can the 

circumferential strain be linked to the muscle 

activation, especially in high-speed dynamic 

conditions.  

It is noted that these anthropometric studies 

have focused on the activation based on 

measured contraction-induced circumference 

strains and the activation-contraction model 

even in very early stage 
[132, 134]

.  

In general, studies of muscle activation using 

conventional technologies (EMG, MMG and 

tomographic imaging) are still restricted in 

static/isometric contractions instead of in-

motion, due to aforementioned drawbacks 

impairing the signal stability in dynamic 

conditions. The new technologies have not  

been tested yet for long thus no sufficient cases 

have been reported.  TMG has not been used 

for in-vivo monitoring of contraction. The 

optical sensors are immune to electric and 

electronic disturbance but affiliated bulky and 

heavy modem and wires prevent them from in-

field applications. The piezoelectric ultrasound 

sensors need to prove their signal stability in 

dynamic conditions. The anthropometric 

measurement devices is convenient for 

sports,extracting the strains of individual 

muscles could be a challenge, however. 

Meanwhile, how the circumferential strain 
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indexes muscle activation in kinetic 

contractions should be further studied.  

3 Biomechanical Models of Activation-

Contractility  

Although over 80 years have passed since Hill 
[161]

 first revealed his biomechanical insights 

into muscle contraction, quantitative modeling 

of contractility has been mainly limited by 

phenomenological implementation of various 

Hill-based models. Huxley 
[162]

 further 

introduced the dynamics of cross-bridge 

cycling into the contractile element (instead of 

a black box in Hill‟s) and successfully 

reproduced fast-twitch muscles, which could 

not be explained by a classical Hill model 
[163, 

164]
. However, Huxley‟s consideration was 

claimed too computation-time-consuming for 

use in musculoskeletal modeling 
[165, 166]

, due to 

the complex mathematical formulation. 

Meanwhile, recent works show that muscle 

tensions predicted by both Hill and Huxley 

models are within the same range 
[165, 167]

. 

Hence, though Huxley's model provides more 

realistic patterns of muscle contraction, it is 

economical and reasonable to use a simpler 

numeric implementation based on Hill type 

models. 

Apart from the activation talked above, the 

influences of status parameters on the 

contractility shall be determined, i.e., the force-

length and force-velocity relationships. 

Moreover, the acquisition of the status 

parameters is addressed, by reviewing sensing 

technologies on joint angle measurement. All 

above are essential to complete a Hill-type 

biomechanical modeling of activation-

contractility in motion.   

3.1 Hill-type biomechanical models 

Once the muscle activation is determined 

experimentally, the next step shall be to build 

an activation-to-contraction conversion linkage, 

commonly known as the biomechanical 

modeling. As first released in Hill‟s 

macroscopic studies of skeletal muscles‟ 

contraction 
[168, 169]

, the muscle tension has a 

hyperbolic relationship with shortening velocity 
[161, 170, 171]

. This finding was then extended and 

expressed by Zajac 
[172]

 and Winters 
[173, 174]

 in a 

four-element one-dimensional Hill-type model:    

     CE MaxF t f v f l F       

The contraction force of muscle fiber, FCE, is a 

function of MVC at current muscle length,scale 

factor for the activation level,  t , and 

normalized factor of shortening velocity,  f v  

[172, 175-177]
. The functions  t ,  f v  and  f l  

can be in diverse forms with particular 

parameters, to be specific to different skeletal 

muscles 
[174, 175, 178, 179]

.  

These models have been used extensively for 

assessing skeletal muscle characteristics 
[43, 49, 

178, 180]
, contractions and movements 

[41, 42, 175, 

181, 182]
, analyzing neuromuscular-related 

diseases and rehabilitation 
[183-190]

.  In particular, 

with sEMG derived activation levels, Hill-type 

models have been proven effective for 

emulating muscular behavior 
[35, 191]

. However, 

the accuracy and reliability of in-vivo muscle 

forces predicted by these models remains 

unknown, due to the lack of suitable implanted 

transducers.   

Microscopic muscle fiber models are 

established with bio-physical tuning parameters 

that predict muscle characteristics and 
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contractions quite well 
[192-196]

. Though relying 

on intrinsic properties likewise, namely the 

construction of activation from bio-signals, the 

force-length and force-velocity relationships, 

the macroscopic muscle models, however, are 

commonly based on experiments and 

phenomenology 
[197-200]

. The adoption of 

microscopic sarcomere model to whole muscle 

or straight application of existing macroscopic 

model for one kind of skeletal muscle to 

another, have been reported to induce huge 

errors in prediction of real contractility, 

especially for movements at the low or high 

ends of speed 
[201]

. The reason lies in the fact 

that the real structure of skeletal muscles and 

recruitment patters of slower and faster motor 

units in muscle make the contractile properties 

largely indescribable 
[173, 201-205]

. This naturally 

requires task-dependent observations on the 

determination of parameters in the models 
[206-

208]
.  Moreover, since muscles are normally 

surrounded by other tissues, the impedance 

caused by connective tissues and bones 
[209, 210]

 

bring some difficulties in modeling.  

In summary, to construct a Hill-type 

biomechanical model for in-motion monitoring 

of contractility, it is better to determine the core 

elements of a Hill type muscle model through 

isolated designed experiments with selected 

conditions. Hence, the next subsections will 

cover the research status on determining the 

two core elements, that is, the force-length and 

force-velocity relationships. 

3.2 Force-length relationship  

In the human musculoskeletal system, the 

tension and status of contraction ( i.e., the 

length and shortening speed) of skeletal 

muscles are alternatively represented by 

corresponding joint torque, joint position (or 

joint angle) and joint angular velocity, 

respectively 
[211, 212]

.  

Experimental studies have been conducted on 

sarcomere, fibers and whole muscles from 

various animals, mostly cat, frog, rabbit and rat, 

and in isometric contraction mode 
[213, 214]

. In 

the isometric mode, the contraction force of 

muscle was length dependent while velocity 

was zero and maximum contraction incurred, 

the same did maximum activation.  For 

muscular-skeletal systems, the force-length 

relationship is replaced by torque-angle 

relationship, which differs from the biological 

force-length relationship since it incorporates 

the effect of moment arm of skeletal muscles to 

the joint.  There is definitely a difference in 

optimum muscle length for concentric and 

eccentric contractions, respectively, as reported 

by Melo et.al 
[215]

 in knee flexion and extension 

studies. Moreover, the force-length relationship 

was found to be activation-dependent 
[216]

, 

which is in consistence with Hill‟s theory.  

The first qualitative descriptions of force-length 

relationship were associated with theoretical 

considerations on the interaction of actin and 

myosin, known as sliding filaments theory 
[192, 

217]
 Since then, a variety of force-length 

relationship has been proposed. The force-

length relationship for the whole muscle is the 

easiest to obtained from experiments and thus 

discussed frequently 
[115, 173, 209]

. However, most 

derived relationships were empirical, based on 

best data fitting without underlining 

biomechanical or physiological analysis. A 

theoretical force-length relationship is more 

difficult because it should incorporate a 

complex combination of properties of 

sarcomere, tendon, and muscle unit, as well as 

architectural particularities and history of 

contraction
[213, 218-220]

, not to mention the 
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controversy over variation of muscle length 

after strength training. Until recently, only one 

purely physiological model was presented 
[221]

, 

where the force-length relationship was 

parameterized by using the geometry of internal 

muscle structures.  

3.3 Force-velocity relationship 

The force-velocity relationship was generally 

obtained from various activities at maximum 

activation, such as cycling 
[222-224]

, vertical 

jumps 
[225-229]

, treadmill training 
[230, 231]

, leg 

press 
[232-234]

, arm and upper body movements 
[223, 224, 227, 235]

. The standardization and 

observation of force-velocity relationship are 

essential not just for routine tests but also for 

biomechanical modeling. One thing should be 

pointed out is that the „force‟ used by these 

researchers is either an index of load/resistance 

or contractility deducted inversely from devices, 

while the „velocity‟ is not exactly the 

shortening velocity of muscle but a speed of the 

motion, somehow linked to the  skeletal 

muscles‟ shortening velocity. For example, 

recent researches use mean force exerted onto 

the ground and the mean velocity of the mass 

center to establish the force-velocity profile in 

the vertical squat jump 
[236, 237]

. In the human 

muscular-skeletal system, the joint moments 

and angular velocity appears to possess a 

hyperbolic relationship, similar to the original 

force-velocity relationship for single muscle 

fibers 
[238]

, referred as the joint torque-angular 

velocity properties. For individual movements, 

the force-velocity relationship can be 

determined in isokinetic training mode, by 

dynamometers, such as Biodex
TM

.  

While the force-velocity relationship of isolated 

muscles has been known to be hyperbolic 
[161]

, 

multi-joint functional tasks typically reveal 

strong and approximately linear patterns 
[225, 239, 

240]
. A linear force-velocity relationship has 

been observed in the squat 
[241]

, leg press 
[240]

, 

free and loaded vertical jumps 
[225, 236]

, cycling 
[222, 230]

, treadmill running 
[230, 231]

, arm cranking 
[223]

, in both bench presses and bench press 

throws
[235, 242]

, and during rowing 
[243]

.  Despite 

the experimental facts, the mechanisms of non-

hyperbolic relationship in multi-joint 

movements are still not clear. As a consequence, 

no physiological model has been proposed. In 

the classical Hill-type biomechanical models, 

the force-velocity and force-length relationships 

are independent to each other, however, the 

interaction item between them has been 

reported 
[244]

, which needs investigations in 

future study.  

According to Hill‟s theory, the best condition to 

identify and determine the force-velocity 

relationship is to maintain the maximum 

activation level, for kinetic modes, „maximum‟ 

means to move as rapidly as possible regardless 

of the restraints/resistance, which, however, 

cannot be fully satisfied by maximum 

movements/tasks in practice. Behm 
[245]

 

claimed after studying ankle dorsiflexion 

isokinetically that the “intent to move quickly” 

is the only important factor for producing 

accurate velocity-strength relationship. 

Although numerous isometric studies have 

constantly shown correlations between the 

contraction force and activation indicators, 

activation itself actually represents the level of 

output power in Hill‟s model. Recent studies 

have shown difference in the force-velocity 

relationships obtained by using different 

external loads 
[246, 247]

. Furthermore, different 

shortening velocity also varies the observed 

force-length relationships 
[248, 249]

. There is 

always a challenge that although it‟s long 

believed that activation, force-length and force-
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velocity properties are mutually independent, a 

crossed instead of separated consideration of 

activation, length and shortening velocity shall 

be done during Hill type modeling, where 

combined effect of the three mentioned factors 

on scaling the output contractility require s 

further research investigations.  

3.4 In-motion angle measurement 

technologies   

As elaborated above, the observation of the key 

status indicators of muscle contraction, i.e., the 

length of muscle fiber and the shortening 

velocity, rely on the detection of joint angles. A 

brief review of in-motion determination of joint 

angles base on various technologies is to be 

presented in this section. More detailed reviews 

can be found from reference 
[250-252]

. 

 

 

 

Inertial measurement units (IMU) 

For posture measurement, most conventional 

and common solution is using the inertial 

measurement units (IMU), which has been 

implemented either as a stand-alone sensing 

device or integrated in smart phones. The IMUs 

can measure angular velocity, acceleration and 

the magnetic field vector in their own 3D local 

coordinate system (Figure 3.a). Strap-down 

integration 
[250, 256]

 of angular velocity is used as 

a preliminary estimate of the displacement, the 

drifts of which are corrected based on a number 

of Kalman-filtering algorithms 
[257, 258]

. The 

combination of multiple IMUs placed on body 

segments around a joint provides the joint 

angles 
[253, 259-261]

. However, the measured 

acceleration and magnetic field vector are 

disturbed by impact on ligaments and presence 

of magnetic objects, lowering the accuracy of 

displacement or orientation. Furthermore, for 

accurate measurement of joint angles, a multi-

IMU system is needed, which often undermines 

the freedom of movement in motions.  

 

Figure 3. Reported technologies on joint angle measurement/posture recognition: a) IMUs
[253]

  b) 

optoelectronics sensors
[254]

  c) fabric-based (KPF) 
[255]
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Multi-camera motion capture system 

The motion-capture system based on 

optoelectronic sensors has been used for visual 

assessment in interaction, physical therapy or 

rehabilitation 
[251, 252]

. With or without makers 

on major limbs, optoelectronics sensors work 

with cameras and 3D post-processing vision 

system (either contrast based or depth based) to 

track joint angles through limb orientation and 

motion of body segments (Figure 3.b), only for 

major limbs, however. Marker-based vision-

capture systems are accurate and reliable, 

conventionally referred as benchmark 
[254, 262, 

263]
. However, they are costly, need professional 

calibration and strict-conditioned circumstance. 

Environmental noises in captured images due to 

occlusion, self-occlusion, and unconventional 

body postures can induce wrong limb-

identifications 
[264]

. 

 

Soft goniometers 

Recently, soft goniometers such as textile-

based wearable sensors, have been working 

with or without the aforementioned other three 

types of sensors 
[265, 266]

. Conductive elastomer 

coated fabrics 
[267, 268]

 and knitted piezo-

resistive fabric 
[255, 269-271]

 have been studied for 

movements/ postures recognition 
[268, 269, 271]

 

and joint angle measurement 
[272]

, due to the 

merits of high compatibility with in-field 

activities (Figure 3.c). Correlations between 

knee angle and resistance change were 

observed and characteristics of gait cycle can 

be accurately identified, with a mean error of 

<3% 
[273, 274]

, comparable to that of commercial 

IMUs. For simpler on-and-off applications, 

thresholds have been set to evaluate the range 

of motion, for instance, whether the target 

range was achieved 
[275]

. For upper-limbs 

applications, gloves, sleeves and shirt have 

been developed based on those soft sensors. 

With an angle measurement error equal or less 

than 8%, those garments give reliable 

identification of static posture of hand, arm and 

shoulder 
[276]

. However, these prototypes 

perform poorly in transient measurements, due 

to the drift in angle-resistance curves affected 

by stretching speed of the sensing area, as well 

as in the recovery time prior to the second use 
[277]

. Up-to-date, effort has been reported in 

optimization of device design and arrangement 

of sensors, and in employment of IMUs in 

order to improve the accuracy of measurements 
[272]

. Although some angle-sensing gloves and 

shirts have been demonstrated for providing 

feedback for people with central nervous 

system lesion in therapeutic exercises 
[7, 267, 269, 

278, 279]
, further research is required to enhance 

their accuracy, reliability as the angle 

measurement, diagnosis and rehabilitation tools. 

4 Applications 

Up-to-date, sEMG has been the only widely 

used instrumental tool to construct activation of 

skeletal muscle contraction due to its 

biophysical nature. Generally, the sEMG-based 

activation-contraction models have continually 

been incorporated in studies of 

prosthetic/supporting robotics, many times 

merely based on EMG interpretation and 

pattern learning 
[280-283]

, thus will not be 

elaborated here. By studying how much muscle 

force is being produced or to be produced for 

rehabilitation and medical intervention 

evaluation purposes, therapists can set safe 

limits in their therapies, meanwhile patients can 

learn to adjust force production to fulfill 

designated actions. However, these studies are 

still confined in static condition/isometric mode 

of contractions (Figure 4.a). Manal 
[284]
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successfully predicted the ankle moments in 

isometric plantar flexion and dorsiflexion with 

a tuned sEMG-driven Hill model. A system for 

quasi-dynamic monitoring of ankle moments 

and achilles tendon force was also preliminarily 

presented, consisting of electro-goniometers 

and EMG sensors (Figure 4.c). Shao 
[50]

 from 

the same group applied the EMG-driven Hill 

model for four stroke patients and predicted 

ankle moment during stance with an acceptable 

RMS error of between 9.7%~14.7%, 

conforming the model‟s consistency and 

effectiveness as rehabilitation therapies to 

assess intervention. Apart from isometric 

contractions, Koo 
[285]

 and Pau 
[286]

 tested their  

sEMG-driven Hill models in the other way, by 

comparing elbow joint trajectory predicted with 

externally measured during isotonic elbow 

flexions (Figure 4.b). It was claimed that the 

discrepancy between which was due to muscle 

activation constructed from sEMG signals in 

dynamic conditions.  More work related to the 

above two perspectives was reviewed by 

Biewener 
[191]

, suggesting better sensing 

technologies to further improve the accuracy of 

Hill-based activation-contractility models 

among multiple tasks. 

 

Figure 4. (a) Prediction of toque based on sEMG-force Hill model during isometric contraction
[287]

; (b) 

Elbow joint position predicted based on Hill type EMG-force model in isotonic contractions 
[285]

; (c) A 

proposed system with sEMG and position measurements for in-motion estimation of ankle moment 
[284]
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Due to the limitation of current sensing 

technologies of activation in dynamic 

circumstances, no published research has been 

able to track the muscular tensions in sports and 

field training, even in very simple specific or 

chosen tasks.  Ligament orientation and joint 

positions were captured by cameras, Louis 
[288]

 

studied the a common clinical routine of reach-

grasp movements, only able to compare muscle 

tension determined between different EMG-

force models. In a most frequently cited work, 

Lloyd 
[41]

 illustrated general Hill-type modeling, 

used a modified EMG-driven model to 

calculate knee moments in crossover cuts and 

straight runs, and validated the model by 

comparing the calculated torque with that 

obtained from inverse dynamics. In this work, 

joint position was accessed by electro-

goniometer. Langenderfer 
[42]

 used tuned EMG-

driven Hill model in isometric flexions for 

determining contractility of individual skeletal 

muscles in fore and upper arms, but only able 

to compare net moment around elbow joint 

between measured and predicted.  A most 

recent dynamic application of the EMG-driven 

Hill model was revealed by Lee 
[289]

 on 

predicting tension of goat gastrocnemius 

muscles during walking and running, with the 

RMS error observed as high as 32%. In this 

work, muscle length and its time rate of change 

were obtained by lab-made ultrasound sensors.  

The reviewed applications above adequately 

and representatively reflect the current research 

gaps in monitoring muscle contractility based 

on activation-contractility modeling: First, 

although sEMG has been proven frequently 

effective to assess muscle activation during 

isometric contractions, it is far way from being 

reliable in dynamic conditions. As such, 

additional or alternative descriptions of 

activation based on other sensing technologies 

are required; Secondly, simultaneous 

measurements of activation and contraction 

status (muscle length and shortening velocity) 

have been proposed in order to achieve a 

complete activation-contractility modeling for 

dynamic contractions, which, however, have 

not been truly realized until now. Therefore and 

thirdly, inconsistency of predictions from a 

model was reported for a diverse range of tasks 

now and then. Finally, there is still lack of 

direct or indirect sensing approaches for 

verification of the muscle tensions determined 

from the activation-contractility models.  

5 Conclusions and Recommendations 

Due to the lack of direct implanted transducers, 

indirect monitoring of contractility based on 

activation-contractility modeling are only 

feasible solution, involving an index of 

activation, the observation of force-length and 

force-relationship and the activation-

contractility modeling. Hence, efforts have 

been given on the real-time monitoring on the 

intensity of skeletal muscles‟ contraction 

(which is actually the monitoring of indexes for 

activation of muscle contraction), especially on 

the non-invasive approaches. A brief overview 

of both classical and up-to-date new 

technologies has been presented.  

Up to date, the classic sEMG and MMG have 

not been applied in quantitative studies in 

dynamic motions, although they are used as an 

index of muscle activation in isometric or static 

condition. sEMG and MMG encountered 

significant noises problems especially in field 

activities. Imaging methods such as ultrasound 

scanning, despite their inconvenience for out-

laboratory or in-field applications, have 

inspired a variety of other novel technologies 

on monitoring muscle contraction, among 



Xi WANG et al. Medical Research Archives vol 6  issue 6.  June 2018 issue 6           Page 17 of 45 
 
 

Copyright 2018 KEI Journals. All Rights Reserved  http://journals.ke-i.org/index.php/mra 

which continuous anthropometric measurement 

based on soft sensors appears to be effective 

and have been repeatedly understood as another 

index of activation and introduced in strain-

contractility modeling. Anthropometric 

measurement based on fabric strain gauges also 

show great potentials for dynamic conditions 

such as in-field training. Applying such 

anthropometric techniques requires better 

understanding of strain-activation mechanism. 

Moreover, status parameters of contraction 

status, i.e., muscle length and shortening 

velocity, need to be obtained experimentally for 

independent monitoring of contractility,  

In activation-contractility modeling, the effects 

of status parameters on muscle contraction, the 

force-length and force-velocity properties 

should be determined. For the force-length 

relationship, it is not recommended to scale an 

ideal biophysical parameterized force-length 

relationship for sarcomere to fit the target 

skeletal muscle, due to too many influencing 

factors difficult to reflect. To obtain the force-

length relationship experimentally, there is a 

challenge for maintaining the „intention of 

muscle contraction‟ (activation).  Meanwhile, 

the difference between the torque-joint angle 

relationship and the real force-length 

relationship of skeletal muscle obtained in 

isometric tests shall also be noted. With regard 

to the force-velocity relationship, one should be 

aware is that the „force‟ is either an index of 

load/resistance or contractility deducted 

inversely from devices such as force plates 

while the „velocity‟ is not exactly the 

shortening velocity but a speed of the motion, 

only serves as representative of skeletal 

muscles‟ shortening velocity only. Literatures 

show that both the activation and muscle length 

impact the observed force-velocity relationship. 

While the force-velocity relationship of isolated 

muscles has been known to be hyperbolic, the 

multi-joint functional tasks typically reveal 

strong and approximately a linear force-

velocity relationship, though biological 

mechanisms remain elusive.   

The accuracy of a Hill type model on predicting 

muscle characteristics and contractility relies on  

the bio-signals as indexes of activations, the 

force-length and force-velocity relationship. To 

construct a Hill-type biomechanical model for 

in-motion monitoring of contractility, it is 

desirable to determine the core elements of a 

Hill type muscle through isolated designed 

tasks and selected conditions. However, since 

the model of a single sarcomere and that of a 

muscle may reveal huge difference due to the 

assumption of averaged shortening of 

sarcomeres and the recruitment patters of 

slower and faster motor units, as well as 

impedance caused by connective tissue and 

bones, it is recommended to give 

comprehensive consideration of the effect of 

specified length and velocity while focusing on 

the activation-contractility correlation, instead 

of product of the obtained factors as in the 

classical Hill‟s model.  

Furthermore, the status of contraction, i.e, 

tension, muscle length and shortening speed are 

represented by joint torque, joint position (or 

joint angle) and joint angular velocity, 

respectively in the human musculoskeletal 

system, based on angle-to-length and angular 

velocity-to-shortening speed transform 

functions either with previously reported 

anatomical parameters or inversely derived 

from experiments. Hence, direct measurement 

of joint angles is not only essential for 

determination of force-length and force-

velocity relationships but also for independent 

monitoring of contractility in-motion. A review 
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of joint angle measurement technologies is 

presented, indicating that for in-motion 

conditions, soft goniometers are potentially 

better choices compared to camera-based 

motion capture system that is limited in 

laboratory and IMUS hindering normal 

movements. Further research is required to 

enhance accuracy, reliability of soft 

goniometers. If successful, an activation-

contractility solution for motions can be 

completed and utilized as the effective 

monitoring, diagnosis and rehabilitation tools.  
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