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Abstract 

 

Mucopolysaccharidoses III (MPS III, Sanfilippo syndrome) is a subtype of the 

Mucopolysaccharidoses (MPS), a group of inherited lysosomal disorders caused by a deficiency 

of lysosomal enzymes responsible for catabolizing glycosaminoglycans (GAGs). Although MPS 

III is rare, MPS diseases as a group are relatively frequent with an overall incidence of 

approximately 1 in 20,000 – 25,000 births. MPS III are paediatric diseases, which cause learning 

difficulties, behavioural disorders and dementia, as well as skeletal deformities and ultimately 

result in premature death. There are currently no approved treatments for MPS III, but a number 

of therapeutic approaches are under development. In the past 30 years, research using cellular 

and animal models have led to clinical trials involving enzyme replacement therapy (ERT), 

substrate reduction therapy (SRT) and gene therapy, while stem cells approaches remain at the 

pre-clinical stage. Although safety and clinical efficacy in animal models have shown promise, 

the results of clinical trials have proved costly and shown limited therapeutic effects. In this 

review, we describe the most recent results from clinical trials. While ERT and gene therapy are 

the most developed therapies for MPS III, we highlight the work that needs to be done to bring 

us closer to a real treatment for these devastating diseases. 
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1.Introduction 

Mucopolysaccheridosis type III (MPS III or 

Sanfilipo Syndrome) refers to one of five 

(MPS IIIA-E) autosomal recessive lysosomal 

storage diseases. Each form of MPS III is 

caused by a mutation in both alleles of a gene 

which codes for an enzyme involved in the 

degradation of the glycosaminoglycan (GAG) 

heparin sulfate (HS). As a result, partially 

degraded HS accumulates in lysosomes 

leading to lysosomal malfunction and disease 
1-3

. The subtypes of MPS III are caused by 

deficiencies in the enzymes; sulfaminase 

(MPS IIIA, OMIM no. 252900) 
4
, -N-

acetylglucosaminidase (NAGLU, MPS IIIB, 

OMIM no. 252920)
5
, heparin acetyle CoA: -

glucosaminide N-acetyltransferase 

(HGSNAT, MPS IIIC, OMIM 252930)
6
, N-

acetylglucosamine 6-sulfatase (GNS, MPS 

IIID, OMIM 252940) 
4
; and N-glucosamine 3-

O-sulfatase (arylsulfatase G or ARSG, MPS 

IIIE) 
7
.  MPS III is the most common form of 

MPS, with a prevalence of between 

approximately 0.3 and 4.1 cases for every 

100, 000 births depending on the subtype 
8
. 

MPS III manifests in a similar way regardless 

of subtype, although the age of onset and rate 

of disease progression may differ between 

individuals. The most striking feature of MPS 

III, compared to other forms of MPS is that it 

primarily affects the brain, distinguishing 

them as neurological diseases. Although other 

forms of MPS are linked to severe somatic 

symptoms and may also have neurological 

characteristics, only MPS III appears to 

heavily involve the central nervous system. 

Pre-natal and early stages of post-natal 

development appear to be normal in MPS III, 

with symptoms occurring during the first few 

years of life (1-3 years of age) and including 

developmental delay such as difficulty 

forming language, cognitive decline, 

hyperactivity, sleep disturbances, aggressive 

behaviour and seizures, especially in older 

children. Towards the later stages of the 

disease, hyperactivity and anxiety subside but 

patients succumb to motor impairment, 

eventually reaching a vegetative state, 

become less responsive to external stimuli 

and die prematurely before their third decade 

of life 
9-11

. Unsurprisingly, these symptoms 

have a tremendous impact not just on the 

children with MPS III, but parents and 

primary carers of children with MPS III. 

Currently, there are no available treatments to 

effectively reverse or slow down disease 

progression in MPS III. Instead, most efforts 

are palliative, focusing more on regulating 

behaviour and sleep disturbances. This is 

because the clinical symptoms that 

characterize MPS III result from neuronal 

dysfunction, making them particularly 

difficult to treat. MPS types I, II, IVA, and VI 

for which clinical symptoms are 

predominantly somatic, can all be treated 

using Enzyme Replacement Therapy (ERT) 

or bone marrow and hematopoietic stem cell 

(HSCT) transplantation 
12

. Attempts have 

been made to deliver missing enzyme to MPS 

III patients via the blood stream, but the 

results have been poor due to the inability of 

the enzyme to cross the blood-brain-barrier.  

Notwithstanding, a number of promising 

therapies are currently being tested in cell and 

animal models and several clinical trials are 

underway. In this review, we will focus on the 

progress that has been made for ERT, small 

molecules and stem cell approaches in the 
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past few years, which obstacles still remain 

and how they may be overcome. 

2.Therapeutic Scope 

There are two broad ways in which 

monogenetic diseases like MPS III can be 

treated. One, targeting the gene defect directly 

through gene therapy or two, targeting the 

deficiency of the protein that the gene codes 

for using modified ERT, the use of small 

molecules or stem cells. All four treatment 

approaches have been tested in cellular and 

animal models, and clinical trial. An excellent 

review has been written by Gaffke et al., 

recently 
13

. Building on these reported 

findings, this review will concentrate on the 

work that has been done toward obtaining 

therapeutic options for MPS III in the last two 

years and their promise. 

2.1. Cellular Models. 

Cellular models serve as a useful tool for 

testing the molecular mechanisms, which 

drive MPS III, or the efficacy of various 

therapies. For obvious reasons, cellular 

models can only provide a preliminary 

indication of the effects of compounds on an 

organism. Nonetheless, ERT, substrate 

reduction therapy and other forms of small 

molecule therapies have offered promising 

results, which warrant further investigation. 

 

The advent of three-dimensional (3D) 

organoid culture systems, generated from 

induced pluripotent stem cells (iPSCs) 

provide unprecedented potential for 

modelling the human brain, mimicking 

various developmental features at the 

molecular and cellular level 
14-19

 These 

scaled-down complex cellular models not 

only offer a way to better study the 

mechanism of disease in MPS III, but in 

addition, better test small molecules. For the 

first time, two stem cell lines derived from the 

skin of a patient with MPS IIIA and MPS 

IIIB, have been generated and characterized 
20,21

. Although iPSC-derived organoids are yet 

to be generated from these lines, they 

represent the first step towards MPS III brain 

organoids. Much progress has been made 

using 2D-culture systems as described above, 

but the greater complexity achieved using 3D-

organoids may bridge the gap between in 

vitro and clinical studies. 

2.2 Animal Models 

Animal models of genetic diseases provide a 

biological system to test potential therapies 

that have been previously investigated in 

vitro. The therapies described above have all 

proved relatively efficacious in cell models. 

However, preclinical studies in both cell 

(ideally human) and whole organisms are 

necessary in order to validate potential 

therapies with real clinical application. This is 

particularly important for MPS III, which 

unlike most forms of MPS, displays primarily 

neurological symptoms. Therefore, testing 

these therapies in animal models addresses 

the issue of a blood-brain-barrier, a structure 

conserved in both rodents for example, and 

humans.  

2.3.Clinical Trials 

Cellular and animal models have proved 

useful in identifying potential therapeutic 
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strategies to reduce the primary cause of the 

disease, GAG accumulation in the brain and 

its downstream effects. These studies have 

paved the way for 26 clinical trials for MPS 

III in the past 20 years, 9 of which have been 

completed. These include stem cell 

transplantation, ERT, substrate reduction 

therapy and gene therapy. One of the main 

limitations of assessing the effects of 

treatments in MPS III is that it is a rare 

disease, meaning that sample sizes tend to be 

small and fail to completely represent the 

different stage and severity of symptoms. To 

overcome this issue, future studies should 

take heed of recent recommendations on 

clinical trial design for the treatment of MPS 

III 
22

.  In this review, we will focus on recent 

developments for each therapy from their 

development in cellular and animal models, to 

the clinic. 

3. The Road to the Clinic 

3.1. Small molecules 

3.1.2. Substrate reduction therapy 

Substrate reduction therapy (SRT) aims to 

reduce the synthesis of GAGs, which cannot 

be degraded in MPS III. Unlike for other 

LSDs such as Gaucher type I, SRT is not 

approved for the treatment of any of the MPS 

disorders but several approaches to reducing 

GAG synthesis are under investigation 
23

. One 

approach is to silence the expression of genes 

which code for proteins involved in GAG 

synthesis using siRNA and shRNA as has 

been shown in MPS IIIA fibroblasts 
24,25

 and 

MPS IIIC 
26

. An alternative approach to 

reducing the synthesis of GAG is the 

inhibition of follicle-stimulating hormone 

(FSH) or epidermal growth factor (EGF), 

which have been previously shown to 

maximise the synthesis of some GAGs 
27,28

. 

Using a technique called gene expression-

targeted isoflavone therapy (GET IT), 

Jakóbkiewicz-Banecka et al. showed that 

treatment of MPS IIIA and MPS IIIB patient-

derived fibroblasts with the natural tyrosine 

kinase inhibitor isoflavone 4', 5, 7-

trihydroxyisoflavone (genistein) inhibited 

GAG synthesis and prevented lysosomal 

accumulation. This effect was eliminated in 

the presence of excess EGF and partially 

restored following an increased concentration 

of genistein 
29

. In 2006, Malinowska et al. 

showed that continuous administration of 

genistein, given to MPSIIIB mice at a high 

dose for 9 months, significantly reduced 

lysosomal storage, heparan sulphate substrate 

and neuroinflammation in the cerebral cortex 

and hippocampus, resulting in correction of 

the behavioural defects observed, as well as 

improved synaptic vesicle protein expression 

and secondary storage in the cerebral cortex 
30

. As a small molecule, genistein can cross 

the blood-brain barrier and reach the brain, 

making it an attractive candidate for treating 

MPS IIIB.  

An open-label clinical study including 19 

MPS III patients (aged 2.8 – 19 years) was 

launched in 2014 to assess the safety and 

effectiveness of low dose genistein 

(5mg/kg/day)  for one year and published by 

Delgadillo et al. Although no serious adverse 

effects were observed, the study showed that 

there was no improvement in the disability 

scale, as determined using the Questionaire on 

Development and Behavior. Most patients 

had an increased disability score, or it 

remained the same despite a reduction in 

file:///C:/Users/user/Downloads/REVIEW%20-%20Therapeutic%20approaches%20for%20MPS%20III_YP+MI_FINAL_01.23.20.docx%23_ENREF_22
file:///C:/Users/user/Downloads/REVIEW%20-%20Therapeutic%20approaches%20for%20MPS%20III_YP+MI_FINAL_01.23.20.docx%23_ENREF_23
file:///C:/Users/user/Downloads/REVIEW%20-%20Therapeutic%20approaches%20for%20MPS%20III_YP+MI_FINAL_01.23.20.docx%23_ENREF_24
file:///C:/Users/user/Downloads/REVIEW%20-%20Therapeutic%20approaches%20for%20MPS%20III_YP+MI_FINAL_01.23.20.docx%23_ENREF_25
file:///C:/Users/user/Downloads/REVIEW%20-%20Therapeutic%20approaches%20for%20MPS%20III_YP+MI_FINAL_01.23.20.docx%23_ENREF_26
file:///C:/Users/user/Downloads/REVIEW%20-%20Therapeutic%20approaches%20for%20MPS%20III_YP+MI_FINAL_01.23.20.docx%23_ENREF_27
file:///C:/Users/user/Downloads/REVIEW%20-%20Therapeutic%20approaches%20for%20MPS%20III_YP+MI_FINAL_01.23.20.docx%23_ENREF_28
file:///C:/Users/user/Downloads/REVIEW%20-%20Therapeutic%20approaches%20for%20MPS%20III_YP+MI_FINAL_01.23.20.docx%23_ENREF_29
file:///C:/Users/user/Downloads/REVIEW%20-%20Therapeutic%20approaches%20for%20MPS%20III_YP+MI_FINAL_01.23.20.docx%23_ENREF_30


Pearse Y et al. Medical Research Archives vol 8 issue 2. February 2020     Page 5 of 25 

Copyright 2020 KEI Journals. All Rights Reserved                http://journals.ke-i.org/index.php/mra 

urinary GAG levels 
31

. As described above, 

mice treated with a high dose of genistein 

showed a significant reduction of HS 

accumulation and neuroinflammation in the 

brain and displayed an improvement in 

behaviour 
30

. Following these promising 

results, a phase III clinical trial was launched 

in 2013 using a higher-dose of genistein (160 

mg/kg/day) or a placebo for a year, followed 

by a year of open-label genistein was 

completed recently (July 2018). In this 

double-blinded, randomized placebo-

controlled study, high-dose (150 mg/kg/day) 

genistein was orally administered to nineteen 

MPS III patients (age 1.25 – 18.5, mean 

average age of 8) for a year (EudraCT number 

2013–001479-18) 
32

. Safety labs, GAG levels, 

clinical status and history of adverse events 

were obtained every 3 months, a physical 

examination was performed every 12 months, 

a  9 point disability scale (FPSS) was 

recorded after each visit,  and an annual 

neurocognitive test was carried out where 

possible 
31,32

. After 12 months of treatment, 

no serious adverse events linked to high-dose 

genistein were identified and CSF HS was 

moderately reduced. However, the reduction 

in CSF was not substantial and scores on 

neuropsychological tests got worse or 

remained the same indicating no attenuation 

of cognitive decline 
31

. 

3.1.3. Other small molecules 

Another way in which small molecules can be 

utilized to treat MPS III is by adopting 

strategies, which target the splicing process. 

20% of MPS IIIC linked mutations reside 

within splice sites and affect mRNA 

processing, making this form of MPS an 

eligible candidate for this particular therapy 

33
. In order to rescue the normal splicing 

process, Matos et al. used modified U1 

snRNAs, which recognise mutations in donor 

splice sites in MPS IIIC patients’ fibroblasts 
33

. Another approach, which targets mutations 

in an acceptor site and results in misfolded 

acetyl-CoA:-glucosaminide 

acetyltransferase, tested a competitive 

inhibitor of the HGSNAT protein, 

glucosamine as a pharmacological chaperone 

to correct misfolded protein and restore 

normal trafficking to the lysosome 
33

. While 

partial correction of acetyl-CoA:-

glucosaminide acetyltransferase activity was 

achieved, the obstacle to fulfilling the full 

therapeutic potential of such a strategy is the 

efficient delivery of RNA molecules to the 

brain. 

3.2. Enzyme Replacement Therapy 

3.2.1. In Vitro studies 

The blood-brain barrier has in the past been a 

major obstacle to effective intravenous 

treatment using ERT. This has been further 

confounded in MPS IIIB by inadequate 

mannose-6-phosphorylation (M6P) of human 

-N-acetylglucosaminidase (rhNAGLU) 

recombinant enzyme, resulting in poor 

uptake. To address this problem, Kan et al. 

tested the use of a modified human 

recombinant NAGLU enzyme by fusing the 

human NAGLU fragment (rhNAGLU) to a 

fragment of insulin-like growth factor 2 (IGF-

II) that would allow trafficking into the 

lysosome via IGFII binding site on the 

Mannose 6-phosphate/IGFII receptor.  They 

successfully demonstrated that the fusion 

protein was able to gain entry to MPS IIIB 

cells via IGF-II binding to the mannose 6-
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phosphate/IGFII receptor. The enzyme 

remained functional and reduced the amount 

of Heparan Sulphate (HS) in MPS IIIB 

fibroblasts to the same level as found in 

control cells 
34,35

.  

This insulin-like growth factor II (IGFII)-

tagged NAGLU molecule has been modified 

to create Tralesinidase alpha (rhNAGLU-

IGFII; BMN 250), which will be further 

discussed in section 3.2.3. Yogalingam et al. 

(2019) used this fusion protein to distinguish 

two cellular uptake mechanisms by which 

BMN 250 is targeted to lysosomes in brain 

cells 
36

. Neurons, microglia and astrocytes are 

all critical cell types in MPS IIIB and 

therefore a better understanding of the cellular 

uptake mechanism(s) by which enzyme is 

delivered is important for developing efficient 

targeting mechanisms that will optimize ERT 

approaches. By systematically assessing the 

competitive cellular uptake of BMN 250 in 

human MPS IIIB patient fibroblasts and 

normal rodent-derived neurons, astrocytes and 

microglia, Yogalingam and colleagues found 

that BMN 250 is targeted to lysosomes in 

neurons, astrocytes and fibroblasts via MPR-

mediated cellular uptake, whereas receptor-

independent cellular uptake in microglia 

contributes to substantial lysosomal delivery 

of both BMN 250 and unfused rhNAGLU 
36

. 

3.2.2. In Vivo studies 

Intravenous delivery of ERT is already an 

available treatment for forms of MPS with 

less neurological involvement (MPS I 
37

, II 
38

, 

IVA 
39

, VI 
40

 and VII 
41

. Adapting this 

classically systemic approach to gain entry to 

the CNS, has been the focus of recent studies 

for MPS IIIA and MPS IIIB. One way to 

achieve this is by hijacking proteins, which 

have no trouble crossing the blood-brain 

barrier. One approach is to use a molecular 

Trojan horse, as has been achieved by fusing 

recombinant protein N-Sulfoglucosamine 

sulfohydrolase (SGSH) with a monoclonal 

antibody against the human insulin receptor 

(HIR Mab) (HIR Mab-SGSH) that can be 

taken up by MPS IIIA fibroblasts and 

trafficked to the lysosome resulting in 

reduced GAG levels (72 – 83%) 
42

. Following 

intravenous administration of this fusion 

protein in Rhesus monkey, HIR Mab-SGSH 

0.81% of the injected dose was detected in the 

brain 
43

. Similarly, Boado et al. have also 

created a fusion protein for MPS IIIB by 

fusing rhNAGLU to HIRMAb (HIRMAb-LL-

NAGLU) 
44

. As shown for HIR Mab-SGSH 

in MPS IIIA, MPS IIIB fibroblasts displayed 

efficient cellular uptake of this fusion protein, 

trafficking to the lysosome, and a 74% 

reduction in the incorporation of sulfate into 

intracellular GAGs 
44

. When  HIRMAb-LL-

NAGLU was intravenously injected into a 

Rhesus monkey, 1% was detected in the brain 
45

.  

A new promising in vivo study has recently 

been published, exploring the use of an IgG 

against mouse Transferrin Trojan Horse-

Sulfamidase Fusion Protein in MPS IIIA 

mice. Large recombinant SGSH cannot cross 

the BBB, limiting intravenous administration 

a therapeutic option. To overcome this issue, 

Boado et al. have created a fusion protein 

consisting of an SGSH and IgG, where the 

IgG domain is a chimeric monoclonal 

antibody (MAb) against mouse transferrin 

receptor (TfR) 
46

. By acting as a Trojan horse, 

IgG can deliver SHSG to the CNS. The 

resulting fusion protein (cTfRMAb-SGSH) 
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successfully bound the mouse TfR with high 

affinity and maintained the same SGSH 

enzyme activity to the human recombinant 

SGSH. After 6 weeks of treatment, 3 times a 

week via intraperitoneal injection starting at 2 

weeks of age, significant biochemical and 

behavioural improvements were observed. 

SGSH levels were elevated (36-fold 

compared to 30-fold in mice treated with just 

recombinant SGSH) and resulted in an 

85% reduction in brain and liver HS 

(compared to 70% in mice treated with 

recombinant SGSH alone). Encouragingly, 

the reduction in brain HS was associated with 

a 28% increase in latency on the rotarod test 

of motor activity suggesting that an IgG-

SGSH fusion protein engineered to penetrate 

the BBB via receptor-mediated transport, may 

be effective in treating MPS IIIA. 

Another strategy that has been adopted for 

MPS IIIA and MPS IIIB involves direct 

administration of recombinant enzyme to the 

CNS. This was done in MPS IIIB by using 

recombinant human N-acetyl-α-

glucosaminidase (rhNAGLU) fused with a 

fragment of the insulin-like growth factor II 

(IGF-II) as described in section 3.2.1 and 

infusing it into the brain via 

intracerebroventricular injection 
34,35

. 

Following intracerebroventricular 

administration to MPS IIIB mice, rhNAGLU-

IGFII was taken up primarily by neurons and 

HS levels in the CSF were significantly 

reduced.  

Similarly, when recombinant heparin N-

sulfatase was infused to CSF of MPS IIIA 

dogs via the cisterna magna, HS levels were 

decreased in the CSF and cerebral cortex, but 

biomarkers linked to disease were only 

normalized following high dose of enzyme, 

which as discussed previously, may have 

clinical implications in terms of such a 

treatment mounting an immune response 
47

. 

Beard et al, have shown that the route of 

administration influences the success of ERT, 

as shown by infusing heparin N-sulfatase via  

Direct administration of recombinant enzyme 

to the brain can also be achieved via 

intrathecal lumbar, cisternal and ventricular 

administration. Lumbar infusion resulted in 

poor enzyme delivery and no significant 

reduction in GAG level, while infusion via 

the ventricular route proved more efficacious 

in decreasing GAG levels and dampening 

microglial activation 
48

. Building on the 

relative success of this approach, the same 

group implanted an intraventricular cannula 

connected to a subcutaneous mini osmotic 

pump, allowing for a continuous low-dose 

infusion of recombinant human heparin N-

sulfatase into the brain via the CSF. However, 

the therapeutic effects of this approach were 

not initially overwhelming, with only partial 

reduction of HS and GAG, and only moderate 

reductions in microglial activation but not 

astrogliosis 
49

. By subsequently tweaking this 

method to improve implantation of the pumps 

in MPS IIIA, HS levels were normalized and 

GAG storage decreased significantly 
50

. 

Combinatorial approaches offer another way 

to improve the therapeutic potential of 

individual strategies. By combining the 

creation of fusion proteins with direct 

administration of enzyme directly into the 

brain, it is possible to further improve the 

impact on pathological biomarkers of either 

one therapy alone. This was demonstrated 

recently by Aoyagi-Scharber et al. in 

MPSIIIB mice. Human α-N-
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acetylglucosaminidase fused with insulin-like 

growth factor II (described in section 3.3.1) 

and administered intracerebroventricularly 

resulted in widespread distribution of the 

fusion protein within the CNS and was 

accompanied by normalization of HS levels 

and significant reduction of secondary storage 
51

. Although this combinatorial approach has 

yielded promising results, it is important to 

note the translational limitations surrounding 

frequent and direct administration of fusion 

proteins to patients. 

3.2.3 Phase I/II Clinical Trials 

Given the success of ERT in cellular and 

animal models, Shire Human Genetic 

Therapies (Shire HGT) developed an enzyme 

replacement therapy (ERT) recombinant 

human heparan-N-sulfatase (rhHNS) for 

patients with MPS IIIA. The open-label, 

phase I/II dose-escalation clinical study was 

carried out in twelve MPS IIIA patients to 

assess the safety of monthly intrathecal 

delivery of recombinant human heparin-N-

sulfatase (rhHNS) using a surgically 

implanted intrathecal drug delivery device 

(IDDD) for the duration of 6 months 

(NCT01155778).  In terms of safety, mild-to-

moderate adverse effects were reported in all 

twelve patients, but none appeared to be 

related to the recombinant enzyme directly. 

However, despite a reduction in HS levels in 

the CSF, four of twelve patients showed a 

decline in the developmental quotient, six 

were stable and no dose group showed a 

clearly different response pattern. Overall, 

rhHNS administration via IDDD was 

generally safe and well-tolerated but required 

further investigation to determine efficacy 
52

. 

Recently, an update on this study was 

published by Wijburg et al. This phase IIb 

trial included twenty-one patients on a 

regimen of intrathecal rhHNS every two 

weeks, every 4 weeks or no treatment. 

Encouragingly, a clinical response to 

intrathecal rhHNS was observed in three of 

the treated patients. HS and GAG levels in the 

CSF were reduced in all treated patients. 

However, although treatment-emergent 

negative effects to intrathecal rhHNS were 

largely mild, no clear differences were 

detected between treated patients (age 17.8 – 

47.8 months) and untreated controls (age 12.6 

– 45.0 months) in terms of efficacy. Again, 

early intrathecal delivery of rhHNS is safe 

and effective at reducing HS and GAG levels 

in treated patients but the treatment has no 

neurocognitive effects (NCT02060526) 
53

. 

The final results from a phase I/II, open-label, 

clinical study of intravenous recombinant 

human N-acetyl-α-d-glucosaminidase in 

children with mucopolysaccharidosis IIIB has 

recently been published. The study, sponsored 

by Alexicon Pharmaceuticals, included 11 

participants age between 1 – 10 years of age 

and set out to evaluate the safety, tolerability, 

pharmacokinetics, and efficacy of intravenous 

administration of a SBC-103, a recombinant 

human NAGLU enzyme capable of crossing 

the blood-brain barrier 
54

 (NCT02324049). In 

this three-part study, participants were 

sequentially divided into three dose-escalating 

groups and received intravenous injections 

every two weeks for 24 weeks, after which 

patients received no treatment for a month 

(Part I). Patients then received a higher dose 

every two weeks (Part II) starting at 28 

weeks, and a final dose escalation of SBC-

103 every two weeks for two years in total 
55

.  

Despite the initial results in NAGLU-deficient 
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mice 
54

, SBC-103 (rhNAGLU) was well-

tolerated by MPS IIIB patients, and resulted 

in the reduction of HS in the CSF but had no 

effect on preventing brain atrophy or 

preventing neurocognitive decline for at any 

dose. Interestingly, SBC-103 was not detected 

in the CSF suggesting that it may not have 

reached the CNS
55

. 

3.3. Gene therapy 

3.3.1. Adeno-associated virus (AAV) 

To overcome the need for periodic 

administration of ERT or therapies based on 

small molecules like SRT, one-shot gene 

therapies are being developed for MPS III in 

order to provide constant production of the 

deficient enzyme. One of the main advantages 

of gene therapy is that only a proportion of 

cells in an organ, in this case, the brain, need 

to be corrected, as these corrected cells can 

produce a sufficient amount of the active 

enzyme to cross-correct neighbouring cells 
56-

59
. Arguably, gene therapy approaches 

currently stand out as the most promising 

therapeutic approach for treating MPS III, 

with the publication of various studies 

demonstrating the potential use of gene 

therapy to treat not just MPS III, but 

numerous other monogenic neurological 

diseases 
60

. However, despite this promise, 

there are still hurdles to therapeutic efficacy 

with this type of therapy, relating mainly to 

vector type and route of administration. For 

example, are there differences in transduction 

efficiency between adeno-associated virus 

(AAV) and lentivirus? Can intravenously 

administered viruses infect neurons in the 

brain and is the direct administration of vector 

to the brain is safe?  

Many AAV-based strategies involve the 

delivery of genes to the CNS. To achieve 

widespread distribution, initial experiments 

adopting AAV used multiple direct injections 

to the brain parenchyma. As the cell and 

tissue tropism of different AAV serotypes 

(AAV1 – AAV13) became better understood 
61

, subsequent experiments began to take 

advantage of the ability of certain AAV 

serotypes to gain access to the CNS. For 

example, AAV9 can cross the BBB after 

intravenous administration, resulting in 

widespread transduction of the CNS and the 

peripheral organs through a non-invasive 

procedure. Alternatively, various other AAV 

vectors have been administered directly to the 

CSF, hijacking the ventricular system to 

achieve global CNS gene transfer, as well as 

delivery to the peripheral nervous system and 

liver. In this section, we will focus on various 

studies, which together demonstrate the 

efficacy of different vectors and routes of 

administration for the treatment of MPS III.  

Most gene therapy studies on MPS III use the 

vector adeno-associated virus (AAV), which 

achieve high transduction in vivo and have 

proven safe in clinical studies 
62,63

. 

Furthermore, preclinical and clinical data 

provide evidence for long-term AAV-

mediated gene expression in the brain, 

without producing any significant adverse 

effect 
56,58,64-69

. However, in terms of efficacy, 

the selection of AAV virus serotype is a 

crucial consideration.  Gilkes et al. have used 

AAV5, AAV8, AAV9 and AAVrh10 to 

deliver NAGLU to MPS IIIB mice via direct 

administration of the virus to the CNS. 

Although they found that AAV8 showed the 

greatest efficacy in terms of bio-distribution 

and transduction of NAGLU 
70

, other studies 
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using AA9-mediated NAGLU gene transfer 

via the CSF or systemic delivery, have also 

proved efficacious.  A study by Ribera et al. 

administered AAV9 vectors carrying NAGLU 

to the CSF of MPS IIIB mice at 2 months of 

age when the disease has already become 

established and observed a restoration of gene 

expression and enzymatic activity in the CNS, 

which resulted in normalization of GAGs and 

lysosomal physiology and reduced 

neuroinflammation. The systemic hallmarks 

of the disease were also corrected, 

behavioural deficits improved and lifespan 

was extended 
58

. More recently, the 

metabolomics profiles of MPS IIIB mice was 

specifically measured in MPS IIIB mice to 

assess the impact of systemic gene delivery 
71

. 

Following intravenous administration of 

rAAV9-hNAGLU, near-complete correction 

of systemic metabolomic impairments was 

observed 
71

.  Ahead of a clinical gene therapy 

treatment, an AAV9-mediated vector carrying 

human NAGLU (rAAV9-CMV-hNAGLU) 

was tested on cynomolgus monkeys via 

intravenous injection 
72

. Over the course of 6 

months, no adverse effects were apparent and 

the treatment resulted in long-lasting global 

CNS and somatic transduction, with relatively 

high NAGLU activity compared to wildtype 

levels, both in the brain and body 
72

. This 

study demonstrated an effective and safe 

profile for systemic rAAV9-hNAGLU vector 

delivery in nonhuman primates, providing 

evidence for its clinical potential in humans. 

Safety of intravenous administration of 

AAV9-mediated NAGLU gene transfer via 

the CMV promotor (rAAV9-CMV-hNAGLU) 

has also been tested. Meadows et al. 

performed an IND-enabling good laboratory 

practice (GLP) toxicology study in healthy 

and MPS IIIB mice. rNAGLU expression was 

rapid and persistent in the majority of CNS 

without any adverse clinical signs of 

toxicology during the 6-month study, but a 

dosing range for safe and effective rAAV9-

CMV-hNAGLU systemic gene delivery in 

MPS IIIB was also identified 
73

. 

Different AAV serotypes have also been 

tested in other forms of MPS III. AAVrh10 

has been used to deliver SGSH in MPS IIIA 

mice via intraparenchymal administration 
74

.  

AAVrh10-derived SGSH enzyme improved 

the breakdown of heparan sulfate and reduced 

microglial activation. With time, GM3 

ganglioside accumulation was ameliorated 

and the formation of ubiquitin-positive lesions 

near the injection site or in regions connected 

to the injection site was prevented. However, 

these positive changes were restricted to the 

site of injection, and no such changes were 

observed in regions of the brain distant from 

or lacking connections with, the 

administration site. Therefore, to obtain 

adequate therapeutic efficacy, it may be 

necessary to administer the gene vector to 

multiple intraparenchymal regions in order to 

ensure widespread distribution of enzyme and 

correction of disease pathology, increasing 

the likelihood of infection 
74

. Recently, AAV9 

was used to test gene therapy in the MPS IIID 

mouse model for the first time 
59

. Treatment 

of the GNS-deficient animals with GNS-

expressing AAV9-derived vector delivered to 

the cerebrospinal fluid normalized GAG 

storage, improved lysosomal functionality in 

the CNS and somatic tissues, reduced 

neuroinflammation, restored normal 

behaviour and extended the lifespan of treated 

mice relative to untreated MPS IIID mice 
59

.  
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3.3.2. Autoantibodies to Adeno-associated 

virus 

One commonly cited drawback of the use of 

AAV-mediated gene therapy is that 

individuals with pre-existing host humoral 

and cellular immunity to AAV capsids may 

be subject to limited target tissue transduction 

and long-term expression of the genes they 

carry, making them less likely to benefit from 

AAV-mediated gene transfer 
75

.  Even low 

levels of neutralizing antibodies against AAV 

capsids can result in impaired transduction of 

the incorporated gene following intravenous 

delivery 
76,77

. However, Murrey et al. showed 

that low levels of preexisting anti-AAV9 

antibodies did not affect vector transduction 

of rAAV9-CMV-hNAGLU in cynomolgus 

monkeys. Even at high levels, preexisting 

anti-AAV9 Abs led to reduced transduction in 

the liver and other somatic tissues but did not 

diminish transgene expression in the brain 
72

. 

Similarly, Ribera et al. showed in their study 

that enzymatic activity in the CSF of dogs 

after administration of canine NAGLU-

coding vectors to animals that were either 

naïve or had pre-existing immunity against 

AAV9, displayed similar levels of enzyme 

activity, suggesting that CNS efficacy would 

not be impaired in patients that are 

seropositive for AAV9 
58

. These studies 

demonstrate that at least for AAV9, an 

effective and safe profile for systemic vector 

delivery in nonhuman primates can be 

achieved. 

3.3.3. Lentiviral/Adeno-associated virus 

combinatorial approach 

Like AAV-mediated gene therapy, lentivirus 

has proved effective in treating MPS III. 

Lentiviral vectors carrying genes coding for 

murine heparin N-sulfatase and sulfatase 

modifying factor-1 have been tested in MPS 

IIIA. After administration via the cerebral 

lateral ventricles, enzyme activity was found 

to be between 0.5- and 4-fold greater than in 

normal mouse brain and ganglioside and 

lysosomal β‐hexosaminidase levels, both of 

which are characteristically elevated in MPS 

IIIA, were significantly reduced, or were 

normalised 
78

. Furthermore, combining 

different vector types via alternative routes 

can prove more effective at achieving disease 

correction than either one alone. In one study, 

AAV2/5-mediated and lentivirus-mediated 

NAGLU expression was more efficient than 

either one therapy alone in treating MPS IIIB 
79

. MPS IIIB neonatal mice were treated with 

intracranial AAV2/5-NAGLU, intravenous 

lentiviral-NAGLU or both. All treatment 

groups resulted in significant biochemical and 

histological improvements compared with 

untreated MPS IIIB animals, but the animals 

treated with both AAV2/5 and lentivirus lived 

significantly longer (612 days) than animals 

treated with just AAV2/5-mediated gene 

therapy (463) or lentiviral gene therapy (358) 

suggesting that although MPS III disease is 

primarily neurological, targeting both the 

systemic and central nervous system early in 

life appears to be the most efficacious 

approach for treating MPS IIIB 
79

.  

3.3.4. Phase I/II Clinical trials 

A number of gene therapy clinical trials have 

been sponsored to test the safety and efficacy 

of gene therapy for the treatment of MPS III. 

In this review, we will focus on studies which 

have available data but a complete overview 

is described in detail by Marco et al. 
60

. These 
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studies include phase I/II trials for MPS IIIA, 

MPS IIIB and MPS IIIC. To date, only one 

clinical trial has been completed, a phase I/II 

trial testing intracerebral administration of 

AAV10 carrying the human SGSH and 

SUMF1 cDNAs (SAF-301; rh.10-SGSH-

IRES-SUMF1) for the treatment of MPS IIIA 

(NCT01474343 and NCT02053064). In this 

study, Lysogene recruited four children (three 

aged 5.5 – 6 years old, and one aged 2 years 8 

months) to test the tolerance and safety of 

SAF-301, and assess disease biomarkers in 

blood, urine and CSF and brain function 

during one year of follow up. The results were 

published by Tardieu et al. 
80

 and reported 

that the therapy was safe and well-tolerated 

and improved brain atrophy and behaviour. 

All children showed a decline in cognitive 

ability and three patients presented with brain 

atrophy. After 8 weeks of treatment, MRI 

showed that brain atrophy has stabilized in 

two patients but increased in the other two, 

and there was a moderate improvement in 

behaviour, attention and sleep in three of the 

patients 
80

. An open-label long term study was 

initiated five years after treatment to follow 

up on patients with MPS IIIA who had 

previously been treated with SAF-301 which 

ended in 2017, but no results were available. 

The aim was to collect additional safety and 

tolerability data on the treatment, and further 

collect data to assess the effects of SAF-301 

on neurological and psychological status and 

biomarkers (NCT02053064).  

A number of clinical studies are still 

underway, Esteve has developed EGT-101, a 

compound consisting of AAV9 containing 

hSGSH (AAV9-hSGSH). In this phase I/II 

clinical trial, EGT-101 has been administered 

via intra-CSF administration to MPS IIIA 

patients (2015-000359-26). An uncontrolled 

phase I/II clinical trial sponsored by UniQure 

Biopharma is also currently investigating the 

intraparenchymal administration of a 

recombinant AAV2/5 vector encoding human 

NAGLU AAV5-hNAGLU in four MPS IIIB 

patients (NCT03300453), the results of which 

have recently been published 
81

. 30 months 

after injection, the treatment appeared to be 

safe and well-tolerated with sustained 

NAGLU production (15-20% of that in 

unaffected children) in the CSF. Compared 

with the natural history of MPS III 

syndromes, neurocognitive progression was 

improved in all patients, with the youngest 

patient having function comparable to that in 

healthy children.  

Abeona Therapeutics is currently recruiting 

for two phase I/II clinical trials for both MPS 

IIIA and MPS IIIB. To treat MPS IIIA, a self-

complementary AAV9 vector carrying the 

human SGSH gene under the control of a U1a 

promoter (scAAV9.U1a.hSGSH) called 

ABO-102 was delivered intravenously to 

participants two years of age or older in an 

open-label, dose-escalation phase I/II clinical 

trial (NCT02716246). The estimated number 

of participants for this study is 22 and the 

primary aim is to assess safety and 

neurocognitive function (developmental 

score) after 24 months and secondarily, to 

assess SGSH activity, liver and spleen 

volume, cognitive ability and urinary GAG 

levels. So far, no adverse events relating to 

scAAV9.U1a.hSGSH have been reported. 

Although efficacy data is yet to be published, 

some preliminary data is available, showing a 

dose-dependent and sustained reduction in 

CSF HS all three cohorts after 30 days. 

Following dosing at 14-26 months of age, 
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participants showed normal development 12 – 

18 months post-treatment. To treat MPS IIIB, 

Abeona Therapeutics have also sponsored a 

new phase I/II trial using one-time 

intravenous administration of AAV9 carrying 

the human NAGLU gene under the control of 

a CMV enhancer/promoter 

(rAAV9.CMV.hNAGLU) called ABO-101 

(NCT03315182). This two-year open-

labelled, dose-escalation clinical trial will 

include an estimated 9 MPS IIIB patients 

aged between 6 – 2 years or older with a 

minimum Developmental Quotient of 60 or 

above. Two doses (2 x 10
13

 vg/kg and 5 x 

10
13

 vg/kg) are being tested across two 

cohorts to primarily assess safety and 

neurodevelopment, and other secondary 

endpoints including neurocognitive and 

behavior evaluations, quality of life, enzyme 

activity in cerebrospinal fluid (CSF) and 

plasma, biomarkers in CSF, plasma and urine, 

and brain and liver volume. As described 

above, the preliminary data from the MPS 

IIIA study are encouraging, but no data is yet 

available for MPS IIIB 
60

 

(www.clinicaltrial.org). While gene therapy 

has, and continues to show tremendous 

therapeutic promise for the treatment of MPS 

III disease in animal models, leading to a 

number of clinical trials, these trials have 

revealed that the ideal method of delivery of 

viral vectors is yet to be elucidated.  

3.4. Cellular Therapies 

3.4.1. Hematopoietic Stem Cells 

Hematopoietic Stem Cells treatment (HSCTs) 

can be obtained from the bone marrow or 

peripheral blood of a healthy donor and 

transplanted into a patient. To avoid the 

rejection of donor cells by the patient’s 

immune system, they must first be 

immunosuppressed according to a 

conditioning regimen 
82

. Healthy, matched 

enzyme-secreting donor cells can then be 

transplanted into the patient, providing a 

permanent and continuous supply of protein. 

For a more detailed description of the history 

and application of HSCs in MPS, Taylor et al. 

have written a thorough review 
83

. HSCTs is 

already an effective therapy for a number of 

inborn errors of metabolism, a good example 

of which is in the treatment of Hurler’s 

syndrome if administered early. However, 

what has been learnt from the clinical 

application of HSCTs for the treatment of 

Hurler Syndrome, has not translated well to 

the treatment of MPS III 
84

. Unfortunately, 

HSCT have not proved successful in 

preventing the progression of neurological 

disease in MPS III patients.   

Furthermore, even when HSCT is 

administered to MPS IIIB patients before the 

onset of neurological symptoms, studies have 

shown that neurocognitive decline still ensues 
85,86

. A clinical study was performed in 62 

MPS patients, only 2 of which had been 

diagnosed with MPS III, and found that 

although the treatment was safe and effective 

overall in MPS, it is difficult to conclude the 

efficacy to MPS III specifically 
87

. 

3.4.2. Umbilical Cord Mononuclear Cells 

A large study on unrelated donor umbilical 

cord blood transplantation for inherited 

metabolic disorders in 159 patients, showed 

more promise than previously described in 

section 3.4.1. Of the 19 MPS III patients 

enrolled in the study, 12 survived and 9 
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showed disease stabilization with lesser 

neurological symptoms. Overall, children 

who received HSCT appeared to have fewer 

behavioral problems and better sleeping 

patterns as compared with children who did 

not receive transplants. One MPS IIIB 

patients received HSCT just before their 

second birthday and appeared to respond best 

to the treatment. At age 15, the patient had 

normal blood levels of O sulphated HS and 

N-sulfated HS and disease symptoms 

appeared to be better than MPS IIIB patients 

who had not received treatment 
88

. However, 

in another study, umbilical cord blood-

derived hematopoietic stem cells (UCBT) 

were transplanted into two MPS III patients 

(MPS IIIA and MPS IIIB) before the onset of 

neurological symptoms and monitored for 5-

years. Despite uncomplicated transplantation, 

with full engraftment of donor cells, both 

patients showed progressive neurological 

deterioration, regression of cognitive skills, 

and behavioural disturbances, which was 

comparable to untreated patients with the 

same mutations 
89

. In addition, the HS 

concentration in CSF in the MPS IIIB patient 

was just as high as in untreated MPS IIIB 

patients. Given the outcome of this clinical 

study, it can be concluded that like BMT, 

early UCBT does not prevent neurological 

deterioration in MPS III. 

Although attempts at using HSC and UCBT 

transplantations in MPS III have yielded 

disappointing results in recent years, leading 

to the assumption that these approaches have 

little potential for being effective treatments 
3,12,13

, animal studies have continued to raise 

hope. In the mouse models of MPS IIIB, 

monthly intravenous administration of human 

umbilical cord mononuclear cells over a 

period of six months proved effective in 

reducing ganglioside accumulation, 

microglial activation, corrected anxiety-like 

behaviour and restored hippocampal 

cytoarchitechture 
90

. 

3.4.4.  Ex-vivo gene modification 

In vivo gene therapy strategies involve the 

administration of viral vector particles 

directly to patients to provide affected cells 

with normal complementary DNA, ex vivo 

gene therapy approaches are based on the ex 

vivo transduction of patient cells that are 

subsequently infused back, potentially 

circumventing an immune response for 

foreign cells 
91

. For a more extensive 

comparison between in vivo and ex vivo 

approaches to date, Fraldi et al. have recently 

published a review. In brief, gene therapy 

approaches have been developed for MPS 

IIIA and MPS IIIB using autologous 

transplantation of HSCs genetically modified 

using lentiviral vectors to express SGSH or 

NAGLU 
92-95

. After transplantation, gene-

corrected cells proliferate and travel to the 

brain where they cross the BBB to become 

resident cells of the CNS. Here, they secrete 

the deficient protein, and subsequently cross-

correct other endogenous cells. These studies 

have shown normalization of HS, secondary 

storage and neuroinflammation as well as 

improvements in behavioural read-outs. 

One way to overcome the blood-brain barrier 

is to target therapy directly to the CNS via 

parenchymal injection or via the cerebrospinal 

fluid. In recent years, Clarke et al. have 

shown that NSCs derived from reprogrammed 

MPS IIIB mouse embryonic fibroblasts to 

create iPSCs and corrected using lentiviral-
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mediated human NAGLU overexpression, 

alleviated neuropathology 
96

. It is important to 

underline the fact that a modified NAGLU 

enzyme was not necessary, as described in 

section 3.2.1 above. Furthermore, very little 

enzyme was needed to obtain correction. 

These findings suggest that cell therapies 

represent an important line of investigation, 

despite current dogma. The use of neural 

progenitor cells to provide the missing 

enzyme also has regenerative potential since 

they can differentiate in vivo into neurons and 

astrocytes 
97-101

. This is currently an 

underdeveloped field, given the fact that 

attempts to promote regeneration in the spinal 

cord injuries have been challenging.  

Nevertheless, several reports from studies on 

neurodegenerative animal models show that 

neural progenitor cells can differentiate into 

functional neurons, which are capable of 

restoring neuronal networks to a degree that 

impacts neurocognition behaviour 
97,99,101

. For 

Parkinson disease, the use of neural 

progenitor cells is further along in the 

developmental process and several clinical 

trials are underway addressing safety and 

efficacy to treat Parkinson disease 

(NCT03128450, NCT03128450,  

NCT03309514, NCT03815071, 

NCT02452723, NCT02452723). Finally it 

important to underline that despite the 

obstacles posed by stem cell therapies 

compared to others, this line of research 

should be further pursued as it offers a unique 

opportunity to address neuronal loss, which 

other therapies do not. 

CONCLUSION 

The genetic cause of MPS III and the 

biochemistry of their gene products are well 

known and methods for genetic and 

biochemical diagnosis have been established. 

Therapeutic approaches have been developed, 

which target key aspects of the disease from 

its root cause to its downstream effects. With 

the same knowledge, HSCTs and ERT have 

been developed for the treatment of other 

forms of MPS and now both have been 

approved for MPS I, II, IVA, VI and VII. 

However, for MPS III, the road to therapy has 

been and continues to be a challenge given its 

neurological nature. Fantastic progress has 

been made in adapting therapies for other 

forms of MPS, offering up important lessons. 

Cellular and animal models have paved the 

way for several clinical trials. Among them 

the most advanced in development are ERT, 

involving either direct administration to the 

brain or the use of BBB-compliant fusion 

protein, and gene therapy using vectors 

administered either direct to the brain or via 

the bloodstream like ERT. Both approaches 

have presented new challenges at clinical 

trials, but new and modified approaches are 

currently under investigation.  Although these 

approaches stand out as the most advanced, it 

is important to recognise their limitations now 

and in the future, and remain open to 

overcoming the barriers to other forms of 

therapy such as stem cell therapies. While 

stem cell therapies have proved disappointing 

to date, research into stem cell treatment for 

other neurodegenerative disease continue to 

show promise and in the process reveal areas 

for improvement that may be applicable to 

MPS III. Another important consideration, 

when asking how close we are to a therapy for 

MPS III is whether one therapy alone will 

ever be enough. Even if ERT, substrate 

reduction therapy, gene therapy or stem cell 
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therapies are optimised, it may be necessary 

to combine different approaches in order to 

further improve pathological outcome 

measures and behavioural phenotypes, but 

most importantly, extend the life span of 

patients. 

A frustration in translational research is why 

promising results in non-human models often 

lead to disappointing results in clinical trials. 

It is worth pointing out that MPS III is a rare 

disorder making it difficult to normalise 

studies for treatment groups while 

maintaining a high enough number of 

participants to generate meaningful data. It is 

also important to point out that there is a 

disproportionate number of studies conducted 

on MPS IIIA and MPS IIIB. This means that 

some therapies, such as ERT and gene 

therapy, may become available for these 

subtypes more quickly than others. 

Nonetheless, despite its low prevalence, MPS 

III is a severely debilitating disease affecting 

not only the patient, parents and caregivers 

but society, justifying further attention and 

research. While researchers continue to 

develop therapies for MPS III, 

multidisciplinary teams who consider the age, 

clinical stage, severity and socioeconomic 

status of patients are essential for the proper 

management of those suffering with MPSIII. 

Non-profit organization have a pivotal role in 

promoting initial studies for therapy 

development, but this effort should be further 

supported by governments and 

pharmaceutical companies. 
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