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Abstract 

A number of studies have shown that carnitine supplementation – alone or in conjunction with 

supplemental lipoic acid - promotes mitochondrial biogenesis (MB) in skeletal, muscle, and brain of 

aging rodents; no such effect is seen in younger animals.  These findings parallel clinical studies in which 

supplemental carnitine improves physical and mental energy in elderly humans, while decreasing body 

fat and increasing lean mass – effects that have not been achieved with carnitine in younger people.  The 

age dependence of these phenomena appears to reflect the fact that tissue carnitine levels, especially 

those in muscle, decline during aging; carnitine supplementation restores higher, more youthful tissues 

carnitine levels in aging animals, but has relatively little impact in this regard on younger ones.  The 

effect of supplemental carnitine on MB in aging animals appears to be mediated, in whole or in part, by 

increased expression of PPARγ-coactivator-1α (PGC-1α), a key driver of MB.  There is recent evidence 

that, in low millimolar intracellular concentrations such as those seen in skeletal muscle, carnitine 

functions as an inhibitor of type 1 histone deacetylases (HDACs).  Moreover, it has been reported that 

drug inhibitors of these deacetylases boost mRNA and protein expression of PGC-1α, presumably by 

promoting transcription of the PGC-1a gene; these drugs also amplify MB.  It is therefore proposed that 

intracellular carnitine provides a moderate tonic inhibition of type 1 HDACs that supports PGC1α 

transcription and that diminishes with age as tissue carnitine levels decline; hence, carnitine 

supplementation in the elderly restores youthful expression of PGC-1α and promotes MB.  The 

complementary impact of lipoic acid on MB may reflect the fact that the promoter of the gene coding for 

nuclear respiratory factor-1 (NRF-1) contains antioxidant response elements; hence, NRF-1 transcription 

is promoted by phase 2 inducers such as lipoic acid.  PGC-1α and NRF-1 collaborate in driving the 

expression of mitochondrial proteins.  Additional nutraceutical measures which may likewise support 

MB – citrulline, taurine, N-acetylcysteine, high-dose biotin, and astaxanthin – are discussed. The adverse 

impact of metabolic syndrome on MB in skeletal muscle may be mediated by toll-like receptor 4 (TLR4) 

signaling stimulated by saturated fatty acids; antagonists of TLR4 signaling, possibly including ferulic 

acid and phycocyanobilin, may therefore promote MB in the context of metabolic syndrome.  Restoration 

of youthful MB in the elderly may have favorable impacts on physical capacity and cognitive function, 

body composition, insulin sensitivity, and oxidative stress. 
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Restoring Youthful Tissue Carnitine 

Levels Promotes Mitochondrial 

Biogenesis 

Studies show that levels of total and free 

carnitine decline in the skeletal muscle and 

certain other tissues of rodents as they age, 

likely owing to decreased expression of the 

membrane carnitine transporter, OCTN2.
1-3

  

This is a sodium symporter; thus, active 

transport of carnitine is driven by the 

transmembrane sodium gradient.
4
  

Supplementation with L-carnitine or acetyl-

L-carnitine has been shown to restore 

intracellular membrane stores to more 

youthful levels in the heart, skeletal muscle, 

and cerebral cortex of aged rodents – 

whereas such supplementation has a more 

modest and less significant impact on 

intracellular carnitine levels in the tissues of 

younger rodents.
2, 5

  Skeletal muscle levels 

of total and free carnitine have also been 

reported to be lower in elderly than in 

younger humans.  The content of free + 

acetyl-L-carnitine in vastus lateralis muscle 

of healthy young males has been determined 

to be about 20 mmol/kg dry mass; assuming 

that muscle is 75% water, this corresponds 

to a concentration of about 5 mM.
6
   

Several studies have shown that 

supplementation with carnitine or 

acetylcarnitine can boost mitochondrial 

biogenesis (MB) in various tissues of aged 

rodents; no such effect is seen in younger 

rodents, likely reflecting the fact that such 

supplementation impacts tissue carnitine 

levels more notably in elderly animals.
7-11

  

This effect of carnitine is paralleled – and 

likely mediated – by increased mRNA and 

protein expression of PPARgamma-

coactivator-1alpha (PGC-1α) in the 

supplemented rodents.  PGC-1α, by serving 

as a crucial coactivator for various 

transcription factors required for MB – such 

as nuclear respiratory factors-1 and -2, 

PPARα, and estrogen-related receptor-α  – 

plays an essential role in driving 

mitochondrial biogenesis.
12

 

Carnitine-Mediated Inhibition of Histone 

Deacetylase 3 May Boost PGC-1α 

Transcription 

To date, the mechanism whereby restoration 

of youthful tissue carnitine levels boosts MB 

has remained unclear.  However, free 

carnitine, in low millimolar concentrations 

such as those seen in healthy skeletal 

muscle, can function as a direct, 

concentration-dependent inhibitor of type 1 

histone deacetylases (HDACs); acetyl-L-

carnitine shares this property.
13, 14

  

Moreover, drug inhibitors of these 

deacetylases have been shown to boost 

mRNA and protein expression of PGC-1α, 

while also enhancing mitochondrial 

biogenesis; this likely reflects increased 

transcription of the PGC-1α gene.
15

  The 

down-regulatory impact of HDAC activity 

on PGC-1α expression appears to be 

mediated by HDAC3.
15

  We propose that 

free carnitine in skeletal muscle and other 

tissues functions to provide a mild tonic 

inhibition of HDAC3, and that this 

inhibition declines as cellular levels of 

carnitine decline with age.  Hence, by 

restoring youthful intracellular carnitine 

levels, carnitine supplementation of elderly 

rodents – and likely humans – can decrease 

HDAC3 activity, boost PGC-1α expression 

and activity, and thereby enhance MB. 

Whereas pharmaceutical inhibitors of 

HDAC3 could presumably be employed to 

boost MB, the advantage of using carnitine 

for this purpose is that it clearly is safe and 

well tolerated – as it would only be expected 

to restore the physiological degree of HDAC 

inhibition present in young people.   
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Functional Consequences of Up-

Regulated Mitochondrial Biogenesis 

Supplementation of elderly humans with 

carnitine or acetylcarnitine has been found 

to enhance perceived mental and physical 

energy levels while also decreasing fat mass 

and enhancing lean mass.
16-19

  Increased MB 

in skeletal muscle and likely also the brain 

may play a role in this phenomenon.  

Intriguingly, a mis-sense mutation 

(Gly482Ser) of PGC-1α has been linked to 

increased risk for obesity and diabetes in 

humans; this likely reflects an important role 

for efficient MB in maintenance of 

metabolic health.
20

  Indeed, decreased 

mitochondrial DNA (relative to nuclear 

DNA) in peripheral blood is associated with 

insulin resistance and increased diabetes 

risk, as well as a decreased rate of lipid 

oxidation during a euglycemic clamp.
21-23

 It 

stands to reason that a deficit of 

mitochondrial mass will compromise the 

efficiency with which free fatty acids can be 

oxidized, leading to greater triglyceride 

storage in adipocytes and other tissues, and 

promoting increased synthesis of lipid 

mediators such as diacyglycerol and 

ceramide that can induce insulin resistance. 

Moreover, it is reasonable to expect that 

restoration of a more normal mitochondrial 

mass will have favorable consequences for 

physical and cognitive capacities in the 

elderly by improving the efficiency of ATP 

generation. 

Even though carnitine has no radical 

scavenging activity, it has shown antioxidant 

activity in various contexts.  Supporting MB 

and other effects of PGC-1α may help to 

explain this effect, as newly synthesized 

mitochondria, protected by mitochondrial 

antioxidant proteins whose synthesis is 

promoted by PGC-1α, could be expected to 

generate fewer oxidants than aging 

mitochondria whose respiratory chains have 

accumulated damage from oxidant exposure.  

Theoretically, higher intracellular free 

carnitine levels might also oppose NADPH 

oxidase activation in certain contexts (such 

as excessive fatty acid exposure associated 

with metabolic syndrome or fatty diet) by 

buffering acyl-coA levels and thereby 

impeding de novo synthesis of 

diacylglycerols. 

Complementarity of Carnitine With 

Phase 2 Inducers in Promotion of 

Mitochondrial Biogenesis 

Curiously, a number of studies have 

reported that supplementation with acetyl-L-

carnitine and lipoic acid has a 

complementary impact on MB in aging 

rodents.
24-28

  Some of these studies have 

focused on the utility of this strategy for 

boosting mitochondria levels in the brains of 

aging rodents, an effect associated with 

improved memory performance.  Moreover, 

a cell culture study supports the possibility 

that this strategy could help prevent or 

control Parkinson’s disease by improving 

the quality of mitochondria in the substantia 

nigra.
28

  The basis of the complementarity 

between acetyl-L-carnitine and lipoic acid in 

these regards has not yet been explained.  

However, it should be noted that the gene 

coding for nuclear respiratory factor-1 

(NRF-1), a transcription factor whose 

interaction with PGC-1a promotes 

transcription of a number of genes required 

for MB, including Tfam and complementary 

factors that enable transcription and 

replication of mitochondrial DNA, contains 

several functional antioxidant response 

elements in its promoter; hence, activation 

of the Nrf2 transcription factor by phase 2 

inducer nutraceuticals – such as lipoic 

acid
29-31

 - can be expected to boost NRF-1 

expression.
32, 33

  Hence, a simple model for 

the complementarity of carnitine and lipoic 

acid in the promotion of MB emerges – 

lipoic acid boosts expression of NRF-1, and 

(acetyl)carnitine, by restoring more youthful 
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tissue carnitine levels in the aged, enhances 

the level of its coactivator, PGC-1α.  

Consistent with this model, other phase 2 

inducers, such as ferulic acid and 

sulforaphane, have been shown to stimulate 

MB – and likewise might be expected to 

complement carnitine’s activity in this 

regard.
34-36

 Moreover, nrf2 activity helps to 

keep new mitochondria functionally 

youthful by promoting expression of 

antioxidant enzymes that protect 

mitochondrial DNA and the respiratory 

chain from oxidative damage.
35

  

Nutraceuticals May Also Aid Post-

Translational Activation of PGC-1α  

The chief stimulant to increased PGC-1α 

expression in skeletal muscle is exercise 

(naturally!), which boosts transcription of 

the PGC-1α gene via episodic surges in 

cytosolic calcium, oxidant production, and 

AMP+ADP level.  Calcium, by activating 

calmodulin-activated kinase 4 and the 

phosphatase calcineurin, boosts the activity 

of the CREB and MEF2 transcription factors 

(respectively), which bind to the PGC-1α 

promoter.
37

  AMP-activated kinase 

(AMPK), which is activated by an exercise-

induced reduction in ATP, also boosts PGC-

1α transcription, likely owing to increased 

binding of upstream stimulatory factor-1 and 

transcription factor EB to the PGC1-α 

promoter.
37-41

  p38 MAP kinase, activated 

by an acute surge in oxidant production 

during exercise, stimulates PGC-1α 

transcription by activating MEF2 as well as 

ATF2.
42-44

 Catecholamine- or glucagon-

mediating activation of adenylate cyclase 

likewise boosts PGC-1α expression, via 

CREB.
37

    

However, PGC-1a activity is also regulated 

post-translationally.  (Curiously, measures 

which boost this activity also enhance PGC-

1α expression, as PGC-1α functions as a 

coactivator for MEF2 in transcription of the 

PCG1α gene.
45

)  The ability of PGC-1α to 

promote transcription of its target genes is 

boosted by phosphorylations conferred 

directly by AMPK and p38 MAP kinase; 

additionally, Sirt1 activity boosts PGC-1α’s 

coactivational potential by removing 

inhibitory acetyl groups.
37

  This latter effect 

appears to be contingent on a prior 

phosphorylation mediated by AMPK; hence, 

AMPK and Sirt1 appear to act as a “tag 

team” in supporting PGC-1α’s bioactivity.  

Curiously, these enzymatic activities interact 

in a supportive manner.  AMPK enhances 

Sirt1 activity by somehow boosting the 

NAD+/NADH ratio.
46, 47

  Sirt1 in turn 

promotes AMPK activity by increasing the 

cytoplasmic localization and activation of 

LKB1, one of the upstream kinases which 

confers an activating phosphorylation on 

AMPK.
48, 49

  Moreover, LKB1 acts as an 

upstream activator of p38 MAP kinase.
50

  

Hence, these enzymes work cooperatively in 

supporting PGC-1α activity.  It is notable 

that both AMPK and Sirt1 are activated by 

signals reflecting cellular energy starvation 

(elevated AMP+ADP/ATP ratio; increased 

NAD+NADH ratio); the consequent 

activation of PGC-1a and MB boosts the 

cell’s ability to oxidize substrate, and hence 

boosts the cell’s bioenergy status. 

The drug metformin and nutraceutical 

berberine are believed to aid glycemic 

control in diabetics via activation of AMPK; 

hence, they have potential for promoting 

MB.
51-53

  However, these agents are thought 

to work via partial inhibition of complex 1 

of the mitochondrial respiratory chain; this 

diminishes the efficiency of oxidative 

phosphorylation, inducing a rise in AMP 

and ADP that promotes AMPK activation; 

increased superoxide production by complex 

I is another likely consequence.
54-56

  Hence, 

while these agents may promote 

mitochondrial biogenesis, their impact on 

the quality of mitochondrial bioactivity is 

more equivocal.   



Mark F. McCarty et al. Medical Research Archives vol 8 issue 2. February 2020     Page 5 of 22 

Copyright 2020 KEI Journals. All Rights Reserved                http://journals.ke-i.org/index.php/mra 

Multiple rodent studies demonstrate that 

nitric oxide (NO) generated within skeletal 

muscle supports MB by boosting PGC-1α 

activity; this effect is abolished when 

AMPK is inhibited.
57-61

  NO’s impact in this 

regard appears to be mediated by cGMP and 

protein kinase G (PKG).  Up-regulation of 

Sirt1 expression has been observed when 

NO bioactivity is boosted, and this arguably 

could explain NO’s ability to promote PGC-

1α activity, as well as the dependency of this 

effect on AMPK.
62, 63

  Of the several 

transcription factors that have been shown to 

bind the Sirt1 promoter and promote Sirt1 

transcription,                  Sp1 is notable in 

that previous studies have shown that PKG 

can confer an activating phosphorylation on 

it.
64-66

  Hence, it is proposed that NO 

bioactivity supports PGC-1α bioactivity by 

activating transcription of Sirt1 via Sp1.  To 

the extent that aging, exercise, or 

pathologies promote uncoupling of NO 

synthase in skeletal muscle or other tissues, 

restoration of effective NO synthase 

function with citrulline or high-dose folate 

might thus have potential for supporting 

PGC-1α function and mitochondrial 

biogenesis.
67-70

  The impact of elevations of 

asymmetric dimethylarginine (ADMA), a 

physiological uncoupler of NO synthase, on 

mitochondrial biogenesis, has received little 

study to date; one report concludes that 

increased ADMA in diabetic rats impairs 

hepatic mitochondrial biogenesis.
71

  

Nonetheless, supplementation with citrulline 

or arginine – which antagonizes the 

uncoupling activity of ADMA – has been 

shown to boost expression of PGC-1α and 

PGC-1α-regulated genes in the skeletal 

muscle of rodents.
72, 73

  Whether 

peroxynitrite-mediated uncoupling of NO 

synthase can play a significant physiological 

role in muscle function does not appear to be 

known; high-dose folate reverses this effect 

in the vascular system.
69, 70

  Measures which 

support endothelial NO synthase activity 

might be expected to aid exercise 

performance indirectly, by aiding adaptive 

endothelium-dependent vasodilation of the 

muscle vasculature during exercise.
74

   

Since the impact of NO on MB is mediated 

by cGMP, agents which directly interact 

with soluble guanylate cyclase to promote 

cGMP generation  may also have potential 

for activating MB.  Drugs known as 

guanylate cyclase stimulator and activators 

have this property, and are being developed 

as cardiovascular drugs.
75

  However, the 

vitamin biotin, in concentrations roughly 2 

orders of magnitude higher than its 

physiological level, likewise activates 

soluble guanylate cyclase; since it boost this 

activity by no more than 2-3 fold, it is well 

tolerated even in very high doses.
76-79

  The 

possibility of employing high-dose biotin to 

stimulate PGC-1alpha activity and MB has 

previously been suggested, but no studies 

have yet addressed this approach.
80

  High-

dose biotin supplementation has however 

been reported to activate AMPK in 

hepatocytes and adipose tissue.
81, 82

 

Endogenously-generated hydrogen sulfide 

(H2S) has also been found to have a 

supportive role in mitochondrial 

biogenesis.
83, 84

  This effect has been traced, 

at least in part, to the ability of H2S to 

reversibly inhibit protein phosphatase 2-A 

(PP2A) via sulfhydration of its cysteine 

groups.
83

  Since PP2A functions to inhibit 

AMPK activity by reversing the activating 

phosphorylation of Thr-172 , this predicts 

that H2S can support PGC-1α activity and 

MB by up-regulating AMPK activity.
85

  The 

possibility that H2S might act in additional 

ways to promote MB – as by supporting NO 

bioactivity – merits further attention.
86, 87

  

Endogenous H2S synthesis can be stimulated 

by boosting the availability of its precursor 

cysteine – as can be achieved with N-

acetylcysteine supplementation.
88

   Recent 

studies demonstrate that supplemental 
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taurine can increase the expression of 

enzymes that generate H2S – cystathionine 

beta-synthase and cystathionine gamma-

lyase – in the vasculature and brain of 

rodents.
89, 90

  Whether this phenomenon 

likewise obtains in skeletal muscle is 

currently unknown.  Intriguingly, however, 

taurine administration has been reported to 

boost AMPK activation in rat skeletal 

muscle and myotubes.
91, 92

 

Mitochondrial Capacity for Fatty Acid 

Oxidation is Boosted By Astaxanthin, a 

PPARα Agonist 

Much of the benefit of increased MB is 

mediated by increased capacity for free fatty 

acid (FFA) oxidation.  The transcription 

factor PPARα, after forming a heterodimer 

with the retinoid X receptor and binding to 

its coactivator PGC-1α, stimulates the 

transcription of genes which promote 

mitochondrial oxidation of fatty acids and 

ketogenesis, including carnitine palmitoyl 

transferases (CPT) 1a and 2, acyl-CoA 

oxidase, acetyl-CoA acetyl transferase, and 

uncoupling protein 2 (UCP2).
93, 94

  

Pharmaceutical agonists for PPARα, such as 

fenofibrate, tend to ameliorate the 

dyslipidemia associated with metabolic 

syndrome, in large part owing to an up-

regulation of mitochondrial FFA oxidation 

in the liver; they have also been shown to 

decrease risk for cardiovascular events in 

those with metabolic syndrome.
94, 95

   There 

is recent evidence that astaxanthin, a natural 

carotenoid that is an exceptionally effective 

scavenging antioxidant for biological 

membranes, can also serve as a potent 

PPARα agonist; in daily intakes as low as 8 

mg, it has been shown to improve serum 

lipid profile in metabolic syndrome.
96-102

  

PPARα agonists may also act indirectly to 

increase expression of PGC-1α.  Such 

agonists increase hepatic synthesis and 

release of fibroblast growth factor 21 

(FGF21), which in turn acts on adipocytes to 

boost their production of the adipokine 

adiponectin.
103-107

    In many tissues 

expressing adiponectin receptors, this 

hormone stimulates activation of AMPK
108-

110
 – which, as we have seen, increases 

PGC-1α activity both at the transcriptional 

and post-translational level.  This may 

explain a recent report that dietary 

astaxanthin increases PGC-1α expression in 

the skeletal muscle of mice; adiponectin is 

known to activate AMPK and drive MB in 

skeletal muscle.
108, 109, 111-113

   

Astaxanthin also supports efficient 

mitochondrial function by providing 

antioxidant protection to mitochondrial 

membranes, including the oxidant-

vulnerable respiratory chain; this can be of 

particular merit in the context of ischemia-

reperfusion.
114

  When reperfusion induces a 

burst of mitochondrial superoxide 

generation, oxidant damage to this chain can 

up-regulate mitochondrial superoxide 

production; by minimizing this oxidant 

damage, astaxanthin tends to blunt this feed-

forward mechanism.
115, 116

  And astaxanthin 

has also shown phase 2 inductive activity in 

rodents and in cell cultures; whether this is a 

significant effect in the modest doses 

currently used for human supplementation 

remains to be seen.
117-121

 

Krill oil may be employed as a source of 

supplemental astaxanthin, as it is rich in 

high-bioavailability esters of astaxanthin as 

well as long-chain omega-3 fatty acids, 

oxidized metabolites of which can also act 

as PPARα agonists.
122-125

  

Additional nutraceuticals which may merit 

further research consideration in regard to 

their impact on MB include nitrate salts – 

which, after bacterial reduction to nitrite, 

can be further reduced to NO in muscle and 

other tissues; nicotinamide riboside, which 

potentially can boost Sirt1 activity by 

increasing its substrate NAD+; and 
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pyrrolquinolone quinone (PQQ), a vitamin-

like compound which for obscure reasons 

has been found to promote MB in rodents 

and cell cultures.
126-133

 

Systemic Inflammation Suppresses PGC-

1α Expression via Classical NF-kappaB 

Activation 

Disorders associated with systemic 

inflammation, such as chronic obstructive 

pulmonary disease, heart failure, diabetes, 

and metabolic syndrome are characterized 

by decreased mitochondrial content in 

skeletal muscle and other tissues, likely 

owing to the impact of pro-inflammatory 

cytokines and/or excessive exposure to 

saturated fatty acids.
134-137

 Several studies 

demonstrate that activation of the classical 

NF-kappaB pathway is a key mediator of 

this phenomenon, and that such activation 

provokes decreased expression of PGC-1α 

mRNA.
134, 136, 138, 139

  Since preliminary 

protein synthesis is needed for NF-kappaB 

to trigger this effect, it seems likely that NF-

kappaB induces a protein or proteins which 

either inhibit PGC1α transcription, or which 

decrease the half-life of PGC-1α mRNA.
134

  

Additionally, nuclear p65 has been shown to 

inhibit PGC-1α’s coactivational activity by 

binding to it directly.
140

  Hence, measures 

which decrease classical NF-kappaB 

activation may support PGC-1α activity in 

the context of systemic inflammation. 

Excessive exposure to saturated fatty acids 

likely plays a role in the down-regulation of 

PGC-1α expression associated with 

metabolic syndrome and diabetes.  Markers 

of mitochondrial biogenesis including PGC-

1α expression correlate inversely with 

plasma free fatty acid level, and a lipid 

infusion suppresses the expression of PGC-

1α in human skeletal muscle.
137, 141

  In vitro, 

exposure to palmitate – but not oleate - 

likewise down-regulates PGC-1α expression 

in a skeletal muscle cell line, and this effect 

is contingent on activation of NF-kappaB.
136

  

This effect of palmitate does not appear to 

be mediated by de novo synthesis of 

diacylglycerol or ceramide.
136

  Rather, other 

research indicates that palmitate activates 

NF-kappaB in skeletal muscle via toll-like 

receptor-4 (TLR4), the expression of which 

is elevated in individuals who are obese or 

diabetic; monoclonal antibodies targeting 

TLR4 prevent palmitate from activating NF-

kappaB in primary myotubes.
142

 A complex 

formed between fetuin A and palmitate or 

other saturated fatty acids – but not 

unsaturates – can act as an agonist for 

TLR4.
143

  This model therefore suggests that 

the adverse impact of metabolic syndrome 

on MB in skeletal muscle might be offset by 

measures targeting TLR4 signaling. 

Although ferulic acid acts as a phase 2 

inducer and can be expected to promote MB 

via NRF-1 induction, it exerts an additional 

anti-inflammatory effect and, in particular, 

opposes TLR4 signaling.
144

  Limited 

evidence suggests that this effect reflects an 

inhibitory interaction with the MyD88 

adaptor protein, a key mediator of TLR4 

signaling.
144, 145

  Although the impact of 

ferulic acid on MB in skeletal muscle has 

not yet been assessed, ferulic acid 

administration (500 mg daily) has been 

found to up-regulate PGC-1α mRNA 

expression in human monocytes.
34

  Hence, it 

would be of interest to determine whether 

ferulic acid supplementation could partially 

reverse the down-regulation of PGC-1α 

expression and MB associated with 

metabolic syndrome.  Ferulic acid might 

also act to oppose TLR4 signaling by 

decreasing hepatic production of fetuin A, 

an effect demonstrated in high-fat-fed 

diabetic rats; the up-regulatory effect of high 

fat exposure on hepatic expression of fetuin 

A is mediated by NF-kappaB.
146, 147

 

NADPH oxidase plays a mediating role in 

the TLR4 signaling that activates NF-
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kappaB.
148-150

  Moreover, there is recent 

evidence that skeletal muscle NOX2 is 

required for induction of insulin resistance 

in the skeletal muscle of rats fed a high-fat 

diet.
151

  Phycocyanobilin (PhyCB), a 

biliverdin metabolite that acts as a light-

harvesting chromophore in cyanobacteria 

(such as spirulina) and certain blue-green 

algae, shares the ability of 

biliverdin/bilirubin to inhibit NADPH 

oxidase complexes, an effect which likely 

largely accounts for spirulina’s potent 

antioxidant/anti-inflammatory activities in 

rodent studies.
152-154

  Intriguingly, a recent 

clinical study found that spirulina 

supplementation boosts VO2max and 

exercise endurance in human subjects – 

most notably in those who are obese.
155

  

Hence, it is conceivable that PhyCB has a 

favorable impact on PGC-1α expression and 

MB in the context of metabolic syndrome.  

On the other hand, activation of NOX2 

during exercise is responsible for a 

stimulation of p38 MAP kinase activity that 

boosts PCG-1α activity.
44

  Hence, the 

impact of PhyCB on MB of skeletal muscle 

may be context dependent. 

                    

 

                            Carnitine                     Astaxanthin                                 Adiponectin 

                                              

                              HDAC3                       PPARα 

                                                                                                               CPT-1a, FGF21, UCP-2, etc. 

Berberine             AMPK                        PGC-1a                                                                                         MB 

                                                                                                               Tfam, NRF-2, TFB1M, etc.  

                                 Sirt1                         NRF-1 

 

Biotin                     cGMP                        Nrf2 

 

                                  NO                       Lipoic Acid 

 

                            Citrulline  

Figure: Nutraceutical strategies for supporting mitochondrial biogenesis (MB) and efficient fatty acid 

oxidation.  The effect of supplemental carnitine will be of most significance in the elderly.  Astaxanthin 

and lipoic acid with also boost antioxidant protection for mitochondria.  In skeletal muscle, exercise 

training will also boost PGC-1α expression and activity by multiple mechanisms. 
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Summing Up 

Restoration of youthful tissue levels of 

carnitine in aging rodents has been found to 

up-regulate PGC-1α expression and MB.  A 

likely reason is that carnitine acts as an 

inhibitor of type I histone deacetylases – 

more specifically, HDAC3 – which oppose 

the transcription of the PGC-1α gene.  If this 

hypothesis is correct, pre-treatment with 

potent inhibitors of type 1 HDACs should 

blunt or eliminate the impact of carnitine 

status on PGC-1α expression.  Co-

administration of phase 2 inducers such as 

lipoic acid complements the impact of 

carnitine on MB, and this is attributable, at 

least in part, to the fact that NRF-1 

expression is phase 2-inducible via 

antioxidant response elements in its 

promoter; concurrent induction of both 

PGC-1α and NRF-1 should have a very 

potent impact on MB, as they collaborate in 

promoting expression of proteins required 

for the replication of mitochondrial DNA 

and the formation of functional 

mitochondria.  Phase 2 inducers will also 

help to insure that newly-formed 

mitochondria have effective antioxidant 

defenses.   

Ancillary strategies, entailing the activation 

of AMPK, Sirt1, and p38 MAP kinase, 

could be employed to boost PGC-1α activity 

via post-translational modifications.  Agents 

which support NO bioactivity, mimic it via 

activation of guanylate cyclase, which 

enhance H2S production, or which directly 

activate Sirt1 may be useful in this regard: 

these may include citrulline, high-dose 

biotin, N-acetylcysteine, and taurine. 

Metformin and berberine, clinically 

effective activators of AMPK, may be useful 

in this regard as well, although their 

inhibitory effects on complex I of the 

mitochondrial respiratory chain may 

undercut their ability to optimize 

mitochondrial function. 

The PPARα transcription factor, co-

activated by PGC-1α, boosts expression of 

mitochondrial enzymes which catalyze FFA 

oxidation and ketogenesis; acting in the 

liver, it also promotes PGC-1α expression 

systemically by inducing FGF21-

adiponectin signaling.  PPARα agonists, 

such as the natural carotenoid astaxanthin, 

hence promote the biogenesis of 

mitochondria with high capacity for FFA 

oxidation.  Moreover, astaxanthin can 

provide potent antioxidant protection for 

mitochondrial membranes and the 

respiratory chain.   

PGC-1α expression and MB in skeletal 

muscle are decreased in chronic 

inflammatory states and metabolic 

syndrome, an effect which appears to be 

mediated by activation of classical NF-

kappaB signaling.  The impact of metabolic 

syndrome in this regard may be mediated 

largely by activation of TLR4.  By opposing 

TLR4 signaling, ferulic acid and PhyCB 

may have potential for boosting MB in the 

context of metabolic syndrome.  

Hence, it may be feasible to devise complex 

nutraceutical strategies for enhancing MB; 

such strategies may be of particular benefit 

in the elderly or those with metabolic 

syndrome.  Moreover, exercise training can 

be expected to boost MB in the exercised 

muscles. Maintaining optimal tissue levels 

of efficiently functioning mitochondria may 

be expected to favorably impact physical 

and possibly cognitive performance, 

diminish cellular oxidative stress, and help 

to prevent or reverse insulin resistance and 

inappropriate weight gain. 
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