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Abstract 

 

Having recently made the evolutionary transition from bats to humans, the novel Coronavirus 

SARS-Cov-2 has single-handedly created a defining moment in human history as the world 

reluctantly embraces a new paradigm in which the devastating effects of rapidly emerging diseases 

underscore the fragility of human life. The purpose of this review is to take a broad-spectrum view 

of the challenges that lie ahead in defeating this ongoing pandemic. In the absence of a complete 

understanding of the SARS-CoV-2 virus and its pathogenic potential, the accomplishments of 

modern medicine in the molecular age, nevertheless, allow unprecedented insight into fine-tuned 

molecular mechanisms of infection and our increasing ability to monitor and assess this disease 

and its global consequences. This review attempts to define the virulence mechanisms and 

pathophysiological consequences of the SARS-Cov-2 virus that, based on our current 

understanding, will most likely respond to preventive and therapeutic approaches. 
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Introduction 

Around the world, major health care 

and research institutes are searching for 

protective vaccines and therapeutic candidates 

for the treatment of COVID-19, including the 

National Institutes of Health (NIH) and The 

European Medicines Agency (EMA). In 

addition, the World Health Organization 

(WHO) is currently conducting clinical trials 

under the name of Solidarity-2 to evaluate up-

and-coming vaccines and therapeutic drug 

candidates to treat this disease.  This effort 

involves more than 70 countries to date. 

Despite the enormity of the task, it is possible 

to condense the therapeutic approaches to 

specific clinical modalities based on our 

understanding of the unique properties of 

SARS-CoV-2 infection and the molecular 

biology tools that have facilitated a 

comprehensive understanding of the structure, 

function and pathogenicity of this virus. In 

addition, new rapid-paced approaches have 

streamlined the many complexities of vaccine 

development by using viral RNA, DNA and 

protein subunit vaccine models to accelerate 

the path from bench to bedside. Rather than 

presenting a moment-by-moment summary of 

the clinical data, which inevitably will change 

rapidly even as this paper goes to print, the 

focus here is on the rationale for preventative 

and therapeutic approaches,  as well as the 

overall results obtained thus far, if available,  

to make calculated predictions as to their 

potential efficacy.  

 

Key Elements Driving Vaccine Design and 

Therapeutic Targets 

Targeting  the SARS-2 Coronavirus genes 

responsible for Infection 

 

 One of the most important 

determinants of human infection by SARS-

CoV-2 virus is the structural spike “S” protein, 

that has recently evolved the capacity to bind 

very effectively the human angiotensin 

converting enzyme 2 (ACE-2) receptor found 

on the surface of lung alveoli, endothelial 

tissue and several other organ systems1. The 

importance of the “S” protein as an anti-viral 

target is underscored by the identification of 

the D614G missense amino acid mutation in 

SARS-CoV-2 virus strains prevalent in the 

USA and Europe, which increases the 

formation of functional spike proteins on the 

virus surface and is associated with 

significantly enhanced infectivity2.  Virus 

uptake by membrane fusion in cells of the 

upper respiratory tract initially involves a host 

type 2 trans membrane serine protease called 

TMPRS S2 which cleaves the spike protein, 

facilitating the fusion of the virus to the host 

cell membrane in order to deposit the viral 

contents and begin the cycle of infection. Once 

the virus is inside the cell, the viral gene 

encoding the replicase enzyme complex is 

translated on host ribosomes, facilitating the 

synthesis of many copies of the viral genome. 

Later steps involve the translation of viral 

genes to form the structural proteins of the 

virus capsid and envelope. The viral proteins 

required for each of these stages of infection 

represent a suitable potential target for 

antiviral drugs and vaccines; however, the viral 

spike protein is a preferred target since it is 

essential to the earliest stages of infection; 

blocking this entry step is a logical 

preventive/therapeutic target that is also a 

major focus in vaccine development.  

Genomic sequencing of SARS-CoV-2 

early on, when the virus was first identified in 

China, showed that this unique RNA sequence 

represents a novel Coronavirus3. The DNA 

sequence is approximately 88% identical to 

two bat-derived SARS Coronaviruses; its 

genome displays 50% sequence identity to 

MERS Coronavirus and 79% identity to the 

original SARS Coronavirus. This novel virus 

was termed SARS-CoV-2 by the International 

Virus Classification Commission. The 
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genomic sequence information facilitated a 

rapid assessment of the structure and function 

of the virus and its mechanisms of 

pathogenicity in humans.  SARS-CoV-2 

contains genes encoding polyproteins with 

viral replication functions, including the RNA 

polymerase. Additional Open Reading Frames 

(ORFs) code for structural proteins, including 

spike (S), envelope (E), nucleocapsid (N) and 

membrane (M) proteins4 (see Figure 1). 

 

  

Figure 1. Coronavirus  virus  structural proteins, including nucleocapsid (N), membrane (M), envelope (E), 

and spike (S)  critical to infection and immune system responses. (Courtesy Centers for Disease Control, 

USA)  

 

The therapeutic strategies most commonly 

employed target key events required for virus 

reproduction and spread, including receptor 

binding to host cells by viral spike attachment 

protein, replication of its RNA genome, and/or 

assembly of the virus particles in the infected 

cells.  Since there are key differences between 

these virally directed processes and human 

metabolism, this approach often yields 

therapeutic modalities with minimal side 

effects on the body.  A key model system 

illustrating this principle is Human 

Immunodeficiency Virus (HIV) in which the 

unique properties of the reverse transcriptase, 

protease and attachment proteins have 

spawned a plethora of multi-drug “cocktails” 

that have transformed a once-fatal disease  into 

one that is clinically manageable and life-

sustaining. Many of these HIV-targeted drugs 

were developed in the context of viral genome 

analysis in conjunction with experimental 

assessment of the precise role of individual 

viral genes in infection.  Currently, a similar 

approach is in play to develop SARS-CoV-2 
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targeted therapeutics, using the genomic data 

that have been generated subsequent to the 

identification of this novel infectious disease 

agent in early 2020. 

 

 

 

Figure 2. Interferon: general pathways in immune system activation. (Courtesy of Concepts of Biology - 

1st Canadian Edition by Charles Molnar and Jane Gair is licensed under a Creative Commons Attribution 

4.0 International License). 

 

Targeting the critical interface between 

SARS-CoV-2 and dysregulated immune 

system responses 

 

  The use of IFN-1 in patients with SARS-

CoV-2 may be especially important as virus 

infection appears to block host cell IFN-1 

production at early stages of infection5 (see 

Figure 2). Due to the very recent genesis of 

SARS-CoV-2, it is important to assess very 

carefully the transmissibility and pathogenicity 

of previously identified members of this virus 

Family responsible for disease outbreaks.  To 

this end, the closely related SARS-CoV (79% 

genomic identity) and MERS-CoV (50% 

genomic identity) viruses may be instructive.  

Early indications are that SARS-CoV-2, like 

SARS-CoV and MERS, blocks Interferon 

Type 1 (IFN-1) early in infection, which may 
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be correlated with the severity of infection, as 

is the case with its viral relatives5, 6.  The 

structural proteins “M” and “N” as well as non-

structural ORFs are involved in this interferon 

blockade. Research suggests that Type 1 IFN 

(IFN-αβ) is the most important IFN responder 

to early stage infection by SARS-CoV-27. The 

presence of viral RNA in the infected cell 

activates RIG-1 (retinoic acid-inducible gene 

1) and MDA5 (melanoma differentiation-

associated protein 5) that stimulate IFN Type 1 

synthesis via IRF38. Studies of the protective 

effect of IFN on Coronavirus infections in the 

1980s showed that intranasal recombinant 

IFN-α decreased viral load and duration of 

illness in approximately 80 healthy volunteers 

enrolled in the clinical study9. SARS-CoV-2 

shares many of the same proteins used by other 

Coronaviruses to block IFN Type I, including 

non-structural proteins nsp1, nsp3, nsp16, 

ORF3b, ORF6 as well as the M and N gene 

products. Significantly, increased virulence 

among Coronavirus members may be linked to 

enhanced IFN Type 1 blocking activity. This 

has been shown in both MERS and SARS-

CoV10. In contrast, Coronaviruses with lower 

virulence, such as HKU1, have a more limited 

ability to block IFN-Type 1 activation11.  

These data implicate IFN Type 1 targeting in 

early stage Coronavirus infection as a critical 

determinant of virulence.  Pharmacologic 

targeting of viral RNA and critical gene 

products involved in IFN blockade is, 

therefore, a logical approach to mitigating 

early stage SARS-CoV-2 infection. Due to the 

broad-spectrum effects of interferons, 

however, this approach must be carefully 

evaluated with respect to the timing and dosing 

regimens as their effects on the immune system 

can be difficult to regulate. 

Patient clinical studies aimed at 

monitoring the course of infection at the 

virus:host interface play an extremely 

important role in defining both the temporal 

disease course and the key cause and effect 

interactions that can inform therapeutic 

approaches to disease mitigation. Defeating 

COVID-19 requires a design to interfere with 

the devastating consequences of advanced 

infection that involve systemic immune system 

hyperstimulation. There are, of course, two 

players in this treacherous infectious cycle 

between the virus and the host.  Scientists 

agree that some of the more serious and 

sometimes fatal consequences of infection 

involve hyper-sensitization of the immune 

system, associated with what has been termed 

the “cytokine storm”. Therefore, the immune 

system itself can be seen as a potential target 

for therapeutic approaches designed to 

mitigate the unchecked immune system 

responses that can result in death.  It is also 

critical to distinguish among the multifaceted 

stages of infection and diverse clinical 

pathologies in order to develop an effective 

therapeutic paradigm for this complex virus. 

Clearly, a one-size-fits-all approach will not 

work on all COVID-19 patients. Much still 

needs to be learned about this important 

dynamic but, at present, there is some 

understanding of the ways in which the 

immune system responds to the virus and the 

ways in which that process may become 

derailed, resulting in collateral damage to the 

body. The goal of this research approach is to 

mitigate the untoward responses of the 

immune system while, at the same time, 

enhancing the ability of the immune system to 

defeat the virus. 

 Previous research on SARS-CoV and 

MERS-CoV have provided us with some 

background towards understanding the 

complex interactions between these human 

Coronaviruses and the host immune system as 

they relate to the potential to develop a 

successful vaccine12. Importantly, the 

presentation of viral antigens depends on 

Major Histocompatibility Complex (MHC) 

Class I molecules mostly, although MHC Class 

II molecules also play a role in virus 

recognition by the immune system. Research 

on these related Coronaviruses suggests that 



S. A. Crawford. Medical Research Archives vol 8 issue 9. September 2020          Page 6 of 19 

 

Copyright 2020 KEI Journals. All Rights Reserved       http://journals.ke-i.org/index.php/mra 

IgG antibody is primarily responsible for long-

term protection against reinfection and that 

these antibodies are primarily directed against 

the “S” spike antigens of the virus13. With 

respect to the molecular pathology involved, 

researchers have determined that neither 

SARS-CoV-2 nor MERS-CoV  displays 

pathogen associated molecular patterns  

(PAMPS) that usually trigger recognition by 

host pattern recognition receptors (PRRs) to 

initiate immune responses to viral infection14. 

The mechanism by which this resistance 

occurs is via the production of double 

membrane vesicles that lack PRR display. The 

viruses replicate in these vesicles, thereby 

shielding them from detection from the host 

innate immune system which ordinarily would 

represent a first line defense against infectious 

disease. This allows the virus to gain a foothold 

within the respiratory tract and the lungs prior 

to eliciting a significant immune response. It is 

probable that this decoy mechanism also 

facilitates the systemic consequences of 

SARS-CoV-2 infection14.  This sophisticated 

immune evasion strategy of the virus may 

complicate efforts to develop an immune based 

approach to prevent or mitigate infection.  

Virus-associated PAMPs are known to 

activate Toll-Like Transmembrane Receptors 

(TLRs); studies of patients with SARS-CoV 

and MERS-CoV showed that TLR3, in 

particular, was involved in immune system 

activation15. TLR3 induction is associated with 

downstream IFN- α and IFN-β expression,  as 

well as  TNF, IFN-gamma, IL-6, IRF-3 

interferon regulatory factor-3 and NFkB16, 17. 

Animal  studies of SARS and H1N1 flu virus 

suggest that lung infection is associated with 

the production of oxidized lipids that, in turn, 

activate TLR4, MyD88 and TRIF to induce 

inflammatory cytokine release18. In particular, 

IL-6 is associated with pulmonary damage 19. 

To this end, research reported from China 

suggested that increased circulating levels of 

Interleukin-6 (IL-6) and fibrinogen correlate 

with poor prognosis in patients with COVID-

1920.  In contrast, CD4+ and CD8+ T cell levels 

are generally depressed in acute stage COVID-

19 infection21.    

One of the most important 

physiological consequences of advanced 

COVID-19 infection is acute respiratory 

distress syndrome (ARDS). This is a systemic 

inflammatory response to viral infection 

initiated by the secretion of proinflammatory 

cytokines and chemokines by immune effector 

cells in response to the infection. In addition to 

acute respiratory distress, COVID-19 can also 

cause multiple organ system failure and death. 

ACE-2 receptors on endothelial cells appear to 

mediate vascular inflammation, blot clots and 

systemic hypoxia22. Genetic studies of the 

related SARS-CoV virus showed that Open 

Reading Frame 8 (ORF-8) activates 

intracellular stress pathways, damage to 

lysosomes and autophagy23. Additional 

research has shown that ORF-8 activates 

intracellular inflammasomes, involved in 

innate immune responses, via NLRP3 

(Cryopyrin)24.  This process results in the 

production of inflammatory cytokines that 

stimulate pyroptosis, a specialized type of 

programmed cell death that occurs in response 

to intracellular pathogens.  Pyroptosis induces 

further cytokine release, triggering tissue 

infiltration of inflammatory cells.  Importantly, 

IL18 production, in response to pyroptosis, 

activates IFN-ϒ and its adaptive immune 

system targets25, 26.   Similar mechanisms may 

occur also in SARS-CoV-2 pathogenicity, as 

its ORF8 protein is closely related to that of 

SARS-CoV. This inflammasome mediated 

pathway may be associated with more severe 

stages of COVID-1927, 28;  moreover, later 

stage macrophage associated IL-1 production 

appears to play an important role in the 

“cytokine storm” linked to advanced disease29.  

COVID-19 patient autopsies have revealed 

that diseased tissues contained high levels of 

monocytes, macrophages and CD4+ T cells30.  
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 Thus, a critical issue in play is the 

multifaceted role of individual immune system 

components that respond to early versus later, 

more severe, stages of disease.  The “ideal” IS 

response to viral infection is a rapid 

recruitment of innate system components that 

trigger the adaptive immune system to destroy 

virally infected cells and create a permanent 

antigenic memory that blocks re-infection by 

the same agent.  Instead, SARS-CoV-2 

employs strategies to minimize initial innate 

responses to infection, and, later, to trigger 

dysregulated immune system hyperstimulation 

associated with virally-induced tissue damage 

that characterizes advanced stages of infection 

in approximately 20% of infected 

individuals31. Therapeutic approaches 

designed to reprogram IS responses must 

address these early versus late infection 

profiles differently, lest these approaches 

exacerbate the dysfunctional IS pathology 

induced by SARS-CoV-2. 

 

Key questions for follow-up studies related 

to SARS-CoV-2 prevention and treatment 

 

1. Age differential: why are younger 

individuals statistically at lower risk for 

severe COVID-19?  

 

Approximately 80% deaths from 

COVID-19 occur in patients age 65+, even 

though infection by SARS-CoV-2 has been 

documented in all age groups32.  Recently 

published data from the Centers for Disease 

Control (CDC) showed that 70% of individuals 

in the U.S. testing positive for SARS-CoV-2 

are younger than age 6033. Clearly, there are 

many important reasons for this demographic 

difference; however, there are certain 

implications that may relate to the mechanisms 

by which the IS responds to SARS-CoV-2 

infection that may have important preventive 

and therapeutic applications. Research on 

SARS-CoV-2 pathogenesis at early stages of 

infection has shown that viral gene products 

specifically target IFN 1 and that, as a 

consequence, innate IS responses designed to 

prevent disease progression are blocked34.  

Research on the effects of ageing on the IS in 

vitro have shown that mononuclear cells from 

individuals 50+ years display reduced levels of 

IFN-α, β in response to virus infections, in 

general, as compared to younger individuals35. 

That SARS-CoV-2 immunosuppression 

involves early stage targeting of IFN-1 

suggests a physiologically relevant 

explanation for the increased risk for advanced 

disease in older patients. 

 

Another striking observation is that 

children under 19 years are dramatically less 

susceptible to SARS-CoV-2 infection 

symptomatology than the rest of the population 

in the U.S36. Moreover, this trend was 

observed also during the SARS-CoV and 

MERS outbreaks37.   At this juncture, one can 

only speculate on the reasons for this 

surprising differential. Part of the explanation 

may involve innate IS functions that are 

intrinsically more responsive to infection early 

in life.  In addition, the extent to which routine 

infant and childhood vaccinations may 

contribute to broad-spectrum enhancement of 

IS activity in response to unrelated viral 

infections has come under scrutiny as a 

potential contributory explanation38. Previous 

research suggests that early childhood 

vaccines, such as live, attenuated Measles, 

Mumps, Rubella (MMR) and Bacille Guerin 

Calmette (BCG) , a live attenuated tuberculosis 

vaccine, may provide so-called “nonspecific 

effects” (NSE) that reduce the risk of some of 

the more serious pathological consequences of 

infection by unrelated viruses39, 40.  This 

possibility has received increased scrutiny in 

the wake of the COVID-19 pandemic. The 

protective effect of BCG vaccine against infant 

mortality from all causes is most likely the 

result of enhanced innate IS activity; 

moreover, evidence suggests that geographical 
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regions where BCG vaccination is routine may 

display lower mortality rates from COVID-

1941.  An elegant epidemiological study 

recently published by Escobar et al. 42 provides 

convincing evidence of a relationship between 

COVID-19 mortality rates and long-

term/continuous BCG vaccination national 

policies in a broad-based assessment of 

approximately 150 countries.  Their study also 

showed a quantitative relationship between 

less developed nations and lower mortality 

rates, which may be at least, in part, linked to 

their BCG infant vaccine programs (see Figure 

3). These observations have led to the 

suggestion that high level trained innate IS 

responses early in SARS-CoV-2 infection may 

be a primary determinant of disease outcome.  

There is preclinical evidence to suggest that 

this bystander effect is due to generalized 

effects on bone marrow leukocytes that enable 

these immune system components to react 

more vigorously to viral antigens43. Additional 

work has shown that vaccine-induced 

“trained” immunological responses affecting 

Myeloid Derived Stem Cells (MDSCs) may 

reduce severe lung inflammation, highly 

relevant to infection by SARS-CoV-244.  

 

a.        

 b.  

Figure 3. COVID-19 mortality rate data compiled by Escobar  et al.42 as a function of: a. Human 

Development Index (HDI)*: the higher the standard of development, the higher the ranking up to 1.0; and 

b. BCG Index** calculated as = (age of oldest vaccinated cohort × total number of years of vaccination 
campaign)/standardization parameter (5,625) × Mean BCG vaccination coverage. All data shown were 

obtained from the COVID-19, BCG and related data accrued by the study authors. 
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2. Is it possible to block the “cytokine 

storm” in infected patients responsible 

for advanced COVID-19?  

An overriding principle in the treatment 

of COVID-19 is the importance of blocking 

SARS-Cov-2 infection before immune system 

hypersensitization begins the relentless 

destruction of the body’s organ systems. 

Therapeutics currently approved for use in 

specific countries include dexamethasone, 

Remdesivir and Favipiravir (Avigan). Recent 

data from the RECOVERY Trial suggest that 

the administration of glucocorticoids such as 

dexamethasone to patients with advanced 

COVID-19 may improve patient recovery 

statistics 45.  Approximately 2,000 patients 

were enrolled in the randomized trial; a 35% 

decrease in mortality in patients with advanced 

disease requiring ventilators, and a 20% 

reduction in mortality among patients on 

oxygen supplementation, were observed. The 

well-known physiological effects of 

glucocorticoids, such as dexamethasone, 

involve suppression of inflammation by NF-

KB and AP-1 46. Other immunosuppressive 

effects relevant to COVID-19 include 

inhibition of vascular permeability and 

decreased leukocyte involvement in areas of 

inflammation, as well as transcriptional 

repression of mediators of inflammation, 

including cytokines implicated in the 

“cytokine storm” linked to advanced stages of 

COVID-19 47.  Additional research studies 

have shown that the anti-inflammatory effects 

of glucocorticoids also involve the 

transcriptional activation of 

immunosuppressive genes, including IKB, 

DUSP, and IL-110 48. 

Remdesivir (Gilead Sciences) was 

originally developed as a treatment for Ebola 

and Marburg viruses, with limited success49.  

This anti-viral medication specifically targets 

RNA replication.  Clinical data obtained thus 

far has shown that the drug may decrease the 

duration of illness in patients with COVID-19, 

without having a significant effect on overall 

mortality49.  

Favipiravir (Avigan) was developed in Japan 

as a treatment for influenza and much later 

used in patients with Ebola virus infections50. 

Like Remdesivir, the drug targets RNA virus 

replication.  Recent studies in patients with 

COVID-19 showed an average reduction in 

recovery time from 11 days to 5 days50.  

Hydroxychloroquine (HCQ), a 

repurposed anti-malarial drug that has been 

shown to block SARS-CoV-2 virus uptake into 

human cells in vitro51, has had a controversial 

introduction as a potential treatment for 

COVID-19. Conflicting data have created 

significant confusion about the potential 

effectiveness of this drug; however, a clinical 

study from the Henry Ford Hospital in USA, a 

retrospective analysis of a large cohort  of over 

2,500 patients who were treated with 

hydroxychloroquine, showed a significant 

reduction in mortality rates in patients who 

received it as a single agent (13.5%) or in 

combination with the antibiotic azithromycin 

(20.1%) as compared to a 26.4% mortality rate 

for patients who received neither drug52.    

These findings directly contradicted a 

RECOVERY trial conducted by researchers at 

Oxford University that showed no significant 

beneficial effect of hydroxychloroquine 

administered to a cohort of over 1,500 

patients53. A possible explanation for this 

discrepancy is that the Michigan study 

assessed patients who had been treated at 

earlier stages of infection than the 

RECOVERY patient cohort. It appears that 

Remdesivir and Favipirivar, that target viral 

replication, may also show an increased benefit 

when administered at earlier stages of disease. 

SARS-CoV and MERS-CoV 

immunosuppression, occurring in advanced 

disease, is associated with extensive neutrophil 

and monocyte-macrophage infiltration of 
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infected sites linked to Acute Respiratory 

Distress Syndrome (ARDS), and other 

inflammatory complications that can be fatal. 

These later stage systemic effects follow from 

suppression of early innate IFN-associated 

immune responses by these human 

Coronaviruses to establish infection. Later, 

advanced stages of disease appear to be 

mediated at least in part by a subsequent 

hyperstimulation of IFN which results in 

dysregulated immune responses associated 

with the “cytokine storm” and multi-system 

organ damage54. The timing of therapeutic 

interventions designed to potentiate effective 

IS responses to SARS-Cov-2 infection may, 

therefore, be of the utmost importance in 

achieving successful therapeutic responses. 

 

3. What are the potential implications of IS 

responses in patients with COVID-19 on 

the development of effective vaccines?  

 General categories of SARS-CoV-2 

vaccine design include the conventional 

approaches using inactivated whole virus, 

spike “S” protein vaccines, virus-like particles 

(VLPs), vectors containing inserted viral 

genes, DNA and RNA viral sequences55 (see 

Figure 4). Earlier vaccines prepared against 

SARS-CoV, included whole virus, a 

recombinant spike protein vaccine, Virus Like 

Particles (VLPs) containing the S, N, E and M 

proteins from mouse hepatitis Coronavirus. 

Preclinical testing of these earlier vaccine 

formulations showed that vaccinated mice 

post-challenge developed immunopathologic 

reactions in lung tissues associated with Th2-

type eosinophil hypersensitivity, also seen in 

some children who developed Respiratory 

Syncytial Virus (RSV) infections subsequent  

to receiving a vaccine against RSV, leading to 

the alarming conclusion that vaccination 

exacerbated the effects of natural infection in 

these children, resulting in severe lung 

inflammation and death in some cases56. 

Follow-up research in mice showed that the 

RSV vaccine induced high levels of CD4+ T 

cells, primarily Th2, that caused massive lung 

infiltration by Type 2 cytokines and 

eosinophils57. 

 

 

Figure 4. Prototype  vaccines against COVID-19 (Courtesy U.S. Government Accountability Office from 

Washington, DC, United States) 
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Additional animal studies on the 

effects of these early Coronavirus vaccines 

were also instructive. Mice inoculated with 

several different SARS-CoV vaccine 

formulations showed a  similar pattern of IS 

hyperstimulation and serious disease following 

challenge;  however, the response to an “S” 

protein vaccine was not as severe as with 

inactivated whole  virus preparations58. In the 

vaccinated mice, lung pathology, resulting 

from vaccine-associated IS hyperstimulation, 

was observed even in the absence of detectable 

virus post challenge. Since challenge with 

inactivated virus did not produce this response, 

it was concluded that early viral replication 

may be required to induce this pathological 

response. It appeared that, although 

vaccination halted the spread of the virus, it 

caused the immunopathology characteristic of 

advanced disease. Similar effects were 

observed in mice vaccinated with a 

Venezuelan equine encephalitis virus 

containing the SARS-CoV “N” gene59. In 

contrast, the inclusion of the “S” gene in this 

recombinant vaccine did not produce this 

pathological response, leading to the suspicion 

that the “N” gene product may be responsible 

for this effect. Notably, vaccine formulations 

containing the “S” protein, but NOT the “N” 

gene product, provided anti-virus protection in 

the animal studies.  

Human clinical trials of SARS-CoV 

experimental vaccines showed induction of a 

protective antibody response and no reports of 

pathological effects, though the human (versus 

mouse) patients were not challenged with live 

virus60. Thus, the potential of SARS-CoV 

vaccines to induce this Th2-associated lung 

pathology is currently unknown. The 

conflicting data on the capacity for the “S” 

gene product to induce hypersensitivity may 

mean that the configuration of the protein in 

different vaccine formulations may affect IS 

responses61. Additional research suggests that 

IgG antibodies directed against the SARS-

CoV “S” protein (anti-S-IgG) may contribute 

to lung pathology by stimulating the release of 

cytokine IL-8, MCP1 and inflammatory 

macrophages,  as well as negatively affecting 

the levels of TGF-β and wound-healing 

macrophages62.  

Previous studies on SARS-CoV 

showed that IS responses to infection include 

short-lived IgG production generated against 

the “S” and “N” proteins, and a long-lasting T 

cell response63, suggesting that Coronavirus 

vaccines might induce long term protective 

effects if they evoke a significant T cell 

response; moreover, T cell responses to the 

viral structural proteins (especially “S” and 

“N”) were found to be most pronounced in 

post-infection patient mononuclear cells .  In 

recovering patients with SARS-CoV, CD8+ T 

cell levels were significantly higher than CD4+ 

levels64. IS responses were found to target 

epitopes of the ”S”, “M” and “N” viral antigens 

most commonly. 

Preliminary data on SARS-CoV-

2/COVID-19 suggest that poor patient 

outcome is associated with low anti-viral 

antibody levels, also the case with SARS-CoV 

and MERS65. Recently, significant CD8+ T 

cells have been documented in 70, and CD4+ 

T cells in 100%, of patients recovering from 

COVID-1966. CD4+ responses were primarily 

targeted to the structural proteins “S”, “N” and 

“M”, whereas a lesser response was detectable 

against the nonstructural proteins (including 

nsp3, nsp4, ORF3a and ORF8).  CD8+ 

responses against “S”, “M” and numerous nsps 

were detected. Interestingly, CD4+ T cells 

directed against SARS-CoV-2 were also 

identified in approximately 50% of healthy 

individuals never exposed to this new virus, 

suggesting that exposure to other human 

Coronaviruses may produce long-lasting 

cross-reactive IS responses. Nevertheless, the 

IS protective profile for SARS-CoV-2 is 

incomplete, and these clinical data suggest that 

some patients do not display significant 

protective levels of immunity post infection. 
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How these disparities might affect the scope 

and duration of protective immunity following 

SARS-CoV-2 vaccination is currently 

unknown. 

Due to the extreme urgency presented 

by the COVID-19 global pandemic, 

accelerated efforts to develop a vaccine depend 

on functional validation of viral 

antigens/epitopes most likely to elicit a 

protective immune response against 

subsequent infection. Much of the data has 

been obtained from analyzing the IS profiles of 

post-infection patients in comparison to 

unexposed healthy controls. Preliminary 

results have shown that the “S”, “M” and “N” 

structural proteins comprise the major 

equivalent immune targets of CD4+ T cells, 

identified in virtually all recovered COVID-19 

patients67. In addition, nsp3, nsp4, nsp12, 

ORF3s, ORF7a, and ORF8 were also 

identified as CD4+ targets. Significant 

differences were observed in CD8+ targets 

elicited by SARS-CoV-2; namely, “S” and 

“M” were the single most important targets, 

but 50% of CD8+ responses were detected 

against nsp6, ORF3a and “N” gene products. 

Importantly, recovering patients displayed a 

predominantly Th1 cytokine profile, absent the 

Th2 component linked to advanced and fatal 

disease. 

Conclusion 

The purpose of this paper was to define 

the virulence mechanisms and 

pathophysiological consequences of the 

SARS-CoV-2 virus that, based on our current 

understanding, will most likely respond to 

preventive vaccine and therapeutic 

approaches. The focus on therapeutic rationale 

and overall results obtained thus far in the 

study of SARS-CoV-2 and the related 

Coronaviruses, SARS-CoV and MERS-CoV, 

was designed to make calculated predictions as 

to their potential efficacy. This inquiry has led 

to the following conclusions: 

1. The therapeutic strategies most likely to 

mitigate infection target key events 

required for virus reproduction and spread, 

including receptor binding to host cells by 

viral spike “S” attachment protein, 

replication of the RNA genome, and/or 

assembly of the virus particles in the 

infected cells.  Since there are key 

differences between these virally directed 

processes and human metabolism, this 

approach should yield therapeutic 

modalities with minimal side effects on the 

body. 

 

2. Preliminary data implicate IFN-Type 1 

targeting in early stage Coronavirus 

infection as a critical determinant of early 

stage virulence.  To this end, studies of the 

protective effect of IFN on Coronavirus 

infections in the 1980s showed that 

intranasal recombinant IFN-α decreased 

viral load and duration of illness in 

approximately 80 healthy volunteers 

enrolled in the clinical study. Due to the 

broad-spectrum effects of interferons, 

however, this approach must be carefully 

evaluated with respect to the timing and 

dosing regimens as their effects on the 

immune system can be difficult to regulate. 

 

 

3. Defeating COVID-19 requires a design to 

interfere with the devastating 

consequences of advanced infection that 

involve systemic immune system 

hyperstimulation.  It is critical to 

distinguish among the multifaceted stages 

of infection and diverse clinical 

pathologies in order to develop an effective 

therapeutic paradigm for this complex 

virus. Therapeutic approaches designed to 

reprogram IS responses must address these 

early versus late infection profiles 

differently lest these approaches 

exacerbate the dysfunctional IS pathology 

induced by SARS-CoV-2. 
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4. Childhood resistance to COVID-19 may 

involve innate IS functions that are 

intrinsically more responsive to infection 

early in life.  In addition, the extent to 

which routine infant and childhood 

vaccinations may contribute to broad-

spectrum enhancement of IS activity in 

response to unrelated viral infections has 

come under scrutiny as a potential 

contributory explanation. There is 

preclinical evidence to suggest this 

bystander effect is due to generalized 

effects on bone marrow leukocytes that 

enable these immune system components 

to react more vigorously to viral antigens. 

 

5. An overriding principle in the treatment of 

COVID-19 is the importance of blocking 

SARS-CoV-2 infection before immune 

system hypersensitization begins the 

relentless destruction of the body’s organ 

systems. It appears that Remdesivir, 

hydroxychloroquine and Favipirivar, that 

target early stages of infection, may show 

an increased benefit when administered at 

earlier stages of disease. The timing of 

therapeutic interventions designed to 

potentiate effective IS responses to SARS-

CoV-2 infection may, therefore, be of the 

utmost importance in achieving successful 

therapeutic responses. 

 

6.  Preclinical testing earlier SARS-CoV 

vaccines showed that vaccinated mice 

developed immunopathologic reactions in 

lung tissues associated with Th2-type 

eosinophil hypersensitivity, also seen in 

some children who developed Respiratory 

Syncytial Virus (RSV) infections 

subsequent to receiving a vaccine against 

RSV. The potential of SARS-CoV-2 

vaccines to induce this Th2-associated lung 

pathology is currently unknown. The 

conflicting data on the capacity for the “S” 

gene product to induce hypersensitivity 

may mean that the configuration of the 

protein in different vaccine formulations 

may affect IS responses. 

 

7. Previous studies on SARS-CoV showed 

that IS responses to infection are associated 

with a long-lasting T cell response, 

suggesting that Coronavirus vaccines 

might induce long term protective effects if 

they evoke a significant T cell response; 

moreover, T cell responses to the viral 

structural proteins (especially “S” and “N”) 

were found to be most pronounced. 

 

8.  CD4+ T cells directed against SARS-

CoV-2 were also identified in 

approximately 50% of healthy individuals 

never exposed to this new virus, suggesting 

that exposure to other human 

Coronaviruses may produce long-lasting 

cross-reactive IS responses.   

 

9. The IS profile for SARS-CoV-2 is 

incomplete, and clinical data suggest that 

some patients do not display significant 

protective levels of immunity post 

infection. How these disparities might 

affect the scope and duration of protective 

immunity following SARS-CoV-2 

vaccination is currently unknown. 
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