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Abstract 

Intensivists routinely encounter seemingly stabilized patients who expire before discharge. 

Current early warning systems have not proven effective for identifying these patients in 

sufficient time for clinical intervention. A novel algorithm is described here that is timely and 

accurate for recognizing patients in an intensive care unit (ICU) that have a substantial mortality 

risk.  

Population: 59,400 admissions at 13 adult ICUs from 1/1/2012-9/30/2018.  

Outcome: Mortality before discharge from the ICU. Overall rate was 6.9%. 

Methods: All heart rate, respiratory rate and oxygen saturation values were obtained, as well as 

the start and stop times for those patients receiving mechanical ventilation. Data from the first 

two hours post-admission were used to find the cut points that maximized variability rates across 

ranges of vital signs values. These ranges were subsequenty mapped to a letter. A letter was then 

assigned to the median of each vital sign over consecutive 30-minute periods. Four consecutive 

letters were concatenated to form a pattern, and these were candidates for triggers (i.e. risk 

alerts). Using a genetic algorithm that weighted the outcome of mortality, we acquired a set of 

patterns that increased risk. Those patterns were then validated as triggers for increased risk. 

Results: Patients with zero or one triggers had a mortality rate of 0%; patients with two to four 

triggers had a mortality rate of between 2.8% and 5.5%; five or more triggers were seen in 

patients with a 20.2% to 25.6% mortality rate. 

Conclusion: Distinctive patterns in vital signs and whether a patient received mechanical 

ventilation can identify patients that have a high risk of mortality.  This methodology could be 

prospectively used in ICUs to identify high-risk patients in a timely enough manner to effect 

remedial treatment. 
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1. Introduction 

Predictive models of outcomes in the intensive 

care unit have been around for decades. The 

outcome most commonly predicted is mortality, 

either before a unit or hospital discharge. 

Currently, APACHE IV
1
, SAPS 3

2
, ACUITY 

2016
3
, and ICNARC

4
 are the models of greatest 

use throughout the world. All of these models 

use data collected throughout the first 24 hours 

after admission to produce a patient’s 

probability of mortality. The probabilities 

across patients within an intensive care unit 

(ICU) are then compared with the number of 

outcomes to arrive at a Standardized Mortality 

Ratio (SMR). SMRs tracked over time within a 

unit or among ICUs during the same time 

interval are useful ways of measuring an ICU’s 

risk-adjusted performance. APACHE and 

similar models are quite accurate at the group 

level. However, they are not precise in 

assessing an individual’s likelihood of dying 

before unit discharge
5
. The reason is that these 

models do not include variables such as 

processes of care or change in physiology over 

time, and thus contain a high degree of noise. 

This noise becomes canceled out when groups 

of patients, such as all patients within an ICU, 

are considered.  

There has been an increasing demand for 

predictions that are actionable at the bedside
5
. 

These systems are called “predictive analytic 

solutions” or “clinical decision support 

systems”. This type of system would enable 

clinicians to provide timely care for patients 

who might seemingly be stable but are actually 

at high risk for an adverse event. Early attempts 

to create such a metric involved looking at 

extremes in physiology at discrete and often 

infrequent time points. Systems developed for 

patients on general care units include MEWS
6
, 

NEWS
7
, and NEWS2

8
. However, their 

accuracy has been questioned
9
. 

More robust predictive analytic solutions are 

available for non-critical venues within acute 

care hospitals. The Visensia Index
10

 was 

developed using data from patients admitted to 

step-down units. It incorporates data from heart 

rate, respiratory rate, temperature, blood 

pressure, and SaO2 over time and looks for 

multidimensional outliers. A clinical study 

showed that it generated alarms an average of 

5.8 hours before a medical emergency team 

activation
11

. Pera Health’s Rothman Index 

produces a constantly updated acuity score but 

relies heavily on nursing assessments and the 

Braden score. These are collected sporadically 

and are subjective. The Rothman Index has not 

been thoroughly tested in ICUs, and its use to 

predict readmissions to an ICU was based on a 

retrospective study at a single ICU
12

. Thus 

there is no present system capable of providing 

a bedside predictions for patients in the ICU. 
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To be beneficial, a predictive analytics system 

for the ICU needs to meet several criteria
13

. 

First, it needs to incorporate data that were 

acquired electronically. Using manual data 

entry is not timely enough for a fluid 

environment such as an ICU. Second, the 

system must be able to generate near real-time 

alerts for patients at an elevated risk of an 

adverse outcome. These alerts must be capable 

of identifying seemingly normal patients who 

are actually at risk and not just signal patients 

who are decidedly ill. Finally, the alerts need 

activation hours before a pre-defined adverse 

event takes place.  

Previously a prototype predictive analytics 

solution for the ICU was described for use in 

making discharge decisions from the ICU
3
.  

Called SIGNIPHY™, it used vital signs data 

starting at two hours before discharge to 

identify patients whose physiologic patterns 

suggested either a high risk for dying on the 

floor post-ICU discharge or being discharged to 

a hospice. This paper greatly expands on 

SIGNIPHY to provide a continuously updated 

risk analysis of a patient expiring before ICU 

discharge: rSIGNIPHY. We describe a study 

where rSIGNIPHY was successfully applied to 

a large ICU database, and discuss future 

directions that such a predictive analytics 

solution for the ICU could take.  

 

 

2. Methods 

2.1 Data used in this study 

We obtained the following vital signs data from 

a large commercial database (“Phoenix”, 

Medical Decision Network, Charlottesville, 

VA, USA): heart rate, respiratory rate, and 

mean arterial pressure (map). We also extracted 

data on the start date-time and stop date-time 

for patients placed on mechanical ventilation, 

as well as ICU admission date-time and ICU 

discharge date-time. Finally, each patient’s 

discharge status (alive, dead) was collected. 

The dataset was split 2:1 by admission date-

time to allocate patients to a development data 

set or a validation data set, respectively. The 

validation data set took the parameters created 

in the development data set and verified them 

on a new set of data. 

2.2 Assigning symbols to ranges of vital signs 

that maximize mortality variation  

The first part of rSIGNIPHY involved splitting 

each vital sign into ranges where mortality was 

optimized. We extracted vital signs from the 

first two hours after ICU admission and then 

calculated the median value across that time.  A 

genetic algorithm
14

 was employed to find the 

bins (i.e., ranges of the vital sign’s distribution) 

that maximized variation in mortality. Genetic 

algorithms are multi-parameter optimization 

algorithms that can handle boundaries and 

constraints. Formula 1 shows the fitness 

function optimized by the genetic algorithm: 



Andrew A. Kramer et al. Medical Research Archives vol 7 issue 11. November 2019       Page 4 of 12 
 
 

Copyright 2019 KEI Journals. All Rights Reserved                http://journals.ke-i.org/index.php/mra 

Formula 1.   

∑     
   ∑ (‖     ‖)

  
     

 ⁄

Where n = the number of bins, mi is the 

mortality rate in bin "i', and mj is the mortality 

rate in bin j. Formula 1 had constraints on the 

number of bins (3, 4, or 5) and the minimum 

bin had to have at least 250 patients. The reason 

for the latter was to guard against the trivial 

situation where one bin contained all mortality. 

Each bin was assigned a symbol, which in itself 

had no quantitative value, but was used to 

designate a specific range of values for a vital 

sign. Table 1 gives an example of the bins and 

the corresponding symbols assigned to them.  

 

Table 1. Hypothetical assignment of letters to bins of median respiratory rates 

Respiratory Rate Range Symbol 

Assigned 

3-18 X 
19-31 N 
32-36 A 
37-90 Q 
 

2.3 Temporal data mining of vital signs and 

ventilator status 

We attached symbols to each patient’s 30-

minute median heart rate, respiratory rate, and 

map, respectively, across their ICU stay. At the 

end of each two-hour interval, the four symbols 

from the four preceding 30-minute periods 

were concatenated to form a “word”. This 

process was repeated until the patient either 

was discharged from the unit, died before 

discharge, or was still in the unit seven days 

after discharge; whichever came first. 

Consequently patients had varying numbers of 

words, capped off at a maximum of 84 (168 

hours in a week). Each word was randomly 

assigned a weight = {0, 1, or 2}.  

Every two-hour interval also included whether 

or not a patient received mechanical ventilation. 

If the patient had never been on a mechanical 

ventilator, then he was given an MV score = 0; 

currently on a mechanical ventilator yielded an 

MV score = 2; being previously on a ventilator 

resulted in an mv score = 1. The reason for the 

latter circumstance receiving a point is that 

having been on a ventilator, even if currently 

weaned off of it, still presents risks, such as 

ventilator-associated pneumonia.  
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A patient’s score for a particular two-hour 

interval consisted of the points assigned to heart 

rate, respiratory rate, map, and MV score. 

Summing the weights resulted in a score 

ranging from 0 to 8. Starting with time period 

two, a patient’s score became the maximum of 

the current and immediately preceding time 

period to introduce some lag in physiologic 

effects. A smoothing factor was added to 

account for the decreasing effect of more 

distant time periods (see Formula 2). 

Formula 2 

Final Scoret = ω*(Scoret)  +  (1-ω)*(Final 

Scoret-1), 

Where 0.1 ≤ ω ≤ 0.9. A value of ω = 0.5 means 

that equal weight is placed on the score at this 

time period and the final score from the 

previous time periods. ω is not pre-determined 

but obtained as a result of the optimization 

process described below. The smoothing in 

Formula 2 also converts the Final Score from 

being an integer to a continuously distributed 

metric, ranging from 0.00 to 8.00. 

We selected the maximum Final Score over all 

time periods: Score(max). Then a genetic 

algorithm was used to find a weight for each 

word {0, 1, or 2} that optimized a patient’s 

Final Score (max) with mortality. That entailed 

optimizing hundreds of weights simultaneously. 

The fitness function for the genetic algorithm 

had a further component, in which patients with 

a low score who died (false negative) were 

penalized more heavily than patients with a 

high score who survived (false positive). The 

result of the genetic algorithm is that every 

heart rate word, respiratory rate word, and 

mean arterial pressure word has a final weight 

of 0, 1, or 2, and ω maximized at a value 

between 0.1-0.9. 

Patients were grouped into 5% percentiles 

according to their Final Score(max). The 

mortality rate and median of the Final 

Score(max) for each five-percentile group were 

obtained and then graphed. Inflection points 

where the mortality rate accelerated were 

chosen as alarms: the first inflection point 

indicated a “moderate risk”, and the second 

inflection point was associated with a “high 

risk”. 

Each patient in the validation data set had their 

Final Score(max) calculated. A confusion 

matrix was created that looked at the number of 

patients alive and dead, respectively, at 

discharge according to their risk profile: none, 

moderate, and high, as defined from the 

development data set. Sensitivity and 

specificity were calculated based on having 

either a moderate or high risk.  

 

3. Results 

The Phoenix database consisted of 59,400 

patients admitted to thirteen adult ICUs in the 

U.S. between 1/1/2012 and 9/30/2018. Patients 

admitted before 1/1/2016 (40,047; 67.4%) 
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made up the development data set, and the 

19,353 (32.6%) patients admitted from 

1/1/2017 onwards were allocated to the 

validation data set. The overall ICU mortality 

rate was 6.9%. 

Table 2 shows the bins for each vital sign 

yielding the maximum mortality validation, 

along with the symbol mapped to each. 

 

Table 2. Bins from calculating the maximum mortality variation and their corresponding symbol 

Heart Rate  Respiratory 

Rate 

 Mean Arterial 

Pressure 

 

5-85 R 4-18 F 30.0 – 53.8 S 

86-122 A 19-32 Z 53.9 – 61.9 D 

123-140 E 33-37 Q 62.0 – 73.6 B 

> 140 M > 37 P 73.7 – 81.5 N 

    ≥ 81.6 W 

 

There were four bins for heart rate, four bins for 

respiratory rate, and five bins for map. From 

the map bins’ values, it is clear that 

hypotension rather than hypertension carries 

significant risk.  

Each four consecutive time periods yielded 

words. This process yielded 132 words for 

heart rate, 125 words for respiratory rate, and 

293 words for map. (Some words did not appear 

in this data set.)  Thus the genetic algorithm had 

551 weights to optimize, one more than the sum 

of the words due to the need to optimize the 

smoothing parameter.  

The genetic algorithm found 270 words that 

had a weight > 0. These words and the patient 

being/had been on a mechanical ventilator 

contributed to a patient’s score at each time 

period. Table 3 gives the maximum score for 

each patient vs. mortality for the development 

and validation data sets, respectively. Scores 

are rounded to the nearest integer

. 

Table 3. Mortality Rate by Maximum Score 

Development Data Set Validation Data Set 

Maximum Score Mortality rate Maximum Score  Mortality Rate 

0 – 1 0.0% 0 – 1 0.0% 

2 1.8% 2 2.8% 
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3 2.3% 3 3.3% 

4 5.1% 4 5.5% 

5 17.8% 5 20.2% 

≥ 6 21.9% ≥ 6 25.6% 

 

There was a strict monotonic relationship 

between patients’ maximum score and the 

corresponding mortality rate. This relationship 

was almost identical to that found using the 

validation data set, affirming the success of 

rSIGNIPHY to identify patients at an increased 

risk of mortality.  

The Final Score(maximum) for each patient 

was rescaled to lie between 0 – 100. Figure 1 

shows increasing 5% percentiles of the Final 

Score(maximum) for patients versus the 

corresponding mortality rate in the validation 

data set. 

 

Figure 1. Mortality by Maximum Rolling SIGNIPHY Score: Validation Data Set  

 

 

There is a clear relationship between a patient’s 

score, with r
2
 = 0.9508. From the graph it can 

be discerned that two inflection points exist 

where a large increase in the mortality rate 

occurs: 64 and 82, respectively. These 

inflection points became thresholds for sending 

alarms. If a patient’s score rises to 64 then a 

“moderate risk” signal would be sent to the 
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patient’s clinicians. However, if the score rises 

to 82, then a “high risk” alert would be sent to 

the patient’s clinicians. 

Figure 2 shows the results from using the alerts 

to signal an increased risk of mortality in the 

validation data set. Overall mortality in the 

validation data set was 7.6%. For patients with 

baseline risk, the mortality rate was 3.9%. 

When there was a moderate risk alert, mortality 

was increased 3.8-fold to 14.5%.  At the highest 

risk level, patients' mortality was increased 6.6-

fold to 25.7%.  

 

Figure 2. Baseline Risk, Moderate Risk, and High Risk versus Mortality Before ICU Discharge 

 

 

A high-risk alert level was achieved at least 

seven hours in advance of mortality in 90% of 

the patients. Thus there would have been ample 

time to administer remedial treatment. The 

average APACHE day one prediction of 

mortality showed significant overlap among the 

three risk groups (not shown here), indicating 

that many of the patients with moderate or high 

risk were not obviously in a downward trend. 

 

 

 

4. Discussion 

This paper describes a novel method for 

generating alerts using physiologic patterns and 

clinical data from patients admitted to adult 

ICUs: rSIGNIPHY. When applied to a large 

ICU database, rSIGNIPHY showed the ability 
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relationship was almost identical in a hold-out 

validation set of patients.  

There are several reasons why rSIGNIPHY 

might be an important predictive analytic 

systems tool in the ICU. First, the inclusion of 

mechanical ventilation was important. Almost 

1/3
rd

 of adult patients admitted to ICUs in the 

U.S. are placed on mechanical ventilation 

within 24 hours post-admission
1
. Receiving 

active ventilation is an important indicator of an 

adverse outcome
15

 as well as influencing a 

patient’s respiratory rate. Even having been on 

a ventilator has attendant risks such as 

ventilator-associated pneumonia, which is why 

patients continued to receive a weight (albeit a 

lower one) after being weaned off a ventilator. 

Second, the system was calibrated using data 

from patients in adult ICUs exclusively.  This 

patient population is more physiologically 

deranged than patients in other levels of care 

within a hospital, and analytic tools need to 

take this situation into account. Third, the use 

of medians to aggregate data rather than means 

decreases the bias from outliers in the data. 

Fourth, deleterious patterns in vital signs are 

important for rSIGNIPHY. Other mortality risk 

systems simplistically look for vital signs 

exceeding an outlier or utilize APACHE’s 

method of selecting the highest or lowest value 

within 24 hours. Finally, rSIGNIPHY had a 

“memory”, in that scores from previous periods 

had an impact on current values.  

rSIGNIPHY belongs to a general class of 

metrics previously called early warning 

systems. But that nomenclature is confining for 

dynamic solutions such as rSIGNIPHY. Thus 

we elected to call rSIGNIPHY a predictive 

analytic solution. Such a system has to contain 

a continually updated acuity score, which 

would be beneficial in inter-shift handoffs and 

telemedicine. Acuity scores for each patient 

could be displayed simultaneously. This type of 

user interface allows intensivists to see all of 

their patients at a glance, aiding in identifying 

patients at the most urgent need of remedial 

care. Ideally, the alerts based on the acuity 

score would be color-coded and sent to 

clinicians’ mobile devices. Earlier we stated 

that predictive analytics solutions need to have 

the following characteristics: obtaining all data 

electronically; providing scores and alerts in 

near real-time; identification of non-obvious 

patients, i.e. not clearly in sharp decline; and 

providing alerts hours before a patient’s 

demise. rSIGNIPHY met all of these 

requirements.  

While there are no existing predictive analytic 

solutions for critical care, a fairly sophisticated 

system has been established for intermediate 

care unit: the Visensia Index
10

.  It shares most 

of the same date elements as rSIGNIPHY, 

namely streaming vital signs. Where 

rSIGNIPHY looks for patterns across time that 

are indicative of subsequent patient detriration, 



Andrew A. Kramer et al. Medical Research Archives vol 7 issue 11. November 2019       Page 10 of 12 
 
 

Copyright 2019 KEI Journals. All Rights Reserved                http://journals.ke-i.org/index.php/mra 

the Visensia Index tries to identify instances 

where multidimensional outliers exist. However 

it has not been calibrated for critically ill 

patients, nor does it contain information on 

patients receiving mechanical ventilation. 

There were limitations to this study. First, the 

data consisted of vital signs that had been 

confirmed retrospectively by a nurse. Data 

captured “live” will be messier. However, 

rSIGNIPHY’s use of patients’ median values to 

assign a “letter”, which were based on ranges of 

values protects against the effects of erroneous 

and outlier data. But in order to successfully 

validate the methodology, a multi-center 

prospective clinical study is needed. Second, as 

described here, an rSIGNIPHY score is updated 

every two hours.  With more high-frequency 

data a smaller time window might be sought. 

Presently a clinical study using rSIGNIPHY in 

live environments is being initiated. This study 

will capture data at one-minute intervals, and 

scores will be updated every five minutes. 

Third, while sensitivity and specificity were 

good, both can be improved. While using high-

frequency data would aid in this, clinical 

interventions beyond mechanical ventilation 

might be informative. Fourth, although 

mortality is an important endpoint, other 

adverse events should be examined. Finally, the 

methodology for generating the weights for 

“words” in rSIGNIPHY is complex. However, 

once these weights are obtained then using 

these values in new data sets is straightforward. 

 

5. Conclusions 

A novel method was described for analyzing 

patterns in vital signs, augmented by a patient 

receiving mechanical ventilation. The method, 

called rSIGNIPHY, was applied to an adult 

ICU database. The results show that 

rSIGNIPHY can generate mortality risk alerts 

to intensivists that have high sensitivity and 

specificity. Future applications of rSIGNIPHY 

include other adverse outcomes in the ICU. 
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