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ABSTRACT 

Osteoporosis is related to estrogen deficiency and aging. Bone loss can also occur as a result of 

inflammation-associated diseases such as rheumatoid arthritis and periodontitis, which share 

several pathologic features with osteoporosis. Estrogen deficiency is associated with increased 

osteoclast activation, decreased osteoblast function, and increased inflammatory bone-resorbing 

cytokines (e.g., interleukin-1, -6, and tumor necrosis factor –α). The differentiation of osteoclasts 

is regulated by the cytokines macrophage colony-stimulating factor, RANK ligand, and 

osteoprotegerin secreted by osteoblasts. Bone resorption is the unique function of osteoclasts. 

Podosomes are essential features of osteoclast migration. Podosomes are F-actin rich structures 

joined radially by actin fibers called F-actin cloud. Upon attachment to the bone surface, osteoclasts 

reorganize their cytoskeleton to form sealing zones. Sealing zone formation is required for efficient 

bone resorption to occur by osteoclasts. Integrin αvβ3 and TNF-alpha mediated signaling 

mechanisms regulate the assembly/disassembly of podosomes during migration and the 

organization of sealing zones during bone resorption. A brief description is provided on these 

aspects in this review.     
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1.Introduction 

Osteoporosis is a disease caused by the 

imbalanced activities of bone cells such as 

osteoclasts and osteoblasts. Osteoclasts mediate 

bone resorption or erosion, and osteoblasts 

facilitate the bone formation. Osteoclasts in 

excessive numbers or increased activity cause a 

faster rate of loss of bone than the action of 

osteoblasts to rebuild bone, which puts individuals 

at risk for fracture. Excess bone loss leads to 

pathological postmenopausal osteoporosis or 

bone-metastasis associated bone loss in cancer 

patients. Anti-osteoporosis therapy up to now has 

targeted mostly osteoclasts. Low bone mass is 

caused by an increase in the recruitment and 

activity of osteoclasts. The precise cause of 

osteoporosis is not entirely known. However, there 

is a relationship between the lack of estrogen due 

to ovarian failure and the onset of loss of bone 

mass. Furthermore, estrogen deficiency in women 

also increases the production of inflammatory 

cytokine Tumor Necrosis Factor-alpha (TNF-α) 

from T-cells to a level sufficient to modify the 

formation and function of bone-resorbing 

osteoclasts. Therefore, the neutralization of these 

cytokines could protect the bone loss caused by 

estrogen deprivation 1. 

2. Bone cells and osteoclastogenesis 

Osteoclasts are multinucleated giant cells 

that are responsible for bone resorption. These 

cells are derived from hematopoietic precursors or 

stem cells in the monocyte/macrophage lineage. 

The differentiation process is known as 

'osteoclastogenesis' is mediated by two key 

cytokines, such as Macrophage Colony-

Stimulating Factor-1 (M-CSF) and the Receptor 

Activator of Nuclear factor-kB Ligand (RANKL). 

Osteoblasts are derived from mesenchymal stem 

cells from the bone marrow and periosteum of the 

bone. These cells are involved in the formation and 

mineralization of bones. Osteoblasts then mature 

into osteocytes, which do not form bone matrix. 

Osteoblasts secrete cytokines such as M-CSF1 and 

RANKL besides osteoprotegerin (OPG), which 

are involved in osteoclastogenesis. RANKL 

belongs to the tumor necrosis factor family, and 

the Receptor Activator of Nuclear factor-kB 

(RANK) is the receptor for RANKL. OPG is a 

soluble decoy receptor for RANKL, and it is also 

considered a critical regulator of 

osteoclastogenesis.  OPG functions to reduce 

osteoclastogenesis and osteolysis by competitively 

binding to RANKL and blocks the interaction of 

RANKL with its receptor RANK. The process of 

osteogenesis ensues with the balancing between 

the activities of osteoblasts (bone formation) and 

osteoclasts (bone resorption).  

 

3. Podosomes and sealing zones in osteoclasts 

The bone-resorbing function of osteoclasts is 

dependent on actin cytoskeletal remodeling. 

Osteoclasts are uniquely and profoundly 

migratory. They depend on rapid changes in their 

actin cytoskeleton to undertake the controlled 

cycles of migration and adhesion on the bone 

surface during bone resorption. Osteoclasts 

depend on podosomes for attachment and 

movement on the bone surface. Podosomes are 

found in highly motile cells, and these are 

comparable to focal adhesion structures.  Although 

podosomes and focal adhesions are different 

morphologically and functionally, some functional 

differences exist. Podosomes are highly dynamic 

structures with a life-span of 2-12 min compared 

with 30min for the focal adhesions 2. Podosomes 

are dot-like aggregates with packed filamentous 

actin (F-actin) surrounded by a globular 

monomeric form of actin (G-actin) 3. These dot-
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like podosomes cluster in a ring around the cell 

periphery 4.  

On the bone surface, osteoclasts exhibit a 

continuous band of F-actin rich ring-like structures 

called sealing zones, which confine the area of 

bone resorption. Loss of peripheral podosome 

structures occurs in resorbing osteoclasts. Under 

these conditions sealing zones provide a tight 

attachment. Researchers denoted these structures 

as sealing zones, actin rings or sealing rings 13-20. 

Sealing zone formation has been considered a 

marker of osteoclast activation for bone resorption.  

One crucial feature of podosomes is their 

dynamic nature, and they are rapidly constructed 

and removed. Sealing zones have very stable 

adhesion to ECM on the bone surface. It is not 

completely known whether sealing zones are 

derived from podosomes. It is mostly presumed 

that towards the resorption phase, the sealing 

zones are derived from the fusion of podosomes 21-

23. However, various findings suggest that the 

sealing zones have a unique three-dimensional 

organization on the bone. Podosomes do not fuse 

to form an actin ring onto the dentine slice or 

mineralized matrix 24, 25. Osteoclasts are 

multinucleated giant cells. An osteoclast can do 

resorption of the bone underneath one area of the 

cell, and at the same time, another area of the cell 

can organize podosomes 5.   

Gelsolin is an actin capping protein, and it is 

present in the podosomes of osteoclasts. It has a 

unique role in regulating the assembly and 

disassembly of the actin filaments present in the 

podosomes of osteoclasts through its binding to 

polyphosphoinositides. Osteoclasts derived from 

gelsolin knockout mice failed to exhibit 

podosomes. However, these osteoclasts still 

revealed sealing zones and matrix resorption in 

vitro; however, the resorbed areas are small as a 

result of the absence of podosomes and the 

hypomotile nature of osteoclasts 11. Studies in 

gelsolin knockout mice indicate that podosomes 

do not fuse to form the sealing zones. Several 

questions about the mechanisms involved in 

sealing zone formation remain unanswered. Does 

sealing zone formation require a progression from 

podosomes? What is the mechanism of initiation 

of the organization of sealing zone formation?  

4. Role of integrin αvβ3 signaling in osteoclast 

function 

Integrin alpha v beta 3 (αvβ3) is the 

principal osteoclast integrin. It recognizes the Arg-

Gly-Asp (RGD) motif of the extracellular matrix 

proteins located on the bone surface. Osteoclasts 

from β3 knockout (β3-/-) mice failed to form 

sealing zones on the bone matrix during resorption 

in vitro. These mice demonstrated an age-

dependent increase in bone mass, consistent with 

the dysfunction of osteoclasts 27, 28. Integrin 

signaling, which involves different pathways and 

molecules (e.g., Src, PYK2, c-Cbl, p130Cas, PTP–

PEST,  Vav, PI3-kinase, and WASP) have been 

shown to participate in the formation of the sealing 

zones during bone resorption 12, 19, 29-38. Src has 

been implicated as a crucial downstream target of 

integrin signaling in osteoclast function 19, 39-42. 

Osteoclasts from c-Src kinase knockout (Src-/-) 

mice shared several features with β3-/-osteoclasts 
43. Although Src-/- mice exhibited an increase in 

osteoclast number, these mice develop severe 

osteopetrosis due to dysfunctional bone resorption. 

Osteoclasts from Src-/- mice do not form sealing 

zones. Similar cytoskeletal arrangements in 

osteoclasts isolated from c-Src-/- and β3-/- mice 

suggest a commonality of intracellular signaling 

pathways. PYK2 is a calcium-sensitive protein 

tyrosine kinase, and it belongs to a member of the 

focal adhesion kinase (FAK) family of protein 
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kinases. C-src kinase activity and targeting of C-

Src kinase by PYK2 are essential for the 

cytoskeletal reorganization involved in 

osteoclastic bone resorption in response to αvβ3 

signaling 6, 44. 

Many actin-binding proteins (ABPs) assist 

in stabilizing and rearranging the organization of 

the actin cytoskeleton during cell migration and 

adhesion. A few ABPs appear to have a role in 

osteoclast function. Spatial configurations of actin 

filaments by actin-binding and actin regulatory 

proteins account for the highly specific changes in 

cell shape during migration and bone resorption 18, 

19, 33, 35, 45-52. Rho family GTPases have been shown 

to be essential in the formation and organization of 

podosomes as well as for polarization of 

osteoclasts on the bone surface during bone 

resorption 30, 35, 47, 53-56. Rac1 and Rac2 are 

involved in the formation of the podosome belt and 

bone resorption besides Rho A 57-59.  Rac1- and 

Rac2-deficient osteoclasts exhibited reduced 

resorption activity59. Overall studies by these 

groups imply the essential role of RhoGTPase 

modulators on the function of osteoclasts.  

5. Role of TNF-alpha signaling in osteoclast 

function 

RANKL is an essential and sufficient 

cytokine for osteoclast differentiation in the 

presence of macrophage colony-stimulating factor 

(M-CSF). However, proinflammatory factors such 

as TNF-α and interleukin-1 (IL-1) can also 

promote osteoclast differentiation and bone loss in 

postmenopausal osteoporosis and pathological 

conditions due to inflammation (e.g., rheumatoid 

arthritis and periodontitis) 1, 60-67. TNF-α stimu-

lates osteoclast differentiation and resorption 

activity independent of the RANK- osteoclast 

differentiation factor (ODF) interaction in chronic 

inflammatory diseases 68-70. TNF-α directly 

activates the formation of sealing zones in 

osteoclasts formed in vivo or in vitro 70. The 

process of sealing zone formation requires a 

significant reorganization of actin filaments. Actin 

filaments generate tight sealing zones on the bone 

surface for efficient bone resorption processes to 

occur. The area encompassed by actin filaments in 

the sealing zone area ranges from 1-10μm. A 

dramatic increase in the local levels of F-actin and 

actin-binding proteins were found during the 

transformation of clustered podosomes into ring-

like sealing zone structures 71. Even though the 

formation of these actin filament-associated 

sealing zone is indispensable for osteoclast bone 

resorption, there is a shortage of information on the 

cell and molecular biology of the formation of 

sealing zones. 

6. Role of L-plastin in osteoclast bone 

resorption 

L-plastin (LPL)   is an actin-bundling 

protein that cross-links actin filaments into tight 

bundles, 72-74. LPL is also known as plastin-2, 

fimbrin, or cytoskeletal associated protein 75. It 

was shown to present in the podosomes of 

osteoclasts 7. However, its role in osteoclasts was 

largely unknown. LPL consists of two tandem 

repeats of actin-binding domains (ABDs), which 

mediate the bundling of the actin filament. These 

ABDs assist in binding two actin filaments into 

parallel arrays for bundling assembly 77-79. 

Phosphorylation of LPL on Serine 5 and Serine 7 

amino acid (aa) residues regulate the actin-

bundling activity of LPL 8.  Although TNF-α was 

shown to stimulate the resorptive activity of 

osteoclasts 68, 81, the actual target molecule(s) 

involved in the organization of sealing zones 

remains unknown.              
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In our recent studies, we have shown the 

role of LPL  in the formation of the precursor 

sealing zones in osteoclasts cultured on dentine 

slices in the presence of TNF-α. These precursor 

zones were denoted as 'nascent sealing zones' 

(NSZs). We demonstrated previously that sealing 

zone formation occurs in two steps: the first step is 

the formation of an NSZ, which is regulated by the 

phosphorylation of LPL in a TNF-α–dependent 

way. The second step is the transition from nascent 

sealing zones to fully functional sealing rings, 

which is controlled by integrin αvβ3 signaling. 

Several studies demonstrated the role of integrin 

αvβ3 in the formation of sealing zones. However, 

we are the first one to elucidate the role of LPL in 

NSZ formation in response to TNF-α signaling 

independently of integrin signaling in osteoclasts 
82.  

Serine phosphorylation of LPL in response 

to TNF-α treatment is a necessary process in the 

actin-bundling process involved in the 

organization of NSZs. We suggest this because the 

transduction of a small molecular peptide of LPL 

containing Ser-5 and Ser-7 amino acid residues 

[*MARGSVSDEE; 10aa]  into osteoclasts suppressed 

the phosphorylation of endogenous LPL protein 

competitively. Therefore,  the formation of NSZs 

and hence the formation of mature sealing zones 

were attenuated, which resulted in reduced bone 

resorption in vitro 83-85. [Note: *patent pending for 

the small molecular peptide of LPL].  

Furthermore, analyses in osteoclasts from 

L-plastin knockout (LPL -/-) mice have shown a 

defect in the formation of the sealing zones, which 

is associated with an increase in trabecular bone 

volume and a decrease in eroded perimeters, 

indicating a mild osteopetrosis phenotype 20. 

Consistent with our observations, others have also 

shown an increase in trabecular bone volume in 

LPL-/- mice 86. Studies with small molecular 

weight LPL peptide and LPL-/- mice suggest that 

LPL phosphorylation is a potential mechanism in 

the formation of NSZs by LPL. The Abrogation of  

LPL phosphorylation and the formation of NSZs is 

a unique approach to block osteoclast-mediated 

bone resorption.  

7. Conclusions 

The regulation of the assembly of NSZs by 

TNF-α signaling is a prerequisite for the formation 

of sealing zones, which are required for bone 

resorption by osteoclasts. Excess osteoclast 

activity puts individuals at risk for fracture in bone 

loss-associated diseases, including osteoporosis, 

rheumatoid arthritis, and periodontitis. Although 

targeted therapies are currently available to treat 

and prevent osteoporosis by blocking osteoclast 

activity, evidence shows that long-term treatments 

cause a reduction in osteoblast-mediated bone 

formation, resulting in atypical skeletal fractures. 

The distinctiveness of the LPL peptide is its 

targeted effect on osteoclasts without interfering 

with the function of osteoblasts. We suggest that 

the small molecular weight LPL peptide has the 

potential for high translational control in the 

progression of physiological and pathological 

bone loss. The role of LPL in osteoclast sealing 

ring formation is unique because LPL-/- mice 

failed to form these structures. Other plastin 

proteins or actin-binding proteins cannot substitute 

LPL's functions of actin-bundling and NSZ 

formation in LPL-/- mice. Moreover, peptides of 

LPL could be used in protein therapy for 

modulation of osteoclast bone resorption. LPL 

based signaling complex is an attractive target for 

pharmacological regulation of bone resorption. 
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