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ABSTRACT 

When any tissue is damaged, multiple cells and tissues work towards the repair of the wounded 

site. Blood and lymphatic vessels are particularly important for the regeneration and healing of 

tissues. Angiogenesis is the process by which new blood vessels are formed. Angiogenesis is 

induced by angiogenic factors such as vascular endothelial growth factor (VEGF)-A which plays 

an important role in the repair of the damaged site. VEGF-A is expressed by macrophages, but 

pericytes also promote vascularization by expressing VEGF-A. In addition to VEGF-A, wound-

related macrophages express tumor necrosis factor-α, Platelet-derived growth factor-bb, 

Interleukin (IL)-1, IL-6, and transforming growth factor β, and act on other cells. Pericytes 

change properties depending on the stage of the wound. For lymphangiogenesis, the expression 

of VEGF-C or -D, which are lymphatic endothelial growth factors, is the most important. 

Lymphatic vessel endothelial hyaluronan receptor-1-positive macrophages, which appear in the 

stroma, are also actively involved in lymphangiogenesis. On the other hand, podoplanin-positive 

myofibroblasts are indirectly involved in wound healing by being affecting in leukocyte 

migration as an “extravascular pathway”.  

Keywords:: angiogenesis, lymphangiogenesis, wound healing, LYVE-1, podoplanin  

dothelial dysfunction, ambulatory blood pressure, central blood pressure, prehypertension 
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Introduction 

  Wound healing is a complex process that 

combines multiple processes and has an 

inflammatory phase, proliferative phase, and 

remodeling phase. During the inflammatory 

phase, platelets aggregate and block the 

wound, and various cytokines and cell 

growth factors are secreted, causing several 

cells to infiltrate the wound. During the 

growth phase, epidermal cells, fibroblasts, 

and vascular endothelial cells proliferate, 

forming granulation tissue. Scars form 

during the remodeling phase. Blood and 

lymphatic vessels play a vital role in the 

wound healing processes. In this review 

document, we will discuss angiogenesis and 

lymphangiogenesis, and the various factors 

involved in wound healing. 

 

1. Angiogenic factors and their 

expression 

  Angiogenesis is a complex system that is 

highly controlled in the body, and requires 

various factors to act in conjunction to be 

effective. Factors pertaining to angiogenesis 

in wound-sites include vascular endothelial 

growth factor (VEGF), angiopoietin 

(ANGPT), fibroblast growth factor (FGF), 

and transforming growth factor β (TGF-β). 

Co-expression of these growth factors is 

essential for angiogenesis. Keratinocytes, 

macrophages, fibroblasts, and pericytes 

(PCs) are among the cells that express the 

angiogenic factor. The interaction of these 

cells with vascular endothelial cells makes 

the process of wound healing intricate. 

1.1 VEGF-A 

  VEGF has been isolated as a substance 

with two properties; it is a growth factor for 

vascular endothelial cells and also acts as a 

vascular permeability factor, known as 

VEGF-A
 1-3

. VEGF-A has at least six known 

isoforms namely VEGF 121, 145, 165, 183, 

189, and 206
 4,5

. VEGF-A is the most 

important angiogenic factor involved in 

wound healing. VEGF-A is a downstream 

protein of Hypoxia-inducible factor 1-alpha, 

and its expression is induced by hypoxia in 

wounds
 6

. VEGF binds to vascular 

endothelial growth factor receptor 

(VEGFR)-1 (encoded by the FLT-1 gene) 

and/or VEGFR-2 (encoded by the Flk-1 

gene), expressed in vascular endothelial 

cells, thereby promoting endothelial cell 

migration and proliferation. This induces 

angiogenesis and ensures the survival of the 

cells. 

1.2 ANGPT 

  ANGPT belongs to the VEGF family and 

mainly regulates the adhesion of PCs to 

vascular endothelial cells. Both the agonist 

ANGPT-1, and the antagonist ANGPT-2, 

bind to the endothelial cell receptor, TIE2. 

ANGPT-1 is produced by PCs, and 

ANGPT-2 is produced by endothelial cells. 

ANGPT-1 attaches PCs to vascular 

endothelial cells to form a mature blood 

vessels, whereas ANGPT-2 releases PCs
 7

. 

1.3 FGFs 

  Many types of FGFs have been reported 

(more than 23 homologs) of which FGF1 

and FGF2 are particularly important for 

angiogenesis. FGF1 and FGF2 not only 

stimulate the proliferation of vascular 

endothelial cells, but also organize the 

vascular lumen structure
 8

. Additionally, 

FGFs play an important role in the 

formation of granulation tissue in the 

process of wound healing. 

1.4 TGF-β 

  TGF-β is a multifunctional cytokine with at 

least three isoforms (TGF-β1, -β2, and -β3). 

TGF-β controls cell growth, proliferation, 

differentiation, and apoptosis for various cell 

types. TGF-β also has many signaling 

pathways and promotes angiogenesis during 

wound healing
 9

. 

1.5 Macrophages 

  Macrophages play an important role in the 

inflammatory phase of tissue repair
 10

. Due 
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to their dynamic plasticity, macrophages can 

mediate both tissue destruction and repair
 11

. 

Macrophages have many functions, defined 

by an intricate subset of cell-derived 

cytokines. Wound associated macrophages 

play an important role in angiogenesis. They 

not only express VEGF, but also promote 

VEGF production in keratinocytes and 

fibroblasts via tumor necrosis factor (TNF)-

α, Platelet-derived growth factor (PDGF)-

bb, Interleukin (IL)-1, IL-6, and TGF-β
 12

. 

1.6 Keratinocytes 

  Increased amounts of VEGF in the wound 

area is as a result of migratory keratinocytes 

and macrophages in the granulation tissue
 13

. 

Keratinocyte VEGF expression is indirectly 

promoted by macrophages expressing TNF-

α and TGF-β
 14

. 

1.7 Fibroblasts 

  Fibroblasts are stimulated by TGF-β to 

produce connective tissue growth factor 

(CTGF)
 15

. CTGF induces connective tissue 

proliferation, vascular endothelial cell 

migration, and tube formation
 16,17

. 

1.8 PCs 

  PCs, a type of wall cell in blood vessels, 

adhere to the outer circumference of 

capillaries and venules. Unlike vascular 

smooth muscle, PCs wrap around the 

basement membrane together with vascular 

endothelial cells and are in direct contact 

with endothelial cells. One of their functions 

is to stabilize blood vessels, but the 

mechanism by which this is achieved is still 

quite unclear
 18

. It has been suggested that 

the function of PCs during angiogenesis is to 

suppress endothelial cell proliferation and to 

stabilize the vessel wall
 19-21

. However, some 

studies have suggested that PCs can induce 

endothelial cell proliferation and sprouting 

during angiogenesis
 22-30

. In addition, PCs 

exhibit heterogeneity at each stage of wound 

healing, and express VEGF-A to promote 

proliferation in the neovascular tip and 

surrounding regions of the endothelial cell
 

31
. The zebrafish model suggests that the 

wound activates PCs and induces 

angiogenesis
 32

. 

2. Lymphangiogenic factors and their 

expression 

  Lymphatic vessels play an important role 

in tissue fluid collection and immunity 

transfer pathways. However, although the 

mechanism of lymphatic vessel formation 

and the in vivo regulatory factors affecting 

them have recently been studied, it still 

remains unclear. 

  The formation of lymphatic vessels during 

inflammation and wound healing, has also 

been reported and several influential factors 

identified. However, lymphatic vessels have 

not been studied as extensively as blood 

vessels. VEGF-C and -D are lymphatic 

endothelial growth factors, Prox-1 is a 

lymphatic endothelial cell master factor, and 

Foxc2 is important for lymphatic valve 

formation. Furthermore, lymphatic markers 

VEGFR3, LYVE-1, and podoplanin are also 

considered key. In particular, a large number 

of cells expressing lymphatic markers 

appear at the wound site, and the 

relationship between these cells and 

lymphangiogenesis may be important. 

2.1 VEGF-C and -D 

  VEGF-C and -D, ligands for 

VEGFR3/Flt4, play an important role in the 

proliferation and migration of lymphatic 

endothelial cells
 33

. VEGF-C and -D bind to 

VEGFR2
 34-36

, and VEGFR2 and VEGFR3 

can also form heterodimers
 37,38

. In wound 

healing, coordinated signaling of VEGFR2 

and VEGFR3 is thus a key factor
 39

. 

2.2 Prospero homeobox protein 1 

(PROX1) 

  PROX1 is an essential master transcription 

factor for the development and maintenance 

of lymphatic vessels
 40-42

. Binding of 

VEGFC, D, and VEGFR3 activates PROX1. 

In a corneal injury model, PROX1 was 

suppressed by microRNA miR-466, 

suggesting that lymphangiogenesis could be 

suppressed
 43

. The functionality of PROX1 
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in wound healing is expected to develop in 

the future. 

2.3 Forkhead box protein (FOX)C2 

  FOXC2, is highly expressed in the fetus 

and adult lymphatic vessels
 44,45

. In the fetus, 

FOXC2 is involved in the formation of 

lymphatic vessels in coordination with 

FOXC1
 46

. In mature lymphatic vessels, 

FOXC2 is downregulated, resulting in 

decreased expression levels of PROX1, 

VEGFR-3, and LYVE-1
 47

. However, the 

expression and function of FOXC2 during 

lymphangiogenesis in wounds is still 

unknown. 
 

Figure 1: Double immunofluorostaining in the wound section of the skin in a mouse-model (C57BL / 6N, 

8-week-old male). 

a-c: third day after injury, d-f: fifth day after injury, g-i: seventh day after injury. Green: CD31, red  : 

LYVE-1, *: wound area, scale bar = 100µm. 

On the third day after injury, many LYVE-1-positive cells were seen to appear. LYVE-1 positive cells 

(represented by the arrow markings) extended in row towards the center of the wound (a-c). 

On the fifth day after injury, abundant new blood vessels were seen (d), but LYVE-1-positive cells did 

not line up as they had done on the third day. 

Seven days after injury, blood vessels formed a network (g), and lymphatic-like structures could be 

observed (h, represented by arrows). 

These fluorescent images were observed under a Leica TCS-SL confocal laser scanning microscope 

(Leica, Wetzlar, Germany). 
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2.4 LYVE-1 / LYVE-1
+
 cells 

  LYVE-1, a lymphatic endothelial cell 

marker, is a hyaluronic acid receptor and a 

CD44 homolog
 48

. Moreover, LYVE-1 is 

expressed in sinusoids, macrophages, and 

several cells
 49

. In order to observe 

lymphangiogenesis during wound healing, a 

full-thickness defect was made in the skin of 

mice. It was stained and observed for 

LYVE-1, CD31, and CD11b (Figure 1 and 

2). On the third day after injury, LYVE-1 

positive macrophages accumulated to form a 

lymphatic-like structure (Figure 1 a-c), but 

on the fifth day, this structure deteriorated 

(Figure 1 d-f). On the 7th day after injury, 

normal lymphatic vessels were observed 

(Figure 1g-i).  

 
Figure 2: Double immunofluorescent staining in the wound section of the skin in a mouse-model (C57BL 

/ 6N, 10-week-old male) on the 17th day after injury. Green: CD11b, red: LYVE-1, scale = 100µm. The 

blind ends of the lymphatic vessels were confirmed at the site of the wound on the 17th day after the 

injury (marked by arrows). In addition, CD11b-positive cells were seen to form the lymphatic 

endothelium (arrow markings in the figure inset; enlarged and highlighted by a white rectangle). These 

fluorescent images were observed under a Leica TCS-SL confocal laser scanning microscope (Leica, 

Wetzlar, Germany). 

We also observed that some CD11b-positive 

macrophages were integrated into the 

lymphatic endothelium (Figure 2). On the 

17th day, many blind ends of lymphatic 

vessels were observed, and the number of 

LYVE-1-positive macrophages was also 

seen to have decreased. Maruyama et al. had 

previously reported that macrophages had 

transdifferentiated and been incorporated 

into the lymphatic endothelial cells in the 

cornea of mice
 50

. Similarly, in the skin, 

macrophages may have differentiated to 

form a part of the lymphatic endothelial 

cells.
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Figure 3: Double immunofluorescent staining in the wound section of the skin in a mouse-model (C57BL 

/ 6N, 8-week-old male) on day 1 after injury. Green: α-SMA, red: PDPN, scale = 50µm. Many PDPN 

positive cells appeared on the first day after injury (a). These cells had many cell processes. In addition, 

almost all PDPN positive cells co-expressed α-SMA (b, c; represented by arrows). These fluorescent 

images were observed under a KEYENCE BZ-9000 HS all-in-one microscope (KEYENCE, Osaka, 

Japan). 

 
 

2.5 Podoplanin (PDPN) / PDPN
+
 cells 

  PDPN is among the most commonly used 

lymphatic markers along with LYVE-1 and 

VEGFR3. PDPN expression in lymphatic 

endothelial cells is regulated by PROX1. In 

the development of lymphatic vessels, 

PDPN has proven to be essential for 

isolating lymphatic budding from veins
 51,52

. 

In wound healing, PDPN is expressed in 

epithelial basal cells and is involved in 

epidermal cell migration
 53

. We also found 

that many PDPN
+ 

cells appeared in the 

stroma using a mouse model to study wound 

healing. These cells were αSMA
+
 

myofibroblasts (Figure 3). Myofibroblasts 

differentiate from fibroblasts and epidermal 

cells. However, the origin of PDPN
+
 

myofibroblasts is unknown. PDPN
+
 

fibroblasts are involved in leukocyte 

migration as an “extravascular pathway” in 

lymphoid organs
 54,55

. In light of these, 

PDPN
+ 

cells may not be directly involved in 

lymphangiogenesis, but may be indirectly 

involved in overall wound healing by 

causing the migration of various cells. 
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3. Summary 

  Angiogenesis and lymphangiogenesis are 

important processes in wound healing. 

Angiogenesis has been the focus of a lot of 

research; many manuscripts have studied 

embryology, tumors, and wound healing in 

various fields of study such as the molecular 

biology, physiology, pharmacology, and 

microanatomy. However, lymphangio-

genesis is yet to be explored. Additionally, 

the contribution of cells which act as 

lymphatic markers involved in wound 

healing could be an interesting aspect for 

further research. 
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