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Abstract 

During human pregnancy, the trophoblast develops as the fetal compartment, while in bidirectional 

communication with the maternal decidua. The trophoblast is responsible for the adequate 

implantation of the embryo, supply of nutrients and environmental protection of the fetus along the 

progress of pregnancy. To perform these functions trophoblast cells, undergo a complex and finely 

tuned differentiation into specialized groups of cells, in a process regulated by several hormones, 

growth factors and cytokines. Abnormalities in trophoblast function result in several pregnancy 

complications. 

In this review, we focus our attention on two growth factors with pivotal roles during human 

pregnancy. The Insulin-like growth factor (IGF) family and the Transforming growth factor (TGF-

β) axis are important regulators of the proliferation, differentiation, apoptosis, migration and 

invasion of human trophoblasts. We summarize what is described in the literature on how these 

factors and their receptors are expressed on the different subsets of trophoblasts, the signaling 

pathways that transduce their corresponding actions and functional biological effects. We describe 

the associations that have been found between these growth factors and the group of pathologies 

known as Gestational Trophoblastic Diseases (GTD). 

Key words: Trophoblasts, Placenta, Transforming Growth Factor beta, Insulin-Like Growth Factor 

I, Insulin-Like Growth Factor II, GTD 
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1. Introduction 

 

Normal placental development is 

dependent upon the differentiation and 

invasion of the trophoblast, a main cellular 

component of the placenta. Trophoblasts 

cells, which are of fetal origin, come in 

contact with maternal uterine decidua, thus 

initiating a bidirectional communication to 

ensure the progress and development of 

human pregnancy. The transfer of 

information involves a complex cellular 

signaling network, that regulates the 

production of many autocrine and 

paracrine factors in a spatiotemporal 

fashion, that intercalated with the 

hormonal network, finely tune specific 

mechanisms for trophoblast differentiation 

and function.   

  

The trophoblast differentiates into three 

main subsets: the villous cytotrophoblast 

(CTB), the syncytiotrophoblast (STB) and 

the extravillous trophoblast (EVT), each 

one accomplishing specific function 

within the placenta. The external STB 

layer is responsible for transportation of 

oxygen and nutrients to the fetus. The CTB 

is known to differentiate either into STB or 

EVT along the invasive pathway. EVT 

invades the maternal decidua and a part 

differentiates into endovascular EVT, 

responsible of the remodeling of the spiral 

arteries, allowing optimal blood flow into 

the intervillous space. In this sense, the 

EVT cells behave as cancerous cells, 

however, trophoblast invasion is under 

control in terms of intensity, direction and 

time. 

 

Several studies have shown that 

abnormalities in placental structural 

development can impair placental function 

and could lead to different pathologies. 

Insufficient placental invasion could lead 

to pre-eclampsia and intrauterine growth 

retardation, whereas uncontrolled invasion 

could result in diseases as placenta accreta, 

infertility or miscarriage. Trophoblast 

dedifferentiation can lead to forms of 

gestational trophoblastic diseases (GTD), 

either to benign or malign molar disease 

until choriocarcinoma.  

 

Gestational trophoblastic disease (GTD) 

comprises a group of pregnancy-related 

pathologies characterized by abnormal 

trophoblast growth and invasion. GTD 

includes pre-malignant complete and 

partial hydatidiform moles and malignant 

lesions such as invasive mole and 

choriocarcinoma, the most rapidly 

progressive form of malignant GTD. With 

rare exceptions, complete moles are 

diploid and androgenic in origin, while 

partial moles are triploid, consisting of one 

maternal and two paternal sets of 

chromosomes. The incidence of 

choriocarcinoma after molar pregnancy 

appears to vary by population, but after 

uterine evacuation 10-20% of complete 

moles and up to 5% of partial moles 

undergo malignant change, mainly into 

choriocarcinoma. The clinical and 

pathologic diagnosis of molar pregnancy is 

imperfect due to overlapping clinical and 

morphologic features with a normal 

missed abortion.  

 

Several growth factors and cytokines are 

expressed by the different subtypes of 

trophoblast cells in order to regulate 

placental function. Among them, the 

Insulin-like growth factors (IGFs) and the 

Transforming growth factor beta (TGF-) 

display pivotal roles in the differentiation, 

proliferation and invasion of trophoblasts 

cells.  

 

The Insulin-like growth factor (IGF) 

system is an important regulator of cell 

proliferation, differentiation, apoptosis 

and tissue growth. It has also been 

implicated in various pathological 
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conditions and play a critical role in 

tumorigenesis and cancer. All of the 

components of the IGF system so far 

investigated, are present in the placenta at 

some stage of pregnancy. The placenta is 

exposed to IGF-1 and IGF-2 from multiple 

sources, including those produced locally 

and those circulating within the fetus and 

the mother, and variations in both temporal 

and spatial expression suggest the 

presence of local regulatory factors, which 

have not been clearly defined yet. 

 

TGF- is a multifunctional cytokine that 

regulates various cellular functions, 

including cell proliferation, 

differentiation, apoptosis, migration and 

immune responses. TGF- has also been 

suggested to be involved in the negative 

regulation of proliferation, differentiation 

and invasion of human trophoblasts, 

however, the molecular mechanisms 

underlying its actions have not been 

elucidated yet.  In this review we focus on 

the possible roles of the IGF and TGF- 

factors in the pathogenesis of GTD, on the 

premise of loss of control of their actions 

on the trophoblast cells.  On one hand, an 

autocrine gain in growth promoting signals 

and IGF-dependent proliferation, and on 

the other, establishment of a refractory 

state to the TGF- inhibitory signals 

resulting in choriocarcinoma and 

metastasis.   

 

2. Physiology of the placenta 

 

2.1 Trophoblast differentiation 

 

In humans, in early events of development, 

a mass of totipotent cells called the 

morula, first differentiates into the 

blastocyst. The outer trophectoderm layer 

of the blastocyst encircles the blastocyst 

and generates all the extra-embryonic 

trophoblast cell types, contributing to the 

formation of the fetal placenta and extra-

embryonic tissues. The placenta 

constitutes the fetal-maternal interface and 

has important roles in processes of early 

development, as well as nutritional and 

endocrine support during pregnancy. The 

trophoblast layer is involved in the initial 

adhesion, six or seven days after 

fertilization, of the blastocyst to the uterine 

wall and its subsequent implantation 

within the wall. This process can be 

divided into three phases: apposition, 

adhesion and invasion. The process starts 

with the contact between  the blastocyst 

and the uterine wall followed by an 

increased physical contact between the 

blastocyst and decidua and then the 

penetration and invasion into the decidua, 

inner third of the myometrium and uterine 

vasculature.1,2 Adherence is mediated by 

cell-surface receptors at the implantation 

site that interact with blastocyst 

receptors.3,4 Cell invasion into the 

maternal uterine decidua is a critical 

process for normal placentation, 

pregnancy establishment and fetal growth 

continuance in humans.5 

 

During the period of implantation, the 

trophoblast cells proliferate and become 

invasive as they differentiate.6 Altered 

rates of cytotrophoblast proliferation are 

associated with different pathologies; 

enhanced levels are associated with 

increased fetal growth (macrosomia), 

while low levels are related to fetal growth 

restriction.7  

 

Trophoblast stem cells follow two 

differentiation pathways, the villous and 

extra-villous pathways.8 In the villous 

pathway, a group of villous 

cytotrophoblasts (vCTB) remain in the 

fetal compartment and fuse forming 

multinucleated syncytiotrophoblast cells 

(ST) which surround the chorionic villi. 

The external STB layer is in contact with 
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maternal blood and is responsible for 

transport of gases and nutrients from the 

maternal to the fetal circulation and 

represent the major endocrine unit of the 

placenta by secreting hormones, such as 

chorionic gonadotropin (hCG) and 

placental growth hormone (pGH).  

 

The hyperglycosylated form of hCG 

(HhCG) is synthesized by the evCTB in 

early pregnancy during implantation of the 

embryo. In the extra-villous pathway, a set 

of vCTB differentiates into extra-villous 

cytotrophoblast (evCTB). These cells 

leave the basement membrane and form 

columns of cells denominated the 

anchoring villi, that attach and penetrate 

the uterine wall. Clusters of intermediate 

proliferating evCTB cells at the base of the 

anchoring villi, differentiate into 

intermediate invading evCTB, which in 

turn, gives up to two sets of cells: 

interstitial evCTB and endovascular 

evCTB (Figure 1). The differentiation of 

evCTB along the invasive pathway 

resembles that of transformed cells 

displaying a metastatic phenotype after 

malignant transformation.9 

 

During interstitial invasion, interstitial 

evCTB cells, blend with decidual, 

myometrial and immune cells. The 

interstitial trophoblast population have the 

function to attach and adhere the placenta 

to the uterine wall: This is achieved by 

secretion of specific extra cellular matrix 

proteases, called matrix-type fibrinoid 

metalloproteases.  As the cells move 

deeper into the decidua, the evCTB cells 

become multinucleated and terminally 

differentiated in placental bed giant cells.8 

 

Endovascular evCTB invades the uterine 

spiral arteries and form plugs in the lumen 

of the vessels, that only allow blood 

plasma to seep through. During the first 

trimester of pregnancy, a first flow of 

fluids through the placental intervillous 

space is established, resulting in a 

physiological oxygen gradient between 

mother and fetus. The trophoblast plugs 

block spiral arteries until the beginning of 

the second trimester.10 In parallel, 

endoglandular evCTB cells through a 

novel route, “break the basement 

membrane of uterine glands to open their 

lumen towards the intervillous space of the 

placenta, without showing the formation 

of plugs”. It has been reported that these 

trophoblasts express the matrix 

metalloproteases MMP-1 and MMP-9 and 

Integrin β1.10,11 This enables histiotrophic 

nutrition of the embryo in the first 

trimester, prior to onset of maternal blood 

flow into the placenta.  
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Figure 1. Types of functional populations after trophoblast differentiation 

 

The invasion of endolymphatic 

trophoblast into the lymph vessels of the 

uterus has been described. After that, 

invasion of endoarterial trophoblasts into 

spiral arteries takes place, 11 enabling 

hemotrophic nutrition of the fetus starting 

with the second trimester of pregnancy. 

After dissolution of the plugs, the onset of 

maternal blood flow allows maternal blood 

to enter the intervillous space and oxygen 

concentrations rise up.11,12  Failure of 

endovascular trophoblast invasion has 

profound effects on the oxygenation of the 

placenta. Interestingly, this does not lead 

to hypoxia, rather increased oxygen levels 

have been observed within the placenta in 

patients with a failure of spiral artery 

transformation. This finding adds 

important knowledge in better 

understanding pathological pregnancies as 

recurrent spontaneous abortions, fetal 

growth restriction and preeclampsia.12,13 

 

2.2 Placental Epigenetics  

 

DNA methylation is the best understood 

mechanism of epigenetic control as it has 

a fundamental role in diverse processes 

such as memory, aging, maintenance of 

the pluripotent potential of germ lines, 

maintenance of the somatic identity, tumor 

development and outstandingly, placental 

implantation and derived phenomena like 

embryonic development and tissue 

differentiation. This mechanism consists 

in the addition of a methyl group to 

position 5 of those cytosines forming 

cytosine-guanin dinucleotides (CpG sites). 

There are genomic regions with a high 

density of CpG sites called CpG islands 

(CGI), most of which collocate with 

promoter regions of many genes and 

whose hypermethylation prevents the 

access of the transcriptional machinery 
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through heterochromatin establishment, 

thus generating a decrease in gene 

expression. Regarding placental 

implantation, DNA methylation has been 

recognized as a modulator of several 

aspects of the placental invasive and 

proliferative phenotype promoting the 

expression of several genes, mediating the 

silencing of imprinted genes and it has also 

been related to several aspects of the 

outcome of pregnancy in diverse 

situations. Embryonic development 

depends on the correct function of the 

placenta for the exchange of nutrients and 

oxygen, the removal of waste products, 

besides protecting the embryo from the 

immune system of the mother and from 

environmental risks, as well as acting as 

major regulator of the intrauterine 

signaling environment, so that alterations 

in this delicate interplay may result in 

mortality and disease. 

 

2.2.1 DNA Methylation in embryonic 

development  

 

DNA methylation of gene promoter 

regions is probably the principal 

mechanism of modulation of the cellular 

function during development, permitting 

the silencing of genes in a tissue-specific 

manner. Considering that oocytes and 

spermatozoids are more “differentiated” 

cell types than the early embryo, when it 

reaches the morula stage, the early embryo 

suffers a reset of its methylome, allowing 

the potential activation of virtually all the 

genome (only some genes escape this 

demethylation process) and next, different 

promoters begin to be methylated in a 

specific manner according to diverse tissue 

differentiation requirements. For example, 

when the very first event of differentiation 

occurs, resulting cell populations in the 

blastocyst have completely different 

methylation landscapes: the inner cell 

mass that will form the fetus is 

hypermethylated while trophectoderm that 

will constitute the source of the different 

placental cell lineages remains 

hypomethylated, and these methylation 

landscapes are maintained throughout 

gestation. 

 

2.3 Regulation of placental and 

trophoblast function by Growth Factors 

  

A variety of growth factors,  growth 

factor-binding proteins, proteoglycans and 

cytokines are implicated in trophoblast 

proliferation, migration and invasion.1,14 

Among them, we will focus in this review 

on two families of growth factors that have 

been demonstrated to be of pivotal 

importance in the control of human 

placentation and embryogenesis: the 

Insulin-like growth factor (IGF) family 

and the Transforming growth factor beta 

(TGF-β) axis.   

 

2.3.1 The IGF axis and placenta 

 

2.3.1.1 The IGF signaling system and 

expression in placenta 

 

The IGF family is organized in a complex 

regulatory network at the cellular and sub-

cellular levels. In the human, the IGF 

system is essential in the development of 

the organism and maintenance of normal 

cellular function, both during fetal and 

postnatal life. In general, the IGF system 

consists of three ligands, IGF-1, IGF-2 and 

Insulin; three cell membrane receptors 

IGF-1R, IGF-2R and the Insulin receptor 

(IR); six high affinity IGF binding 

proteins, IGFBP-1 through -6, their 

specific proteases (IGFBP proteases) and 

membrane receptors (IGFBP-R).15 IGF-

1R and IR are members of the family of 

tyrosine kinase growth factor receptors 

and share high homology at the amino acid 

sequence level. The mature membrane 
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IGF-1R is a tetramer made of two -chains 

and two -chains with several disulfide 

bridges.16 The extracellular α-subunits 

form the ligand binding domain and 

several lines of evidence suggest that the 

binding sites for IGF-1 and IGF-2 may be 

distinct.17  IGF-1 and IGF-2 bind to IGF-

1R with high affinity, however, ligand 

affinities may vary with cell type and 

experimental conditions. IGF-2 can also 

bind to the Insulin receptor isoform A (IR-

A) with an affinity like that of insulin. IR-

A is expressed in certain tumors and has a 

more mitogenic effect than the IR-B 

isoform, the latter having a more metabolic 

function.18  The formation of hybrid 

receptors (IR/IGF-1R) in cells that co-

express both receptors adds more 

complexity to the system and may play a 

role in receptor signalling in normal and 

abnormal tissues.19 IGF-2 and, with a 

much lower affinity, IGF-1 can also bind 

to IGF-2R, which is a multifunctional 

single transmembrane glycoprotein, 

identical to the cation-independent 

mannose 6-phosphate receptor. It is 

composed of a large extra-cytoplasmic 

domain and a short cytoplasmic tail that 

lacks intrinsic cytoplasmic activity.20 

 

IGF-1 and IGF-2 are important growth 

factors in fetal development. Both are 

synthesized in placenta and fetus with a 

considerable overlap in the location of 

both IGFs in the various placental cell 

types, in the mesenchymal cells such as 

macrophages and endothelial cells, with 

little change throughout gestation. 

However, there is a clear difference and 

developmental change in the trophoblast 

compartment. Whereas IGF-1 is present in 

syncytiotrophoblast and cytotrophoblast at 

all stages in gestation, IGF-2 is only found 

in cytotrophoblasts. It is unclear if the 

placenta derived IGFs serve local purposes 

by paracrine or autocrine regulation, or if 

they are secreted into the maternal or fetal 

circulation. IGF-binding proteins 

(IGFBPs) are key modulators of the 

ligand–receptor interaction. The six 

human IGFBPs described so far circulate 

in the plasma and bind IGFs with a higher 

affinity than the receptors. This interaction 

facilitates endocrine IGF transport and 

prolongs the half-life of circulating 

IGFBP-bound IGFs.21 

 

The IGF-1R mRNA is expressed in all cell 

types of the placenta and receptors are 

localized in villous endothelium and 

stroma, trophoblast and decidua. The main 

IGF-1R expression site, however, is the 

basal membrane of the 

syncytiotrophoblast and the villous 

cytotrophoblasts.22  

 

The activation of the IGF-1R by ligand 

binding leads to the activation of a 

complex signaling network through the 

two majors signaling pathways PI3K/Akt 

and Ras/Raf/MAPK.23 Moreover, the IGF-

1R also signals through the activation of 

Janus kinase (JAK) and Signal transducers 

and activators of transcription (STAT). 

This fact has important consequences for 

crosstalk between IGF-1R and cytokines 

signaling, because the JAK/STAT 

signaling system comprises a negative 

feed-back mechanism consisting of 

Suppressors of cytokine signaling 

(SOCS), enabling IGF-1R to block 

cytokines action.24 Altered IGF signaling 

result in aberrant placental growth. It was 

reported that treatment of first trimester 

placental tissue with statins reduces IGF-

mediated proliferation by inhibiting N-

linked glycosylation of the IGF-1R and 

subsequent expression of the mature 

receptor at the placental cell surface.25  

 

IGF-2 is one of the imprinted genes in 

mammals that are expressed from only one 

of the parental chromosomes and are 
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crucial for placental development and fetal 

growth. The IGF-2 is paternally expressed 

in the fetus and placenta and is a major 

regulator of the supply of maternal 

nutrients to the fetus.26 Studies using 

animal models have demonstrated the 

functional importance of imprinting of 

H19, IGF-2 and IGF-2R genes during 

intrauterine development. However, the 

normal developmental patterns of 

imprinted genes expression in the human 

placenta are poorly understood.27 

 

IGF-2R receptors perform diverse cellular 

functions related to lysosome biogenesis. 

The IGF-2R receptors recycle 

continuously between two cellular pools 

and at steady state most of them localize in 

endosomes.20 The IGF-2R is expressed 

primarily on the maternal-facing 

microvillous membrane of the STB.28  As 

the IGF-2R has no intrinsic kinase activity, 

it was suggested that the role of this 

receptor is to clear the extracellular IGF-2 

concentrations and therefore, prevent 

excessive IGF-2 effects on the placenta. 

However, recent studies suggest that the 

IGF-2R also functions in signal 

transduction and may play an important 

role in tumour progression.29,30 In 

experiments using the HTR-8/SVneo 

trophoblast cells, suitable as in vitro model 

of invasive EVT, showed that IGF-2 was 

able to stimulate EVT cell migration by 

signaling through IGF-2R independently 

of IGF-1R  and involving signaling via 

inhibitory G proteins and the MAPK 

pathway.31 

 

2.3.1.2 The IGF axis in the regulation of 

placental function 

 

The IGF axis proteins play crucial roles in 

a wide variety of cellular processes in 

normal physiology and pathophysiology 

including growth, tumorigenesis, placental 

function and fetal growth. Many lines of 

evidence point to an important role for the 

IGF axis in embryonic and fetal growth in 

human pregnancy. IGF-1 and IGF-2 do not 

cross the placenta into the fetal circulation; 

however, they may be involved in 

placental growth. IGF-1 can be found in 

the intervillous space during pregnancy. 

The STB produces a variant of growth 

hormone (placental GH) that gradually 

replaces pituitary GH in maternal 

circulation and is thought to be responsible 

for the increase in maternal IGF-1 serum 

levels. An increase in maternal IGF-1 

levels during pregnancy, with a rapid 

decrease after delivery indicates a 

significant placental influence. There is no 

major change in maternal IGF-2 levels 

throughout pregnancy.32  

 

IGF-1 is important for fetal and postnatal 

development, but it also controls tissue 

homeostasis throughout life via regulation 

of cell proliferation and apoptosis. IGF-1 

promotes CTB differentiation and IGF-1R 

is crucial for normal placenta function.21  

IGF-1 produced in the placenta, regulates 

transfer of nutrients across the placenta to 

the fetus, and thus, enhances fetal growth. 

IGF-1 is able to increase the expression of 

the glucose transporter GLUT1 at the basal 

membrane of SCTB, with significant 

effects on placental glucose transfer 

capacity and fetal circulating glucose.33  

There is also strong evidence for the IGF-

1 involvement in the regulation of 

placental amino acids transporters,34 and 

possibly fatty acid transporters.35 

 

The bioavailability of IGFs is modulated 

by the IGFBPs, whose permissive or 

inhibitory effects are regulated in part by 

specific proteases.36 IGFBP-1 is the main 

secretory product of the decidualized 

endometrium. IGFBP-1 modulates the 

metabolic effects of IGF-1 and IGF-2 and 

has been shown to increase the 

gelatinolytic activity of trophoblasts and 
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trophoblast invasiveness.37  Persistently 

low IGFBP-1 in diabetic pregnancies is 

associated with relatively higher birth 

weight,38 whereas decreased maternal 

serum IGF-1 levels were found in women 

who developed preeclampsia.39 

 

Besides the role of the IGF axis in 

proliferation, migration an inhibition of 

apoptosis during placentation, many 

authors have shown that the IGF proteins 

stimulate EVT cell migration and enhance 

invasion of EVT cells to the maternal 

decidua.  Irving and Lala40 showed the role 

of cell surface integrins in the regulation of 

trophoblast migration. Furthermore, 

Hamilton et al37 showed that trophoblast–

derived IGF-2 and decidua-derived 

IGFBP-1 provide an autocrine/paracrine 

enhancement of trophoblast invasiveness. 

The migration stimulatory action of 

IGFBP-1 likely occurs by interaction with 

the RGD (Arg-Gly-Asp) binding domain 

of the α5β1 integrin, leading to stimulation 

of the MAPK pathway.41 In a previous 

work in our laboratory using the HTR-

8/SVneo cells, it was found that IGF-2 was 

able to stimulate the activity MMP-2 and 

MMP-9 metalloproteases, and in this way, 

enhancing EVT cell invasiveness.42 

 

2.3.2 The TGF-β axis and placenta 

 

2.3.2.1 TGF-β signaling system 
 

The transforming growth factor beta 

(TGF-β) is a cytokine, secreted as 

homodimeric glycoprotein by diverse 

tissues. The TGF-β signaling system 

involves three ligand isoforms, TGF-β1, -

β2 and -β3, which signal through their 

binding to the hetero-tetrameric complex 

formed by their serine/threonine kinase 

receptors TGF-β receptor TβRII/TβRI, an 

interaction that many times is mediated by 

an initial binding of the ligand to the β-

glycan co-receptor TβRIII, which forms 

complexes with the TβRII/TβRI receptors 

and mediates the presentation of the ligand 

to them. Activated TβRI (ALK5) 

phosphorylates intracellular effector Smad 

proteins. There are three functional classes 

of Smad: receptor-activated R-Smad 

(Smad1, 2, 3, 5, and 8), co-mediator or co-

Smad (Smad4), and inhibitory or I-Smad 

(Smad6 and 7). The R-Smads are 

phosphorylated and activated by the TβRI, 

and after undergoing homodimerization 

they bind to the co-Smad to be translocated 

to the nucleus as a trimeric complex that 

will bind to transcriptional co-activators or 

co-repressors to regulate the expression of 

genes. Whereas, I-Smads competitively 

inhibit the phosphorylation of R-Smads by 

TβRI and its union to co-Smad, and recruit 

phosphatases that dephosphorylate and 

inactivate the receptor complex.43,44 

 

TGF-β affects a wide variety of cellular 

processes during embryonic development 

and homeostasis of adult tissues. Current 

research is focused on the mechanisms that 

regulate Smad activity to generate cell-

type-specific and context-dependent 

transcriptional programs.45 TGF-β has 

been shown to inhibit proliferation and 

induce apoptosis in various cell types, 

acting as a tumor suppressor in early stages 

of tumorigenesis; although, on the other 

hand, many tumors overexpress TGF-β, 

whose autocrine actions promote cell 

invasion and metastasis in advanced tumor 

cells.43  During pregnancy, TGF-β is a 

powerful regulator of the cellular functions 

of the villous and extra villous trophoblast, 

produced mainly by the maternal decidua 

and to a lesser extent by the placenta 

(mainly ST) and uterine Natural Killer 

(uNK) cells. It was one of the first 

identified regulators in the differentiation 

of the invasive trophoblast, and in addition 

to retarding the differentiation of the 

villous trophoblast, it inhibits the invasive 

process and reduces the proliferation of the 
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trophoblast of first trimester of 

pregnancy.37 

 

2.3.2.2 Expression of TGF-β in placenta 

and circulating levels in normal 

pregnancy 

 

TGF-β is localized at the human fetal-

maternal interface and is expressed by 

both maternal decidua and chorionic villi.  

Several reports agree that villous 

trophoblast express the TGF-β1/2, but its 

intensity vary throughout pregnancy. 

TGF-β was present in the cytoplasm of 

syncytiotrophoblast in both early and term 

placenta, but most intense levels were 

found in the first trimester trophoblast 

syncytial sprouts known to be an early 

stage in the development of placental 

villi.46  Similarly, TGF-β1/2 was found 

more intense in the chorionic villi at first 

trimester and decreased in full-term villi, 

with alike levels in the cytoplasm of 

syncytiotrophoblast and cytotrophoblast.47 

A different result was showed by 

Karmakar and Das,48 where TGF-β1 was 

predominantly expressed in term placental 

villi (>36 weeks). Graham and Lala 

observed that TGF-β is secreted in a latent 

form by decidua,49 acting as a paracrine 

regulator. They reported that TGF-β 

presence was intense in the extracellular 

matrix (ECM) of the first trimester decidua 

and cytoplasm of term decidual cells, 

moderate on syncytiotrophoblast cell 

cytoplasm and the ECM in the core of the 

chorionic villi of both first-trimester and 

term placentas, and strong in the 

cytoplasm of term cytotrophoblastic 

shell.50 

 

Unlike to maternal or circulating IGF-1 

levels,23,32 which increase during 

pregnancy, the circulating TGF‐β levels 

increases only during the first trimester of 

pregnancy.51 A cross-sectional study 

showed that maternal serum TGF-β1 

levels were higher during all stages of 

pregnancy than those in normal healthy 

nonpregnant adults, suggesting that TGF-

β1 levels rise during pregnancy and 

increased circulating levels come from the 

fetoplacental interface.52 The mean TGF-

β1 levels change over pregnancy, arising 

until 52.7 ± 5.5 ng/mL at 10-week, and 

then fell until full term, being significantly 

through to 26-week gestation, to 46.8 ± 

5.5 ng/mL at 20-week gestation and to 

40.5 ± 3.8 ng/mL at 26-week gestation, 

and without statistically significance from 

32 to 38 weeks.52 

 

2.3.2.3 TGF-β regulates the trophoblast 

function and protein expression 

TGF-β is one of several key regulators that 

control the placental function. Several 

studies have shown that it inhibits the 

proliferation, migration and invasion of 

the trophoblast and control differentiation 

and hormone production through multiple 

mechanisms. Due to its actions, TGF-β is 

considered a tumor suppressor in normal 

placenta. 

 

Graham et. al. showed that TGF-β1/2 

inhibit proliferation of first-trimester 

trophoblast cells; after 3-day-culture TGF-

β1 stimulated formation of multinucleated 

cells by first trimester and term trophoblast 

cells, and found that endogenous TGF-β 

regulate the proliferation and 

differentiation of the trophoblast.53 TGF-

β1 inhibited cytotrophoblast 

differentiation, specifically EGF-induced 

syncytial formation, and secretion of 

human chorionic gonadotropin (hCG) and  

human placental lactogen (PL), in pure 

cytotrophoblast.54 TGF-β inhibited 

production of hCG and aromatase activity, 

indicative of estrogen production, in 

purified placental trophoblasts.55 TGF-β1 

inhibited progesterone and estradiol 

production in trophoblast cells, possibly 
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by cholesterol transport and P450arom, 

respectively.56 TGF-β reduce the hCG 

secretion in trophoblast types, including 

early and term trophoblasts,57 and 

choriocarcinoma cells, but without 

showing a consistent effect on the cell 

cycle mRNA of any of the cell types.58 

 

Several studies prove that TGF-β inhibits 

trophoblast invasion. Decidual-derived 

TGF-β, and to a lesser extent trophoblast-

derived, controls first trimester trophoblast 

invasion, after being activated from its 

latent form by trophoblast-derived 

proteinases, and TGF-β induces 

expression of tissue inhibitor of 

metalloproteinases (TIMP-1), decreasing 

collagenase type IV activity and 

preventing ECM degradation and 

invasion.49 Matrix metalloproteinase 9 

(MMP-9) and urokinase-type plasminogen 

activator (uPA) are key proteases, required 

for trophoblast invasion. TGF-β reduces 

the secretion and activity of uPA, and up-

regulates the expression and secretion of 

its inhibitor PAI-1 and -2 and the tissue 

inhibitor of metalloproteases TIMP-1 and 

-2, which inhibit the ECM degradation 

performed by the MMPs.59,60 TGF-

β reduced the expression and secretion of 

MMP-9 in first trimester primary 

trophoblast,57 in explants of first trimester 

placenta,61 in the choriocarcinoma cell line 

JEG-3,60 and in the trophoblast cell line 

NPC.62 On the contrary, other studies have 

shown that TGF-β stimulates expression 

and secretion of MMP-9 at short time (8 

and 12 h) in primary cultures of first 

trimester cytotrophoblast.63 In our group, 

we have seen that TGF-β1 affect in a dual 

fashion the MMP-9 and uPA (PLAU) 

expression in immortalized trophoblast 

HTR-8/SVneo cells. After TGF-β1 

exposure, the mRNA levels of MMP-9 and 

PLAU vary over time, and 0,5% fetal 

bovine serum modified the nature the 

effects of TGF-b on uPA expression, from 

negative without serum to positive with it, 

showing opposite effects on MMP-9 

expression.64 

 

TGF-β also reduces migration, a key step 

in invasion process. Exogenous TGF-β 

increased fetal fibronectin (fFN),57 

upregulated integrin expression and 

reduced migration, conceivably due to 

increased cell adhesiveness to ECM.65 

TGF-β1 increased ezrin and E-cadherin 

expression, up-regulating the cell-to-cell 

adhesion, while reducing cell-to-matrix 

interaction, and these are associated with 

reduced invasiveness, along with an 

altered cellular morphology.66 In a non-

transformed cell-line representative of 

normal human trophoblast (NPC), TGF-β 

promoted intercellular adhesion, while 

inhibited cell invasion through repressing 

the expression and secretion of MMP-9 

and up-regulated E-cadherin and β-

catenin, expression involving Smad2 

phosphorylation.62  By MS/MS-based 

proteomic analysis, we found novel TGF-

β-regulated proteins suggesting new 

regulatory effects in addition to the 

classical ones. In HTR-8/SVneo cells, 

TGF-β1 increased proteins levels, 

including: Phosphoribosylformyl-

glycinamidine synthase (PFAS), CTP 

synthase 1 (PYRG1), Neutral alpha-

glucosidase AB (GANAB), Kinesin-like 

protein (KIF11), Gelsolin, Serrate RNA 

effector molecule homolog (SRRT), LIM 

domain and actin-binding protein 1 

(LIMA1), Talin (TLN1), Vinculin (VCL), 

and Annexin A2 (ANXA2). By other side, 

Acidic leucine-rich nuclear 

phosphoprotein 32 family member A 

(AN32A) protein and WD repeat-

containing protein 1 (WDR1) were 

reduced.67  The biological implications of 

these proteins and significance of protein 

changes is currently under assessment, but 

considering their reporter function, these 

results suggest that TGF-β may stabilize 
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the focal adhesion complex, by up-

regulation of TLN1, VCL, LIMA1, and 

ANXA2 and may avoid actin filament 

disassembly and recycling by down-

regulation of WDR1, and up-regulation of 

LIMA1, as a mechanism to inhibit cell 

migration and thus the invasion process. 

This agree with previous reports of 

reduced migration and increased cell 

adhesion.57,62,65,66 

 

2.3.3. Additional pathways regulating 

the trophoblast  

 

Besides the role of growth factors 

activating signaling pathways such as 

MAPK and PI3K/ Akt during development 

and in some complications during the 

progression of pregnancy, there are many 

signals whose regulation could contribute 

significantly to the correct implantation 

and placentation. This is the case of the 

Wnt signaling pathway activation, which 

is associated with proliferation, migration, 

and invasion processes since a high 

expression of the ligands of this signaling 

pathway and its receptors was found in the 

first-trimester cytotrophoblast.68 Wnt 

signaling pathway, where canonical 

activation allows the translocation of β-

catenin to the nucleus, has been shown to 

have proliferative activity due to the 

presence of high levels of β-catenin in the 

extravillous cytotrophoblast,69 dependent 

on the presence of estrogens. 

The non-canonical Wnt signaling pathway 

independent of β-catenin, is a pathway 

with high potential for study in trophoblast 

due to the activation of small GTPases that 

are connected to MAPK and PI3K/Akt 

pathways, presumably to promote the 

invasive and migratory phenotype of 

trophoblast cells.70 

Although Notch signaling pathway has 

been shown not to have a significant 

presence in first-trimester placental 

tissue,71 its inhibition reduces invasive 

processes in trophoblast cells. 

Furthermore, exposure to harmful 

substances such as perfluoroalkyl 

substances alters the Notch signaling 

pathway and could lead to problems 

during placental development, mainly due 

to inadequate vascularization.72 

Crosstalk between the Notch signaling 

pathway and the Wnt signaling pathway 

has been reported in several biological 

models, through the interaction between 

cleaved Notch proteins and β-catenin, 

promoting translocation to the nucleus and 

facilitating gene transcription with 

proliferative action.73  However, such 

crosstalk is not yet evident in placental 

tissue and presents itself as a promising 

field of investigation for the understanding 

of implantation processes. 

Another widely described signaling 

pathway is the JAK/STAT pathway, which 

in trophoblast is activated through the 

leukaemia inhibitory factor (LIF) and 

whose role is essential in the implantation 

of the blastocyst.74 Blocking the activity of 

STAT proteins, such as STAT3 and 

STAT5, could lead to decrease invasion of 

trophoblasts.70 STAT3 activation in 

trophoblast and choriocarcinoma cells 

have shown significant crosstalk in 

allowing ERK1/2 activation facilitating in 

vitro invasive processes.75 

The studies mentioned above show a 

confluence of several signaling pathways 

that would be acting together under normal 

conditions of the embryonic and placental 

development, and whose alterations would 

be contributing to the acquisition of 

unfavorable phenotypes for the 

development of pregnancy. 
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2.3.4 Role of Metalloproteases in the 

regulation of placental invasiveness  

The metalloproteases have the ability to 

break down the proteins of the 

extracellular matrix (ECM) making it 

possible for cells to renew it and transform 

it. Regulation of the proteolytic activity of 

the MMPs by post-translational 

modifications, modulation of gene 

expression and co-localization of tissue 

specific enzyme inhibitors is normally 

high. Tissue inhibitors of metalloproteases 

(TIMPs) reversibly arrest the enzymatic 

activity of MMPs in a 1:1 stoichiometric 

fashion in the tissue.76,77  MMPs catalytic 

domain is bound by TIMPs through the N-

terminal region inhibiting their activity 

and proMMPs C-terminal hemopexin 

domain form a stable bond via the C-

terminal region of TIMPs.77  Nevertheless, 

the degree of MMP inhibition varies 

between each TIMP; TIMP-1 strongly 

inhibits MMP-9 but poorly inhibits MT1-

MMP, MT3-MMP, MT5-MMP, and 

MMP-19, and TIMP-2 strongly inhibits 

MMP-2 and can inhibit other MMP 

members. TIMP-3 inhibits pro-MMP-2 

activation while TIMP-4 forms a TIMP-4-

pro-MMP-2-MT1-MMP complex, leading 

to inhibit the activation of pro-MMP-2 via 

inhibition of MT1-MMP.78 The balance 

between the expression of MMPs and the 

expression of TIMPs is then important in 

the invasive capability of the trophoblast 

cell, and has a significant role in the 

transformation of normal placenta into 

cancerous tissue. Comparative studies on 

the expression in normal first-trimester 

placenta, partial and complete mole, 

choriocarcinoma, and placental site 

trophoblastic tumour of MMP-7, CD147,  

MMP-14, MMP-21, MMP-28, TIMP-3 

and TIMP-4 showed that MMP-21 is 

overexpressed in choriocarcinoma 

compared to normal placenta, partial mole 

and complete mole; MMP-28 is 

overexpressed in choriocarcinoma 

compared to normal placenta and  

choriocarcinoma has significantly less 

expression of TIMP-3 and TIMP-4.76 This 

showed that decreased expression of 

TIMPs and increased expression of MMPs 

in choriocarcinoma might contribute to the 

invasiveness of this pathology. 

Augmented CD147 expression may also 

cause higher MMP-1 and MMP-2 levels in 

choriocarcinoma and by this means 

increase its invasiveness.  

As said before, cytokines also have an 

important role in trophoblast invasion. A 

variety of chemokines and cytokines are 

secreted and expressed by trophoblast cells 

to sustain the maternal–fetal tolerance 

during pregnancy. Interlukin 35 (IL-35) is 

constitutively expressed by human first-

trimester trophoblast and some studies 

have shown the inhibition in an IL-35-

dependant manner of the proliferation of 

human naïve the conventional of T cells 

(Tconv cells) and convert suppressed Tconv 

cells into iTR35 by trophoblast cells. The 

balance between anti and proinflammatory 

cytokines is important for correct 

placentation. Studies showed that a 

cocktail of proinflammatory cytokines 

(tumor necrosis factor-α, IL-1β and 

interferon-γ) inhibited MMP-2 activity in 

JEG-3 cells and activated the PKR-like ER 

kinase (PERK)-eukaryotic translation 

initiation factor 2A (EIF2A). This showed 

that trophoblast invasion might be 

modulated by proinflammatory cytokines 

through ER stress pathway which 

regulates MMP-2 expression at both the 

transcriptional and translational levels.79 

The effect of chemokines is also relevant 

in trophoblast invasion, rhCXCL6 

significantly decreases the migration of 

HTR-8/SVneo cells and the invasion 

ability of primary trophoblast cells and 

HTR-8/SVneo cells in a dose-dependent 

manner. Likewise, a significant 
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suppression in pro-MMP-2 levels in the 

supernatant of rhCXCL6-treated HTR-

8/SVneo cells was found but levels of pro-

MMP-9 were not significantly different in 

supernatants of rhCXCL6-treated HTR-

8/SVneo cells while active MMP-9 and 

MMP-2 were not detected.80 

MMPs also regulate the bioavailability of 

growth factors, such as EGF or IGF-2, in 

cell surroundings.  The ECM proteins are 

able to bind a great variety of soluble 

growth factors thereby regulating their 

bioavailability and integrating multivalent 

signals to the cell in a timely and spatially 

organized manner, so on the ability of 

MMPs to break these proteins also 

regulates the binding of ligands to the 

trophoblast cells. This is the case for 

MMP-3 and MMP-9 which are able to 

proteolyze IGFBP-1.8 This protein is 

involved in the control of trophoblast 

migration but its precise role remains 

controversial as there are reports of 

enhanced or restrained trophoblast 

migration mediated by IGFBP-1.81 

Serine protease uPA, is another important 

molecule, which promotes matrix 

degradation and is required for activation 

of certain MMPs by the invasive 

extravillous trophoblast of the human 

placenta.82,83 These cells require diverse 

molecular mechanisms for their invasive 

function, with multiple steps including: 

binding to ECM components, degradation 

of the ECM by production of MMPs, 

particularly -2 and -9,84 and migration 

through the degraded ECM in the presence 

of Asn-linked complex type 

oligosaccharides as well as α5β1 integrin 

on the cell surface.4 

2.3.5 Regulatory effects of nutrition on 

the placenta 

During pregnancy course, the oxygen 

levels change dramatically, starting with a 

low-oxygen environment that is 

considered as hypoxic. Remarkably, the 

placental metabolism is mainly glycolytic, 

without affecting the energy of a highly 

proliferative trophoblast. These conditions 

apparently are required to an appropriate 

placental development, as show findings 

in pathological pregnancies.85 The 

nutrition features also change, from 

histotrophic to haemotrophic, with 

profound impact in nutrients and oxygen 

levels and trophoblast physiology.86 

Likewise, nutrition also exert regulatory 

effects on the placenta. A proteomic 

differential study showed that serum 

depletion on the first trimester human 

immortalized trophoblast cell line, HTR-

8/SVneo induces specific changes in 

protein expression concordant with main 

cell metabolic adaptations and the 

epithelial-to-mesenchymal transition 

(EMT), resembling the progression to a 

malignant phenotype. Specifically, we 

observed downregulation of keratin 8, and 

upregulation of vimentin, the glycolytic 

enzymes enolase and pyruvate kinase 

(PKM2) and tumor progression-related 

inosine-5’-monophosphate dehydrogenase 

2 (IMPDH2) enzyme in serum-depleted 

proteome. The proteins regulated by total 

serum depletion, but not affected by 

growth in 0.5 % serum, are members of the 

glycolytic and nucleotide metabolic 

pathways and EMT, suggesting an 

adaptive switch characteristic of malignant 

cells.87   As we showed, serum affects the 

trophoblastic cellular context and the 

response to a factor as TGF-β. 87,88 

3.   Pathologies of the Placenta 

 

3.1 Gestational Trophoblastic Disease 

 

Gestational trophoblastic disease (GTD) 

comprises a group of pregnancy-related 
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pathologies characterized by abnormal 

trophoblast growth and invasion. GTD 

includes pre-malignant complete (CHM) 

and partial (PHM) hydatidiform moles and 

malignant lesions such as invasive mole, 

placental site trophoblastic tumor (PSTT) 

and choriocarcinoma.88 Hydatidiform 

moles are the only pathologies of the group 

that can be recurrent in the same patient 

and indicate a genetic predisposition. 

 

Three situations could explain its origin.89 

1. Expulsion of the female pronucleus at 

the time of fertilization, followed by 

endoreplication of the male pronucleus 

leading to a complete hydatidiform mole 

(CHM).  

2. A triploid zygote fertilized by 2 

spermatozoa leading to a partial 

hydatidiform mole (PHM) 3 point apart. A 

nutritional defect during the differentiation 

of the oocytes or deterioration of the 

oxygen pressure during the first trimester 

of pregnancy (HM). 

 

Complete moles are more frequently 

invasive than partial moles. After uterine 

evacuation 10-20% of complete moles and 

up to 5% of partial moles undergo 

malignant transformation, into invasive 

mole, choriocarcinoma and PSTT. 

Choriocarcinoma is an extremely 

aggressive tumor that rapidly spreads 

giving up to metastases in lung, brain, 

kidney and liver.90 

 

It is well known that deregulation of the 

production of hCG is associated with 

hydatidiform mole. Particularly the 

hyperglycosylated form (HhCG) is 

increased by 5% in complete moles and by 

4% in partial moles, compared to values 

for a normal pregnancy. The transition to 

an invasive tumor is associated with a 

significant increase in HhCG, up to 30-

35% for an invasive mole and 100% for 

choriocarcinoma.91 Therefore, the 

measurement of the β-hCG in serum and 

urine, in concert with clinical and 

radiologic tests are useful for making the 

diagnosis of GTD and follow-up of the 

effect of therapy. 

 

The risk of CHM is higher than PHM, and 

it has been seen higher frequencies of 

molar pregnancies at the upper and lower 

extremes of maternal age.92  According to 

the American Cancer Society,93 the risk of 

complete molar pregnancy is high in 

women over age 35 years and younger 

than 20 years. The risk is even higher over 

age 45 years. Age is less likely to be a 

factor for partial hydatidiform mole. For 

choriocarcinoma, the risk is low before age 

25 years and then increases with age after 

menopause.  

 

In developed countries, the incidence of 

GTD is 1-3 per 1000 pregnancies, whereas 

the frequency in developing countries 

varies considerably, 94,95 and could be 10 

times more likely in Asian and African 

countries.89 In developing countries, due to 

the delay in diagnosis of HM, it is common 

that patients develop clinical 

complications with adverse outcomes. The 

early diagnosis of HM and prompt uterine 

evacuation are the only ways to prevent 

those outcomes. After uterine evacuation, 

patients need to be carefully followed to 

prevent the risk of development a 

trophoblastic neoplasia.   

 

3.1.1 The IGF axis and the 

pathogenesis of GTD 

 

The pathogenesis of GTD and its 

malignant change are still the subject of 

study. Several risk factors have been 

suggested, including maternal age, 

ethnicity, contraceptives, blood group and 

maternal nutritional state.89  Among them, 

race/ethnicity and a previous occurrence of 

a CHM appear to have a clear relationship 
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with the incidence of GTD.96  Several 

hypotheses have been suggested to explain 

the propensity to malignancy of CHM. 

Due to the complete absence of maternal 

genome in CHM, the function of some of 

the paternally expressed genes has been 

studied in relation to hydatidiform mole 

and choriocarcinoma development.97,98  

Among these, IGF-2 and H19 tightly 

linked on human chromosome 11, are of 

special interest because of their reciprocal 

imprinting and possible association with 

certain congenital abnormalities. Loss of 

imprinting in IGF-2 gene locus has been 

shown in hydatidiform mole concomitant 

to increased mRNA levels, deregulation of 

IGF-2 promoter usage and altered 

expression of IGF-2 and H19.98,99 

 

Most of the actions of IGF-1 and IGF-2 in 

the placenta are mediated through binding 

to the IGF-1R, that is expressed in 

syncytiotrophoblast and the villous 

cytotrophoblasts. However, conflicting 

reports exist on how the IGF-2 regulates 

the behavior of choriocarcinoma cells. We 

found that IGF-2 signaling in JEG-3 

choriocarcinoma cells, is initiated mainly 

by the activation of the Insulin receptor 

(IR) followed by downstream activation of 

Akt/ERK and enhancement of invasion. In 

contrast, IGF-1 activates the same 

pathway but through activation of the IGF-

1R.100 In addition, IGF-2 in JEG-3 

choriocarcinoma cells, induces the 

expression of the MMP-9 metalloprotease 

through the activation of PI3K/Akt 

pathway.101 

 

The IGF-2R/Mannose-6 phosphate 

receptor is expressed primarily in STB at 

term, however, its role in regulating as it 

was previously described.   

 

Recent studies have shown that the 

receptor also functions in signal 

transduction 20,29 and is able to stimulate 

cell migration in an in vitro model of 

extravillous trophoblast.30 

 

Several studies show that both IGF-2 and 

IGF-2R are associated in fetal growth 

restriction (FGR),102-105 therefore studying 

the effects and processes modulated by 

these factors would help with the 

understanding of this pathology. The IGF-

2 ligand shows differential affinities for 

the IGF family receptors interacting and 

mediating signaling pathways in the 

intracellular level.106 This factor’s 

mitogenic and invasive actions are 

mediated by the insulin-like growth factor 

type 1 receptor (IGF-1R),107 consequently 

researchers use an analogous peptide 

Leu27IGF-2 that bind exclusively IGF-2R, 

becoming its agonist. This peptide is 

soluble, doesn’t interact with IGF binding 

proteins (IGFBPs) and shows low affinity 

for IGF-1R and the insulin receptor 

(IR).30,108-110 

 

Leu27IGF-2 subcutaneous constant 

infusion in mice with FGR, showed fetal 

growth recovery with conditions similar to 

normal, and infusion in mice with normal 

pregnancy reduced fetus with weight 

lower than fifth percentile of the studied 

population.111 In early pig gestation, 

Leu27IGF-2 infusion increased proportion 

and volume of the placental labyrinthine 

zone and the syncytiotrophoblast surface 

area, resulting in greater placental glucose 

and aminoacid transport to the fetus.112  

This shows the relevance of the IGF-

2/IGF-2R interaction in fetal and placental 

development. 

 

These results along with other studies, 

show that IGF-2R activates one or a 

variety of intracellular signaling pathways 

by transactivating sphingosine-1-

phosphate G-protein coupled receptors,29 

or by its own coupling to a G protein.113-115  

Then, this ligand activates downstream 
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effectors as the protein kinase C and the 

Calcium/calmodulin-dependent protein 

kinase (CAMK2).116,117 Additionally, 

cardiomyocyte cells induced with 

Leu27IGF-2, show an increase in apoptosis 

by activation of the previously mentioned 

effectors.118 

 

Studies with HTR-8/SVneo induced with 

Leu27IGF-2, show a 2.5-fold increase in 

migration rate.30 Meanwhile, IGF-2R 

knockdown BeWo cell line, derived from 

choriocarcinoma, induced with the 

analogous peptide reveals that IGF-2R 

activated by IGF-2 participates in the 

inhibition of apoptosis induced by 

nutritional deprivation, without affecting 

cell proliferation.119 Nevertheless, in 

placenta explants IGF-2R knockdown 

shows that IGF-2R promotes cell 

proliferation, suggesting that in 

trophoblastic cells signaling mediated by 

IGF-2R would be involved in GTD 

development regulation processes.    

 

The ability of IGF-2R to enhance cell 

survival by inhibiting apoptosis by serum 

starvation was demonstrated in BeWo 

choriocarcinoma cells and this effect was 

lost following IGF-2R knockdown. 

Reduced IGF-2R expression increases the 

bioavailability of IGF-2 and enhances 

survival signaling via the IGF-1R.119 This 

finding may provide a basis to understand 

the effects of elevated IGF-2 in the 

induction of cell survival in trophoblast 

tumorigenesis and malignancy.    

 

As already mentioned, molar pregnancy is 

characterized by the high levels of IGF-2, 

both in tissue and plasma, suggesting its 

potential in the early diagnosis of the 

disease.  

 

3.1.2 The TGF-β axis and the 

pathogenesis of GTD 

 

Some studies present diverse alterations of 

TGF-β signaling system expression and 

TGF-β serum levels in GTD, with a 

distinctive alteration according to TGF-

β1/2 and TGF-β3. TGF-β3 mRNA was 

expressed in complete hydatidiform mole 

(CHM), normal first-trimester villi, the 

normal term placenta (after 

vaginal/abdominal deliver) and the 

preeclamptic placenta at term, while TGF-

β1 and TGF-β2 mRNA were not detected; 

and TGF-β3 expression was higher in 

CMH than normal first-trimester villi (the 

expression levels of TGF-β3 in the 

preeclamptic placenta and the normal 

placenta after cesarean birth were higher 

than in the placenta after vaginal 

delivery).120 Another study of partial 

hydatidiform moles (PHM), complete 

hydatidiform moles, and choriocarcinoma, 

using nonhydropic spontaneous abortions 

as controls, concurs with TGF-β3 

expression in all groups with the highest 

level in CHM and choriocarcinoma, being 

stronger in complete moles than that of 

choriocarcinomas although difference was 

not significant, and for TGF-β1 expression 

was highest in controls, and reduced in 

PHM, CHM and choriocarcinoma, the last 

with a minimum value.121 Summarizing, 

TGF-β1/2 expression is downregulated 

while for TGF-β3 is up-regulated in GTD.  

 

A different behavior presents the 

circulating levels. Serum level of TGF-β1 

was found significantly higher in GTD 

patients (20.29 +/- 10.68 pg/ml with 95% 

CI of 18.10-22.48 pg/ml), grouping 55 

complete moles, 32 persistent moles, and 8 

choriocarcinoma, compared with pregnant 

controls (10.26 +/- 11.84 pg/ml with 95% 

CI of 5.75-14.76 pg/ml) and non-pregnant 

controls (7.27 +/- 9.61 pg/ml with 95% CI 

of 3.01-11.53 pg/ml) (P < 0.001).122 

 

However, a systematic study of the 

expression of TGF-β signaling proteins 
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(TβRI, TβRII, Smad2/3, and Smad4) 

reveals differences in TGF-β1/2 levels and 

signaling proteins between molar lesions 

and choriocarcinoma. In general, these 

proteins are altered in GTD, displaying a 

different profile between moles and 

choriocarcinoma (132 cases, including 51 

normal placenta (20 first trimester, 11 

second trimester, and 20 third trimester) 

and 81 gestational trophoblastic diseases 

(17 choriocarcinoma, and 64 hydatidiform 

moles: 39 complete, 6 partial, and 19 

invasive)).47 Except choriocarcinoma, 

TGF-β1/2 expression was upregulated in 

GTD, and complete mole had a higher 

protein level than in normal placenta, but 

in choriocarcinoma the expression was 

decreased, lower than in complete and 

invasive moles. Except Smad2/3, 

expression of the TGF-β signaling 

proteins, TβRI, TβRII and Smad4, was 

significantly higher in various moles than 

normal trophoblast, but all evaluated TGF-

β signaling proteins were significantly 

downregulated in choriocarcinoma, 

compared to moles. Remarkably, TβRI 

and Smad2/3, whose levels were lower in 

choriocarcinoma than normal villous 

trophoblast (TβRI: p<0.025, Smad2/3: 

p<0.001). These findings suggest that the 

TGF-β signaling pathway is functionally 

enhanced in molar lesions and inactive in 

choriocarcinomas.47  

 

TβRI and Smad2/3 are essential mediators 

of the TGF-β signaling pathway, and its 

low level in choriocarcinoma could 

explain the reported resistance of 

choriocarcinoma to the anti-proliferative 

and anti-invasive effects of TGF-β.59  

Additional studies concur with the loss of 

Smad3 expression in choriocarcinoma 

cells,123 and prove that after Smad3 

reconstitution in choriocarcinoma cells 

these respond to TGF-β by up-regulating 

PAI-1,124 and TIMP-1,125 which are 

implied in control of invasion process.  

 

The biological effects also depend on the 

TGF-β isoform. A study showed that all 

TGF-β isoforms decreased proliferation of 

HRP-1 cells, derived from midgestation 

chorioallantoic placental explants of the 

outbred Holtzman rat, in a dose-dependent 

manner, whereas only TGF-β2 reduced 

proliferation of RCHO-1 rat 

choriocarcinoma cells, being resistant to 

growth-suppressive effect of TGF-β1 and 

β3,126 suggesting a differential isoform-

based response of choriocarcinoma cells. 

 

These studies reveal that the expression of 

TGF-β signaling proteins is dynamic and 

dual over the range of normal pregnancy, 

moles and choriocarcinoma, raising and 

falling. Considering the regulatory actions 

of TGF-β, those alterations could have a 

profound impact in the pathogenesis and 

progression of GTD. The reduced 

expression of TGF-β signaling proteins on 

choriocarcinoma may imply a loss of 

response to negative regulatory action of 

TGF-β, contributing to malignant 

progression and choriocarcinoma 

invasiveness. Despite it is not clear the 

functional implications of increased TGF-

β signaling molecules in moles, these 

allow to differentiate the moles against 

choriocarcinoma and is a distinctive 

molecular feature in malignant 

progression. Before an irreversible 

malignization to choriocarcinoma, the 

moles may respond to regulatory stimuli, 

as those of TGF-β, nonetheless these have 

several mitogenic signaling pathways 

activated, as those of IGFs, which 

determine its pathological phenotype. The 

later according to the fact that biological 

regulation is carried on by circuits of 

signaling pathways, where multiple 

signals are integrated inside the cell, and 

the output and cellular response depend on 

the balance of these contrary signals. 

Studies comparing several signaling 
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molecules between invasive moles and 

choriocarcinoma may be interesting and 

would allow to understand the malignant 

progression and loss of response to 

negative regulatory signals. 

 

Despite choriocarcinoma cells are 

refractory to some regulatory actions of 

TGF-β, they still can respond to other 

effects. In studies with the 

choriocarcinoma cell line JEG-3, TGF-β 

markedly decreased the secretion of hCG 

from choriocarcinoma JEG-3 cells, 

although mRNA levels were not markedly 

altered,58 and reduced the expression and 

secretion of MMP-9,60 which suggest a 

partial response to anti-invasive actions of 

TGF-β. However, the scenario is much 

more complex: while in placentae the 

TGF-β act as a negative regulator, in some 

tumoral models it acts as a positive 

regulator of proliferation and invasion. 

 

3.1.2.1 Actions of TGF as dual factor 

and context-determinants 

 

TGF-β could act as either a tumor 

suppressor or a tumor promoter in a 

context-dependent way. At early stages of 

tumorigenesis, TGF-beta may act as a 

suppressor, by inhibiting cell cycle 

progression and promoting apoptosis; 

although, in advanced malignancy it 

promotes tumor progression by enhancing 

migration, invasion, survival and 

metastasis of the tumor cells.127 

 

In some models, different TGF-β isoforms 

could increase the invasiveness of 

choriocarcinoma cells. Lafontaine et. al. 

showed that TGF-β2 and TGF-β3 

increased the invasive capability of 

placenta derived HRP-1 cells, and all 

TGF-β isoforms increased the 

invasiveness of choriocarcinoma RCHO-1 

cells.126 In choriocarcinoma JEG-3 cells, 

TGF-β1 promoted the invasiveness 

depending on the downregulation of TβRI, 

TβRII, Smad4 and the upregulation of 

MMP-9 and TIMP-1, but with a MMP-

9/TIMP-1 ratio higher than 1 which allows 

invasiveness, suggesting that a limited 

TGF-β1/Smad4 signal propagation may 

promote the tumoral invasiveness.128  

Similar to hypoxia effects, TGF-β3 

enhanced the amount of intracellular 

cysteine-rich 61 (CYR61, CCN1) and 

nephroblastoma overexpressed (NOV, 

CCN3) proteins and enhanced the 

secretion of CYR61 under hypoxic 

conditions in first-trimester placental 

explants and in JEG3 choriocarcinoma 

cells, and both CCN proteins increased 

migration and invasion of JEG3 cells.129 

 

These opposing effects of TGF-β depend 

on intra and extracellular context-

determinants and may result from distinct 

epigenomes and crosstalk with other 

pathways.  

 

TGF-β can act through Smad-independent 

pathways, including MAPK pathway. In 

cells lacking endogenous Smad3 as JEG-3 

choriocarcinoma cells, TGF-β stimulated 

an early activation of the small GTPase 

RhoA and RhoB, Smad2/3-independent 

and involving Src and the Guanine 

Nucleotide Exchange Factor Vav2 130. 

When Smad3 was overexpressed, a TGF-

β‐induced transcriptional up‐regulation of 

the RhoB gene was restored, revealing a 

novel mechanism of cross‐talk between 

the classical TGF-β/Smad pathway and 

Rho GTPases.131 In a study, where JEG-3 

cells unusually expressed Smad3, TGF-β 

activated Smad3 and induced Smad3 

translocation into the nucleus, promoted 

p38 and phospho-p38 protein levels, TβRI 

inhibition suppressed activation of p38 

MAPK signaling pathway while 

p38 MAPK inhibition attenuated TGF-β1-

induced Smad3 expression and suppressed 

the activation of Smad3, suggesting that 
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TGF-β can induce the activation of p38 

MAPK.132 Blockade of the TGF‑β and p38 

MAPK pathways attenuated the 

expression of Smad3, TβRI and TβRII, 

revealing that p38 MAPK contributes to 

the TGF‑β pathway,133 showing a crosstalk 

between p38 and Smad3 through TGF-β1 

in JEG-3 cells. Additional to isoform-

specific effects, each TGF-β isoform 

activates distinct pathways. In HRP-1 and 

RCHO-1 cells, ERK, MAPK14 (p38 

MAPK), or Smad pathways were activated 

by TGF-β in an isoform-specific manner 

and MTT proliferation assays revealed that 

ERK pathway is partially implicated in 

TGF-β3 - reduced HRP-1 cell 

proliferation.126 Based on available 

evidence, we hypothesized that distinct 

and additional actions of TGF-β may be 

executed through a crosstalk with Smad-

independent pathways. In moles and 

choriocarcinoma, the epigenome status 

could determine the context-specific 

effects of TGF-β. In breast cancer, distinct 

epigenomes of breast-tumor-initiating 

cells (BTICs) directs transcriptional 

programs, where cell-type-specific 

patterns of DNA and histone modifications 

provide a modulatory layer by determining 

accessibility of genes to regulation by 

TGF-β/Smad3.134 

 

3.1.2.2 TGF- β and DNA methylation 

 

The intimate crosstalk between DNA 

methylation and activity and operation of 

many signaling and molecular 

mechanisms has been described in depth 

for several processes including cancer and 

pregnancy.135 In this context, it has been 

demonstrated that TGF-β mediates the 

epithelial to mesenchymal transition in 

ovarian cancer,136 that it plays an 

important role in esophageal cancer 

through DNA methylation,137 and that it 

plays major and diverse roles in breast 

cancer.138 Furthermore, it has been 

reported that almost all genes with 

differential methylation are related to 

TGF-β in prostate cancer.139 Regarding 

gestational diseases, connections between 

DNA methylation and TGF- β function has 

been mainly described in preeclampsia. In 

this condition, members of TGF-β 

pathway showed general hypomethylation 

levels, which were related to augmented 

expression of cytokines promoting this 

condition, suggesting that alterations in the 

methylation landscape are driving factors 

operating at the basis of preeclampsia 

origin through destabilization of TGF-β 

signaling.  

 

3.2 Altered placental DNA methylation 

and clinical complications 

 

Several studies describe alterations in the 

methylation patterns during development 

and as a consequence of environmental 

stimuli: prenatal maternal consumption of 

alcohol and cigarette, as well as the quality 

of the maternal diet have direct and 

important effects on the methylation 

landscape and function of the placenta.140-

143  In this way, many alterations in the 

DNA methylation landscape of the 

placental genome are related to alterations 

in the phenotype of the placental cell 

lineages and those, with alterations in 

placentation and with embryonic 

development disorders such as 

preeclampsia, mole and other gestational 

trophoblastic diseases. 

Several studies show that DNA 

methylation landscape in placental tissues 

has a direct relationship with the outcome 

of the pregnancy, specifically with the 

weight and size of the newborn and with 

many clinic alterations, and it has been 

associated even with the socioeconomic 

status of the mother.144-148 The study of the 

role of the DNA methylation in many 

gestational complications has been greatly 
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facilitated by the use of the Illumina 

Infinium methylation technology, which 

allows the identification of differential 

methylation between control groups and 

groups of patients with the gestational 

disease under investigation.149-158 Some of 

these pathologies and the associated 

methylation findings are discussed below. 

3.2.1 Gestational diabetes  

 

Gestational diabetes is maybe the 

gestational disease in which alterations in 

the DNA methylation landscape have been 

more characterized. This disease is an 

intolerance to glucose diagnosed during 

pregnancy, mainly during second and third 

trimesters and it is one of the principal 

complications during pregnancy that 

contributes to metabolic disorders of the 

offspring through epigenetic mechanisms. 

Remarkably, maternal hyperglycemia 

during pregnancy is associated with an 

excessive fetal growth and with perinatal 

and developmental complications, 

relationship that is regulated by changes in 

the placental methylome.151,159-161  

Gestational diabetes is also related to an 

increase of adverse perinatal outcomes and 

with a future risk of the offspring to 

develop disorders such as obesity and type 

2 diabetes mellitus. Several projects have 

studied the relationship between the 

epigenetic mechanisms and the impacts on 

the health of the offspring, being the most 

abundant those regarding DNA 

methylation.162 A complete list of the 

studies in this regard can be found in Elliot 

et. al.163 Some studies show that 

gestational diabetes has epigenetic effects 

mainly in genes involved in type 1 diabetes 

mellitus, major histocompatibility 

complex-associated immunology and 

neuronal development related pathways, 

with important consequences for fetal 

growth and development. Furthermore, 

some studies back the notion that the DNA 

methylation status of the placenta is 

related to maternal sensibility to insulin,164 

and that the glycemic response is related to 

the methylation status of placental genes 

under epigenetic control.165 

3.2.2 Preeclampsia  

 

Preeclampsia is a hypertensive disorder 

characterized by high arterial blood 

pressure and liver or renal damage that 

affects around 6% of all pregnancies 

worldwide, resulting in fetal morbidity and 

mortality. Alterations in the DNA 

methylation landscape of vascular tissues 

of mothers with preeclampsia had been 

previously identified, with the 

involvement of important genes for 

vascular function,166 early notion that an 

alteration of DNA methylation could 

contribute to the pathogenesis of 

preeclampsia. Later, another study aimed 

to identify those genes whose methylation 

state was associated with preeclampsia,152 

and it was demonstrated that preeclampsia 

is related with altered placental 

methylation through the comparison of the 

methylation status of 24 mothers with 

preeclampsia and a control group of 24 

healthy mothers.167 Remarkably, it was 

found that the methylation status of the 

placenta is associated with augmented 

blood pressure through genes involved in 

metabolic-vascular diseases.144 

 

3.2.3 Hydatidiform mole 

 

A recent study shows that a pre-existent 

mutation in the gene KHDC3L is a cause 

for hydatidiform mole.168  This mutation is 

associated with a genomic hypomethy-

lation in the ovulum such that it causes 

alterations in the placental implantation 

process. Likewise, mutations in the gene 

NLRPJ have associated to this 
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phenomenon of deleterious 

hypomethylation of DNA. Also, It has 

been demonstrated that strategies based on 

the analysis of DNA methylation have a 

high prediction potential of cases of 

gestational trophoblastic neoplasms. 

 

3.2.4 Intrauterine growth restriction 

 

Intrauterine growth restriction (IUGR) is a 

disorder characterized by the limited 

growth of the fetus during pregnancy and 

it has long-term consequences on the 

health of the offspring because its 

implications in fetal growth and 

development. These deleterious effects 

have been extensively described in 

different tissues and species,157,169-172 and 

it is believed that placental DNA 

methylation has an important effect in its 

onset and development so alterations in 

this mechanism can imply the occurrence 

of alterations during placental invasion 

and function. In this regard, 8 genes whose 

methylation status was identified as 

differential between twin pairs with highly 

discordant growth have been identified,173 

as well as 4 genes directly related with 

IUGR, while a very recent study explores 

the possible mechanisms through which 

the disease could be progressing from a 

methylomic point of view.174 

3.2.5 Cancer 

 

For the correct operation of the placenta it 

is necessary a correct invasion of the 

maternal decidua and the remodeling of its 

vasculature, both processes remarkably 

similar to tumor metastasis. Interestingly, 

somatic transition to cancer has been 

associated with reactivation of embryonic 

developmental programs for the 

consecution of its highly proliferative and 

invasive phenotype.  In this respect, a now 

outdated but very complete review 

discusses all aspects of the still relevant 

knowledge of DNA methylation in cancer 

as well as the future directions of the field 

and the most important questions yet to be 

answered. Of remarkable importance are 

those aspects regarding DNA 

abnormalities in placental diseases and 

specially the characterization of the 

epigenetic phenomena taking place in the 

somatic transition to cancer. Years later 

two important papers highlighted several 

aspects of the similarities of the placental 

and cancerous phenotypes in terms of 

DNA methylation.175,176  Taken together, 

these findings suggest there is a whole 

epigenetic regulatory network governing 

the placental phenotype which is used by 

the cancerous cells to switch to an invasive 

phenotype. Finally, a recent review by 

Vlahos et al,2 summarizes the current 

knowledge of the interplay between 

placental health and disease from a DNA 

methylome perspective, including those 

aspects regarding cancer initiation and 

progression. 

 

4. Conclusion 

 

A significant body of evidence has 

accumulated over the last years supporting 

the pivotal roles of the IGF and TGF-β 

growth factors in the regulation of human 

placenta development. Whereas the IGF 

axis mainly induces proliferation and 

differentiation of trophoblast cells, the 

TGF-β axis fundamental role is to inhibit 

cell invasiveness. A delicate balance 

between these cellular events is spatially 

and temporally regulated to ensure normal 

trophoblast development (Figure 2). The 

progressive loss of control in proliferation, 

migration and invasion of trophoblasts in 

normal placenta, originate the 

transformation into hydatidiform mole, 

choriocarcinoma and characterize 

placental pathologies, like preeclampsia. 
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Although much knowledge has been 

gained over the last years regarding the 

molecular circuits associated with 

placental pathologies, there are still many 

aspects that are not fully understood.  

Additional research in this area will 

improve the diagnosis and treatment of 

gestational trophoblastic diseases.  

 

 

 

 
 

Figure 2. Altered protein expression in placenta and implications on GTD: transformation 

into hydatidiform mole and choriocarcinoma. 
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