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Abstract 

In recent decades there has been an extraordinary growth in and acceptance of automatic data 

systems that collect official and popular reports of epidemic occurrence. While different systems 

employ one or another proprietary algorithms to collect and parse disease reports all include, at a 

minimum, spatial locators, the date of a report, and the number of individual cases reported. These 

systems have been increasingly vital in both the study of individual epidemics and the exposition 

of expanding epidemics in real time. To date, however, there has been little analysis of the nature 

and quality of the data collected in these “big-net” programs or the degree to which redundancies 

and uncertainties may limit their utility. Here data on the 2009 H1N1 Type-A influenza epidemic 

gathered by a single system, healthmap.org, is parsed to determine where problems exist and how 

they might be rectified.  
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Introduction 

COVID-19 is the most mapped disease 

event in history. For the first time, details of 

a global pandemic have been tracked publicly 

in a constant progression of continually 

updated maps broadcast and published daily, 

and with attendant statistics. These have been 

posted first on one or another digital 

“dashboards” and then rapidly disseminated 

in magazine stories, newspaper articles and 

TV broadcasts. Best known, perhaps, is the 

Johns Hopkins University Coronavirus 

Center (2020) produced by its Center for 

System Science and Engineering.  This and 

other sites permit the scaling of maps—

global to national or regional— with an 

option to download the underlying data. 

Some dashboards permit web-generated 

maps to be manipulated with simple ratios 

and percentages, to create, for example, 

mortality ratios (ArcGIS.com 2020). 

The basic format of these dashboards—a 

central map with attendant relevant 

statistics—has been widely copied by health 

professionals and researchers at varying 

scales. A dashboard for Milwaukee County 

(WI), for example, includes not only a dot 

map of incidence—cumulative and weekly—

but a breakdown of that data by age, gender, 

race/ethnicity and hospital capacity reported 

by local health agencies (Milwaukee County 

2020).  

This explosion in a spatial cartography 

both public and rigorous has resulted in the 

democratization of what was, until recently, 

a specialized, technical area of epidemiology 

and medical geography. While epidemics 

have been mapped at least since the 1690s, 

and global pandemics at least since the 1830s 

(Koch 2011; 2017), their data was usually 

laboriously collected, typically by official 

agencies, for articles that were later published 

in books or professional journals. What 

makes the current dashboards and their 

mapping possible are automatic data 

collection programs that continually search a 

range of sources for data that can be 

immediately incorporated in an online 

posting (Gilbert, Degeling, Johnson 2019: 

Garattini, Raffle, Aishah, Kozlakis, 2019). 

Driven by complex proprietary algorithms, 

these syndromic programs are the result of 

the digital revolution that resulted both in 

modern, desktop cartography and programs 

(SAS, SPSS, R, etc.) facilitating statistical 

analytics (Kramer, Hay, Pigott, et al. 2016).    

In what some geographers are called the 

new “digital earth” the result for spatial 

epidemiologists is a series of event based 

datasets with records of specific disease 

incidence by data, location (for example, 

Vancouver), and jurisdiction (BC, Canada). 

Each entry includes spatial coordinates to 

facilitate mapping. Some may also include, 

for each incident, demographic, 

epidemiological, genomic, migratory, or 

socioeconomic data (Polonsky, Baidjoe, 

Kamvar, et al., 2019).  

A range of authors have offered reviews of 

these machine-based, automatic data 

collection systems and the tools by which 

their data might be analyzed (Feldman, 

Thomas-Bachli, Forsyth et al., 2019; Mehta, 

Pandit, 2018; Kraemer, Hay Pigott, Smith et 

al., 2016). What has been lacking to date has 

been a more pedestrian study of the precise 

nature and quality of the data returned. Are 

they “tidy,” or “clean,” providing pertinent 

and well organized materials, or fraught with 

messy confusions, obfuscations, or 
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redundancies (Wickham 2014)? If the latter, 

how might the dataset best be cleaned?  

 One approach to a better understanding of 

these evolving, dynamic data catches would 

be to compare the relative merits of several 

distinct but competing systems. Another, 

chosen here, is to carry out a line by line 

analysis of data collected for a single disease 

event by a single automatic collection 

system. For this study data describing the 

first month of the 2009 H1N1 Type-A 

Influenza pandemic was examined. As a 

preliminary study this limited study will 

hopefully provide a basis on which other 

systems might be compared in the future. 

This database has been used by 

researchers studying the 2009 pandemic 

whose epidemiology (its Ro rate, for 

example, and mortality) are now well known. 

Data describing the 2020 COVID-19 

experience, while voluminous, is at this 

writing constantly evolving.  Not only do 

incidence and mortality figures change daily 

but methods of diagnosis and testing vary 

widely across national and international 

regions. Complicating matters further, 

different testing strategies are employed by 

different agencies (antibody testing or nasal 

swabs) at different rates in different 

jurisdictions. It is therefore not surprising that 

the retraction rate for COVID-19 journal 

articles has been “alarming." (Ling Yeo-Teh 

and Luen Tang 2020). The earlier dataset, by 

contrast, is firmly established and the 

characteristics of that virus, and its resulting 

pandemic, well understood.  This assured a 

stable epidemiological platform for the study.  

Spatially located disease data 

 There is nothing particularly innovative 

in the use of spatially located disease data in 

the mapping of epidemic or endemic disease 

(Koch, 2011; 2017).  In an 1831 unnamed 

authors in The Lancet collected data 

primarily from official, foreign office reports 

and some news studies to produce a dot map 

of 1200 different locations to describe the 

global spread of cholera from 1918-1931. In 

1832 Brigham mapped the temporal progress 

of cholera from India to Europe and then 

North America across then popular global 

trade and travel routes (Brigham, 1832).  In 

the 1850’s John Snow famously argued the 

waterborne nature of cholera by mapping 

first a local outbreak in Soho and then, more 

ambitiously, the relation between water 

quality and the incidence of cholera in a 

South London epidemic (Snow, 1855; 1856). 

The data for both studies was primarily 

provided by William Farr at the General 

Register Office in London.    

Today's spatial analytics is distinguished 

by the broad, public nature of the data and its 

method of collection. Contemporary 

syndromic capture systems permit the 

collection and almost simultaneous 

distribution of volumes of official and public 

materials as they become available. Their 

programs continually scan a range of 

potential formal (local health agencies, the 

CDC, PAHO, WHO) and “informal” data 

sources (Google News for example) for 

disease-related reports  Relevant entries are 

identified by “tags,” keywords loaded with 

each datum to identify a disease (flu, 

influenza, etc.), reported at a location on a 

given date. Depending on the algorithm they 

may also incorporate automatically other data 

necessary for analysis—population statistics, 

for example.    
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Data and Methodology 

History  

As early as 1948 the World Health 

Organization (WHO) created a network of 

international influenza reportage based on 

reports submitted by member nations. In the 

1990s, the 53 nations of WHO's European 

region began not only sharing but then 

aggregating that data based on yearly 

incidence (Fleming, Van der Velder, Paget, 

2003). That regional surveillance program 

became part of a Global Influenza 

Surveillance and Response System issuing 

weekly reports in participating countries. It, 

in turn, was the forerunner of FluNet, a 

contemporary, web-based online tool for 

global influenza surveillance (WHO. 2019). 

Following the 1995 Ebola epidemic in the 

Democratic Republic of Congo, WHO began 

developing a more general, Globe Outbreak 

Alert and Response network (GOAR) using 

"systems of electronic communications 

supported by 151 country offices 

concentrated in the developing world and the 

participation of more than 110 existing 

institutes, laboratories, agencies, and 

surveillance systems" (Heymann, Guenael, 

2004 ). In 2003 surveillance of SARS (Severe 

Acute Respiratory Syndrome) incidence 

demonstrated "the advantages of rapid 

electronic communication and new 

information technologies for emergency 

response, and the willingness of the 

international community to form a united 

front against a common threat" (Heyman and 

Rodier, 2004; 186).  

The result has been an explosion of 

dedicated digital disease collection libraries. 

Some, like the Johns Hopkins University 

Coronavirus dashboard, are dedicated to a 

single disease event. Others lodge reports of 

a range of disease events within broad 

systems of digital data recovery and storage. 

The Global Database of Events, Language, 

and Tone (GDELT) broadly monitors 

globally a wide range of subjects, including 

disease incidence, published in international 

broadcast and news sites (Leetaur and 

Schrodt, 2013). The growth of these systems 

has spawned a mini-literature on what some 

have called “biosurveillance” (O’Shea, 2017) 

which, in epidemiology and public health, 

involves the rapid identification and study of 

epidemic or pandemic events (Yan, 

Chughtai, and MacIntyre, 2017; Lee, Asher, 

Goldlust et al. 2001). 

  

Healthmap.org  

Begun in 2006 at Harvard University and 

maintained today at Boston's Children's 

Hospital (Mass.), healthmap.org “through an 

automated process, updating 24/7/365, the 

system monitors, organizes, integrates, 

filters, visualizes and disseminates online 

information about emerging diseases in nine 

languages” (Frelfeld and Brownstein, 2007). 

Data collected includes reports by online 

news aggregators, eyewitness reports, expert-

curated discussions and official reports 

published in varying media. It thus presents a 

“multistream real-time surveillance platform 

that continually aggregates reports on new 

and ongoing infectious disease outbreaks” 

(Brown, Freifeld, Reis, and Mand, 2008).  

The system performs categorization, 

extraction, filtration, and integration of 

relevant data through the application of a 

complex set of algorithms. For each report 

captured the computer program employs a 

Parser Module using  a word-level, N-gram  



Tom Koch.   Medical Research Archives vol 8 issue 9. September 2020          Page 5 of 11 

Copyright 2020 KEI Journals. All Rights Reserved            http://journals.ke-i.org/index.php/mra 

to identify and match “disease tokens,” 

(names: Ebola-19; SARS CoV-2, etc.) 

against entries in a continually expanding 

dictionary of pathogens. With each new entry 

the program simultaneously extracts 

locations named in the report (Boston, MA) 

and then matches them to locations in a 

dictionary of known places identified by 

latitude and longitude (Freifeld, Mandl, Reis 

and Brownstein, 2008). In theory, at least, the 

algorithms employed can recognize and 

correct for multiple definitions of a single 

disease and distinguish between places with 

similar names located in different 

geographies.    

Because it has been used by other 

researchers studying the 2009 influenza 

pandemic (Balcan, Colizzac, Gonçalvesa et 

al., 2009), a dataset covering that epidemic 

was requested. Healthmap.org officials 

kindly responded with a multi-year (2008-

2012) dataset of global influenza reports 

containing 68,720 entries for the United 

States of which 23,807 entries (34.64 

percent) referred to the 2009-2010 epidemic 

in the United States. Each entry included a 

location (city, county, state), urban 

population size, diagnosis (H1N1 or other 

influenza), data source (typically a URL), 

report date, and spatial location (latitude and 

longitude). Separate columns in the dataset 

included the number of suspected and 

separately the number of confirmed cases 

reported in each entry. 

 

 

 

Methods 

 The Healthmap.org dataset was opened in 

ESRI’s ArcGIS 10.6.1. This permitted not 

only its mapping by latitude and longitude 

data included for each entry but also 

presented a flexible format for analysis and 

review. To facilitate this review, only those 

cases occurring during the first wave of the 

pandemic in the United States between May1 

and August 31, 2009. The resulting 7,660 

entries (32.17 percent of the total) included 

summary monthly reports for individual 

states. While potentially useful in studying 

broad patterns of diffusion, none identified 

specific incidence reports. These therefore 

were excluded as were stories which 

discussed the pandemic but DID NOT report 

confirmed cases. A further  22 entries 

reporting a total of 140 confirmed cases were 

clearly duplicates reporting the same number 

of cases at the same location on the same day. 

Most were news stories reporting official 

incidence counts at a single location but 

distributed by more than one news 

organization. Another 19 entries reporting 

1,802 confirmed cases were flagged as 

probable duplicates reporting the same 

number of cases for the same location but 

with a date tag a day later. While these were 

likely duplicates this could not be confirmed 

and so they were retained in the database. The 

remaining 1,275 entries reporting confirmed 

cases of 2009 H1N1 Type-A influenza is 

mapped in Figure 1. This sample—16.64 

percent of the total of entries collected for this 

period was sufficiently small to permit a line-

by-line review. 
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Figure 1: The location of all 1,275 entries H1N1 Influenza cases reported in the continental U.S. States 

from May 1-Aug. 31, 2009, during the first phase of the epidemic. Data derived from healthmap.org. 

 

Results  

Confusions 

In the edited dataset of 1,275 entries, the 

“Location” column header included place 

names (for example, “Buffalo, NY, USA”), 

counties (“Erie County, NY, USA”) and in 

some cases combined city-county 

designations (“Buffalo-Erie County, NY, 

USA”). In addition there were incidence 

reports at jails or prisons, schools, summer 

camps, and other institutions, all of which 

existed within one or another of those 

jurisdictions. To take one example, there 

were 9 separate entries totally 92 cases 

between May 19 and June 6 for “Rikers 

Island Prison” in New York City’s borough 

of Queens. Rikers Island houses an average 

population of 10,000 inmates supervised by 

9000 correction officers with a support staff 

of approximately 1500 persons (Goldstein 

2015). That incidence data was presumably 

reflected in both borough and city-wide 

entries in the system.    

Another problem was the number of 

multiple entries, with slightly different 

geographic assignments for counties, cities 

within counties, and cities as independent 

reportage sites. Each of these entries was 

mapped in the unchallenged database as 

spatially distinct. Examples of different 

descriptors for a single place included, for 

example: 

 San Francisco, California. 

Lat. -122.418404; Long. 37.775002.  

 

 San Francisco, Alameda County, 

California.  

Lat. -121.884399;  Long. 37.599934. 

 

 San Francisco County, California. 

 Lat. -122.45108; Long. 37.766598 
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 San Francisco Police Department, 

California.  

 Lat. -122.404137; Long.   

 

Latitude and longitude locators made all 

these entries proximate but distinct within the 

greater San Francisco Bay urban area. To add 

to the confusion, the city and county of San 

Francisco are typically considered as a single 

entity with a 2010 population of 805,184. 

Alameda County, whose county seat is 

Oakland (2010 population was 1,510,271 

persons), is in the San Francisco Bay area and 

adjacent to the city-county of San Francisco 

(U.S. Census, 2010). There were no parallel 

reports for this time frame from either the city 

of Oakland or Alameda County, however.  

 

4.3 Location categories 

The result was a confusing mixture of 

jurisdictional scales (one for a city and 

another for its encompassing county) and 

populations (city or region) combined with 

institutional reports of   cases occurring 

within one or another reporting jurisdiction.   

  To rectify the problem a new column, 

“place-type,” first was created in the ArcGIS 

database and then filled by the first location 

noun phrase in the official database. Thus 

“Rikers island jail, New York City, NY” 

became, in this new column, simply “Rikers 

Island jail.” Other columns were created to 

distinguish city (Buffalo, NY), city-county 

(Buffalo, Erie County), and county-parish 

(Louisiana) designations. US territories 

(Puerto Rico, U.S. Virgin Islands) were 

separately identified. A limited set of 

eccentric and highly specific locations (for 

instance, a local church, the Kennedy Space 

Centre) were summarized as 

“miscellaneous.” The San Francisco Police 

Department report was labeled as 

"miscellaneous" while both San Francisco 

and San Francisco County were separately 

described as ‘city’ and as ‘county’ data 

entries.  

This permitted apparently distinct but 

spatially proximate reports to be compared. 

In some locations, county level data 

dominated while, in other involving typically 

larger cities, city-designated reportage 

outweighed incidence reportage by the 

county jurisdiction (for example, Chicago, 

IL, vs. Cook County, IL). Table 1 presents the 

general results of the review at this level. 
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Table 1: A breakdown of reports by type.          

 
Table 1: Principal categories of location designations for H1N1 Influenza reported in the U.S. 

between May 1 and Aug. 30, 2009. Data extracted from healthmap.org database. 

 

4.1 Results 

Because disease incidence is typically 

modeled, and reported, with reference to a 

specific urban place (Boston, New York City, 

Los Angeles, etc.) the assumption was that 

most reports would reflect that preference. 

And yet, only 16.5 percent of the incidence 

reports (45 percent of all confirmed cases) 

reviewed was reported solely by city name. 

Of the total entries examined, 62.8 percent of 

all reports, reflecting 48.1 percent of all 

cases, were at the county level. Each county 

was located spatially at its centroid.   

At issue was more than a tidy map. 

Population size and distance between cities 

are critical components of a range of disease 

models including those employing distance 

decay or gravity formulae. Boston, MA, 

reported 955 cases of H1N1 Influenza 

between May 2 and the end of August 2009. 

The vast majority of these were presented in 

two reports dated respectively June 29 (475 

cases) and July 2 (474 cases). Boston is the 

principal city in Suffolk County, MA, 

however, which reported a total of 620 cases 

between June 2 and August 24 with a far 

more even distribution across the study’s 

time period. Boston’s 2010 population in 

2010 was reported as 617, 594 (US Census 

Factfinder, 2012)  while that of Suffolk 

County, an administrative state subdivision 

including Boston and proximate towns, was 

732,864 persons. The difference in reportage 

dates and total number of confirmed cases 

within different official populations would 

affect any attempt at modeling the epidemic’s 

engagement in that area.  

In a similar vein, 277 cases were reported 

among the 9,818,605 persons counted in the 

2010 Census for Los Angeles County. By 

comparison, 107 cases were reported during 

the study period for the Los Angeles City 

population of 3,792,621 persons. Of those 

totals, 102 were in news reports for the city 

and county respectively.     

While not considered in this study, reports 

of confirmed cases in specific locations 

provided potentially important insights into 

Locations Number of percentage   Number of percentage incidence mean #

Reports of all reports cases  of all cases range of cases 

Native reserves 1 0.001 8 0.00025 8-8 8.000

police dept./academy 2 0.002 13 0.00040 1-12 6.500

Virg. Islands 8 0.007 107 0.003 1-107 13.375

Puerto Rico 12 0.010 395 0.012 1-138 32.920

jail-prison 21 0.017 207 0.006 1-47 9.860

camps (summer) 22 0.001 220 0.007 1-94 10.000

military 16 0.018 262 0.008 1-68 16.375

college-univ. 45 0.037 427 0.013 1-63 9.489

school 88 0.072 525 0.016 1-69 5.960

city-county 39 0.032 136 0.004 1-172 18.870

city 203 0.165 14,552 0.448 1-1557 71.685

county-Parish  772 0.628 15,609 0.481 1-963 20.219
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the dynamics of epidemic expansion. This 

became evident during the COVID-19 

pandemic in which outbreaks occurred in 

specific situations reflecting high densities of 

closely congregated communities: assisted 

living and nursing homes; jails and prisons; 

religious institutions, etc.  In late July and 

August, 2020, outbreaks forced the closure of 

U.S. summer camps in Arkansas and 

Missouri (Lee 2020). Report of camp 

outbreaks in the 2009 epidemic made this 

predictable. Knowing where an infectious 

disease is likely to expand, once introduced, 

and then threaten broader community 

engagement will be a critical component of 

future modeling of local disease dynamics.    

 

5. Discussion 

Healthmap.org was used, here, as a 

convenient and publicly accessible example 

of an evolving class of spatially grounded, 

automatically collected digital data systems. 

Some of the problems identified may be 

unique to it. But others likely are common to 

all systems of syndromic surveillance 

involving public and public resources. The 

results offer lessons for disease researchers as 

well as for those who maintain these systems 

as they evolve.  

First, researchers modeling disease events 

based on these systems rarely describe the 

means which data has been reviewed and 

cleaned. They thus presumably accept the 

database without careful review. This study 

suggests studies based on syndromic data 

require before analysis a careful review of the 

nature of the data received and the locational 

categories it includes.  

The prominence of county-level reportage 

was a surprise. In the future researchers using 

systems like healthmap.org, or similar 

systems, might be advised to work at that 

resolution despite a desire for the greatest 

specificity of city-name designations. 

Whatever their choice, consistency of 

resolution and scale and a transparency in 

their selection for any study must be a 

priority.  

Automated data collection systems remain 

an evolving work in progress. Those 

designing the algorithms driving syndromic 

systems may wish to include directions that 

would better distinguish between different 

jurisdictions and those reports focused on 

individual place categories (jails, schools, 

etc.). Not only would this help separate 

possibly redundant reports bout would 

provide an easy mechanism by which 

investigators could choose data appropriate 

to the nature of the modeling they wish to 

pursue at different scales of address.    
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