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1.0 Abstract 

This project integrated tools and hybrid methodologies historically used for early warning, intelligence, counter space, 

public health, informatics, and medical surveillance applications. A multidiscipline team assembled and explored 

non-medical prediction and analytical techniques that successfully predict critical events for low probability but high-

regret national and global scenarios. The team then created novel approaches needed to fill nuanced and unique gaps 

for the infectious disease prediction challenge. The team adopted and applied those proven procedures to determine 

which would be efficacious in foretelling infectious disease outbreaks around the world.  One outcome of that effort 

was a successful two-year development and validation project designated ‘RAID’ (Risk Awareness Framework for 

Infectious Diseases), which focused on malaria prediction. The project’s objective was to maximize the warning 

(prediction) window of impending malaria epidemic outbreaks with sufficient time to allow meaningful preventive 

intervention before widespread human infection.  It is generally recognized the more protracted the prediction window 

extends before an event, the more time available for health authorities to muster and deploy resources, which lessen 

morbidity, mortality, and harmful economic effects.  Also, the value of early warning for an imminent epidemic must 

have mitigation options, or the warning window would have no beneficial impact on health outcomes.  Finally, early 

notice is preferable over surprise epidemics, as unexpected waves of patients seeking acute care can easily overwhelm 

most local medical systems, as history repeatedly teaches.  This cliché keeps repeating, with recurring Ebola 

epidemics and the recent COVID-19 pandemic as prominent exemplars.  Predictive lead times need to be adequate 

for an intervention to be relevant.  RAID’s focus on malaria prediction met these criteria from a relevant clinical and 

humanitarian perspective. 

Subsequent papers will address successful external generalization of these methods in predicting other similar 

infectious diseases.  The model presented in this manuscript supports the conclusion that an additional two weeks 

advance notice could be available to public health authorities utilizing these techniques.  This foreknowledge would 

allow the deployment of limited health resources into areas where they would do the most good and just in time.  The 

geographical specificity was examined down to 5 km x 5 km grid squares overlaid anywhere in the world.  Most of 

the model’s input data were derived from remote sensing satellite sources that could combine with historical WHO 

(World Health Organization) or nation-reported existential pathogen loads to improve model accuracy; however, such 

data harmonization is not required.  If ground sensors were integrated into the modeling, the confidence of the risk 

of infection would logically improve.  The model provides a successful global risk assessment via commercially 

available remote space sensors, even without ground sensing. 

RAID provides a necessary and useful preliminary means to predictive situational awareness.  This improved 

predictive awareness is sufficiently granular to identify last chance windows for public health interventions globally.  

This need will become even more pronounced as infectious diseases evolve biologically and migrate geographically 

at ever-increasing rates.  

Keywords: infectious disease prediction, malaria prediction, malaria, public health, medical modeling, medical 

prediction models 
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2.0 Introduction 

Understanding infectious disease propagation is 

globally crucial for several reasons: (1) global 

warming is changing the landscape of “typical” 

diseases by geography and time of year; (2) 

greater mobility of the worldwide populace; and 

(3) mutation of infectious diseases from climate 

changes, deforestation, and antibiotic/anti-

parasitic usage. These activities make the ability 

to predict the risk of infection more difficult than 

in years past. RAID focused on mosquito-borne 

disease that adversely and pervasively impacts 

global health and travel. 

Mosquito-borne disease transmission is a 

seemingly simple process requiring two events. 

First, a female mosquito must bite an infected 

person and uptake the pathogen (five 

Plasmodium species are malarial parasites). 

Second, the now-infected mosquito then bites a 

susceptible person. For the first bite to occur, both 

infected people (i.e., pathogen pool, PP) and a 

sufficient number of mosquitoes in interest areas 

are required. For the second event to occur, the 

mosquito needs to live long enough after the 

pathogen's ingestion to become virulent (i.e., 

capable of transmitting the disease) and bite a 

susceptible person. However, in reality, this 

seemingly simple sequence is challenging to 

model accurately and assess in a timely fashion.  

 

 

 

 

 

 

 

 

 

 

The Risk Awareness framework for Infectious 

Disease (RAID) project comprises a 

deterministic calculation to assess the local 

conditions of a specific area (5km x 5km) and 

establish the risk of a susceptible person 

contracting malaria (RCM) approximately two 

weeks before the virulent mosquito transferring 

the pathogen to a human via a bite. The RAID 

model uses the Diversity Prediction Theorem, 

unit analysis, and activity-based intelligence 

(ABI) principles to enable reliable predictive 

algorithms. Appendix A, B, and C contain short 

descriptions of these topics. 

Malaria is a well-researched and long-studied 

infectious disease. Foundational equations and 

modeling techniques have risen out of much 
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research, data, and knowledge.  Where possible, 

first principles are used to characterize malarial 

epidemic characteristics to identify an outbreak's 

prediction.  When that knowledge was 

unavailable, the model received stochastic and 

empirical data creating the first infectious disease 

prediction model to use a hybrid approach via the 

Diversity Prediction Theorem (DPT).  The team 

found coordinate transformation and dimensional 

analysis invaluable in reducing existing 

infectious disease models' complexity to create 

this new, arguably more predictive paradigm. The 

study of malaria outbreaks in the literature is 

depicted on a wide variety of axes (e.g., time, 

probability, temperature, etc.). To create an end-

to-end evaluation of the local interactions leading 

to an outbreak, RAID standardized the x-axis to 

days, as the critical aspect of warning is time. 

Converting probability of survival from Marten's 

Equation1 into a lifetime as a function of 

temperature for a specified segment of the 

population permitted the creation of what the 

team termed ‘Vector Population Days’ (VPD).  

VPD represents the days an adult mosquito is 

alive, virulent, and able to transmit malaria 

through a bite. As biting is a punctuated event, it 

occurs a discrete number of times within the 

lifetime of a mosquito and the VPD.  The number 

of biting opportunities is called Virulent Biting 

Opportunities (VBO). VBO is used explicitly as 

the number of times the “dice are rolled” in 

calculating the Risk of Contracting Malaria 

(RCM).  

 

This is a significant public health milestone.  For 

the first time, real-time data for a specific area is 

compiled for predicting malarial infections up to 

fourteen days ahead of malarial epidemic surges. 

Due to the distributed nature of the data, this 

approach can be scaled globally.  This fourteen-

day warning period could provide adequate time 

for national and world health authorities to 

marshal resources to minimize morbidity and 

mortality in high-risk areas, lessening suffering, 

and economic consequences.  

 

The model was validated using multiple malaria 

outbreak cases never used in model development.  

The team applied the model to these outbreaks 

retroactively to determine model validity and 

accuracy. 

This paper documents the predictive warning of 

malaria outbreaks in the RAID model. Future 

manuscripts will describe how this model is 

applied to other viral and parasitic infections. 

3.0 RAID Basics - Malaria 

For local transmission of disease to occur, there 

must be sufficient “sick”/infectious people (i.e., 

pathogen pool, PP) in the area and an adequate 

number of mosquitoes to sustain a disease 

outbreak. As there is no current technique to 

monitor either factor globally, the model uses 

surrogate tests to determine if population and 

environmental conditions required for 

transmission are present. The correlation between 

surrogate conditions and the actual measurement 

of PPs and mosquitoes is discussed later in this 

paper.  Following the Diversity Prediction 

Theorem, where aggregation of many 

independent evaluations is often more accurate 

than a single expert evaluation, the RAID 

algorithm relied on several proxy tests to 

determine the Pathogen Pool (PP), as well as the 

Environmental Threshold for Transmission 

(ETT) (i.e., environment conducive to support a 

sufficient mosquito population).  

The figure below depicts how the combination of 

PP and ETT tests determined the Regional 

Threshold for Transmission (RTT). RTT 

represents the likelihood of the first bite of the 

necessary two-bite sequence. 
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Confidence levels for values were calculated 

based on the number and variability of tests 

across surrogates within each factor. For 

example, the more tests used, and the more tests 

found in agreement, the higher the confidence in 

the result. These confidence levels were not 

incorporated into the final RCM calculations but 

are described and available for context in RAID. 

The use of several tests also produced a more 

reliable algorithm, as it combines insight from 

disparate research approaches and ensures 

RAID’s ability to make predictions with limited 

data.  

3.1 Pathogen (Plasmodium) Pool (PP) 

Three tests determine the value of PP in an area: 

(1) Annual Parasite Incidence (API), a commonly 

reported value stating the number of confirmed 

malaria cases during one year for a population per 

1,000 people; (2) the Entomological Inoculation 

Rate (EIR) is the number of mosquito bites per 

night multiplied by the proportion of bites 

positive for sporozoites. EIR indicates an amount 

of live Plasmodium present in the grid; and (3) 

historical cases from the annual World Malaria 

Risk Chart from the International Association for 

Medical Assistance to Travelers (IAMAT) is a 

compilation of geographic endemicity from the 

Center for Disease Control (CDC), Malaria Atlas 

Project (MAP), and World Health Organization 

(WHO). All three tests (API, EIR, and historical 

cases) were equally weighted to determine if PP 

existed in the area of interest.  

3.2 Environmental Threshold for Transmission 

(ETT) 

 

Daily weather conditions are key factors in 

establishing a viable mosquito population to 

transmit malaria from person to person. The 

survival of both adult and larvae stages of 

Anopheles mosquitoes (the vector) is highly 

sensitive to temperature and water changes. 

Throughout scientific literature, numerous 

validated relationships correlate indicators of an 

ideal temperature range and standing water to 

increase malaria cases2–4. Rather than choosing 

the single ‘best’ of these relationships, five well-

documented causative tests are used to add to the 

model's diversity. ETT is calculated from (1) a 

combination of temperature and rainfall; (2) a 

combination of temperature and soil moisture; (3) 

a combination of temperature and relative 

humidity; (4) Enhanced Vegetation Index (EVI); 

and (5) Normalized Difference Vegetation Index 

(NDVI). It should be noted  that NDVI and EVI 

utilize spectral bands from remote imaging 

instruments to determine 'greenness' of an area, 

representing sufficient water and adequate 

temperature range to support mosquito 

proliferation. NDVI is a proportion of using Red 

and Near-Infrared spectral bands. EVI includes a 

third Blue band to provide more significant 

variation in densely forested areas and correct 
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soil background noise and atmospheric 

distortions. These may be derived from space-

based global data streams, while EVI and NDVI 

are uniquely available from these near real-time 

space-based observations. For example, the 

presence of standing water is critical to the 

fecundity and survival of generations of 

Anopheles mosquito populations.  If there is no 

water present, mosquito eggs cannot hatch and 

larval, unable to mature into the vector adult's 

paramount life stage.  Without adult mosquitoes, 

there is very little chance of a Plasmodium sp. 

passing from one human to another and, in turn, 

a much lower risk of contracting malaria.  

Throughout our research, rainfall is often cited as 

a proxy to the presence of standing water.  Other 

forms, such as irrigation ditches, slow-flowing 

streams, or flooded crop fields, also contribute to 

suitable habitats.  A threshold of 80mm/month 

rainfall is necessary to establish and sustain an 

abundant mosquito population.  The longer 

timeframe this amount of rainfall accumulates, 

the more extended the duration of the RCM. 

Please note, where rainfall is not able to be 

accurately collected, other surrogates, such as 

NDVI (.4), EVI (.2), relative humidity (60%), and 

soil moisture percentages (20%) are used.   

Standing water is critical to the maintenance of 

the vector population, while temperature affects 

transmission effectiveness through its impact on 

EIP and Anopheles survival.  Temperature 

influences multiple life stages of the mosquito, 

from larval duration through adulthood and biting 

rates.  In addition, it affects the parasite 

maturation within the vector.  This sensitive 

dependency can yield a large population of 

infected mosquitoes as a non-threat to a human 

population or as extremely dangerous in terms of 

RCM, in the span of 10°C. 

3.3 Regional Threshold for Transmission (RTT) 

To determine the likelihood of a mosquito biting 

an infected person, the PP and ETT factors are 

used to calculate the Regional Threshold for 

Transmission (RTT) shown in the equation 

below. Before the RTT calculation is carried out, 

a mosquito presence map created by the Malaria 

Atlas Project is referenced to verify the 

Anopheles mosquito is found in the area of 

interest. This map can be found at 

https://malariaatlas.org. If the Anopheles 

mosquito is not present in the area, RTT is equal 

to zero, and there is no Risk of Contracting 

Malaria (RCM). 

If the mosquito is present, RTT is calculated 

using the following equation developed 

empirically from documented outbreaks:  

 

𝑅𝑇𝑇 = (
 (𝑃𝑃 − 0.9)

2.1
)

2

∗ (
(𝐸𝑇𝑇 − 0.9)

2.1
) 

 

RTT is one of the three components needed to 

calculate RCM. The other two factors are the 

probability of virulent bite (i.e., the second bite) 

and transmission opportunity. The figure below 

displays the three major terms combining to 

produce an RCM value. One of RAID's primary 

innovations, Virulent Biting Opportunities 

(VBO), is contained within the “probability of a 

virulent bite." 

https://malariaatlas.org/
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3.4 Probability of a Virulent Bite 

 

For a susceptible person to be bitten by a virulent 

mosquito, the mosquito must first bite an infected 

individual and live longer than the pathogen's 

incubation period within the mosquito. Before a 

female Anopheles mosquito takes her first 

bloodmeal (only female mosquitoes bite), she 

first emerges as an adult and finds a mate. For the 

malaria vector, the Anopheles mosquito, the time 

to first bite is approximated as the time to breed 

(they only mate once in their lifetime.) This can 

be treated as a constant two days. Time to breed 

subtracted from the mosquito’s lifetime results in 

the total number of days the mosquito possesses 

the capacity to bite.  

 

To determine an Anopheles mosquito's lifetime, 

the temperature-dependent (T in ̊C) adult survival 

equation presented by Marten is used, as shown 

below5. 

𝐴𝑑𝑢𝑙𝑡 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 (𝐴𝑛𝑜𝑝ℎ𝑒𝑙𝑒𝑠 𝑔𝑎𝑚𝑏𝑖𝑎𝑒) = 𝑒
−1

(−4.4+1.31𝑇∗(−0.03𝑇2)) 

The time between the first bite and when a 

mosquito becomes virulent is called the extrinsic 

incubation period (EIP). This delay represents the 

time for an ingested pathogen to mature/replicate 

and travel to the mosquito's saliva. The incubation 

periods for the primary three strains of malaria (Pl. 

falciparum, Pl. vivax, and Pl. malariae) are as 

follows6–8: 

𝑃𝑙. 𝑓𝑎𝑙𝑐𝑖𝑝𝑎𝑟𝑢𝑚 =
11

𝑇 − 16
     

 𝑃𝑙. 𝑣𝑖𝑣𝑎𝑥 =
105

𝑇−14.5
   

𝑃𝑙. 𝑚𝑎𝑙𝑎𝑟𝑖𝑎𝑒 =
144

𝑇 − 16
 

The difference between the adult lifetime (minus 

the two days to breed) and EIP gives the number 

of days the mosquito is infectious during her 

lifetime as it is conservatively assumed the 

mosquito contracts the pathogen on her first blood 

meal of an infected person. This value is called 

vector population days (VPD).   

 

𝑉𝑒𝑐𝑡𝑜𝑟 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐷𝑎𝑦𝑠 (𝑉𝑃𝐷) = 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 − 𝑇𝑖𝑚𝑒 𝑡𝑜 𝐵𝑟𝑒𝑒𝑑 − 𝐸𝐼𝑃 

By calculating the number of days a chosen 

percentage of a mosquito population survives, we 

can determine the number of days a given 

population of mosquitoes may be virulent (i.e., 

transmit the pathogen to a susceptible human, via 

the “second” bite). Many population survival rates 
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were investigated, and the figures to the right 

depict three specific cases: 1%: top panel, 5%: 

middle panel, and 50%: bottom panel.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At 50%, VPD is zero-days, as the EIP lasts longer 

than the survival of 50% of mosquitoes across all 

temperatures (see lower panel). The “1% swarm” 

represents the time until only 1% of the swarm 

survives (i.e., 99% of the swarm dies) as a function 

of temperature. This is represented in the top panel 

and, if used, would create larger VPD values. 

Through discussion and research on mosquito 

lifetime with expert entomologists, a RAID uses a 

VPD threshold of 5%9. This implies sufficient 

active female mosquitoes to start the disease 

transmission process when 5% of a swarm is still 

alive. 
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Using the mosquito lifetime equation presented by 

Marten5 the VPD for the lifetime comparable to 

5% of the swarm surviving is shown below in the 

left panel. The plot highlights VPD as the time 

between each respective EIP curve and Marten’s 

lifetime equation for a given temperature.  

The panel on the right displays VPD values for 

each transmitting parasites calculated in the left 

panel. With the number of possible infectious days 

in a mosquito's lifetime (i.e., VPD) known, the 

number of times a mosquito may have the 

opportunity to bite a human to pass along the 

disease can be calculated. This term is referred to 

as virulent biting opportunities (VBO).  

VBO divides the VPD by the frequency per day the mosquito takes a blood meal, as shown below.   

𝑉𝐵𝑂 =  
𝑉𝑃𝐷

𝑏𝑙𝑜𝑜𝑑𝑚𝑒𝑎𝑙, (𝑖. 𝑒. , 𝑏𝑖𝑡𝑖𝑛𝑔) 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 

 

The frequency at which an Anopheles mosquito 

takes a bloodmeal is based on the gonotrophic 

cycle (i.e., the cycle of maturing and laying eggs), 

as the female does not bite during egg production. 

This is typically two to three days, but is 

dependent on temperature; as temperature 

increases, the cycle time decreases10 (i.e., the 

number of virulent biting opportunities increases). 

The equation for the gonotrophic cycle (gono) for 

the Anopheles mosquito is shown below in the 

panel on the left and plotted in the graph on the 

right. 

The resulting VBO equation is shown in the left 

panel figure, while the resulting VBO curves are 

plotted in the right panel.  

VP

D 
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In the equation above, VPD and gono are 

highlighted as temperature-dependent (T) to 

emphasize the relationship between them. For 

example, as temperature increases, the 

gonotrophic cycle quickens, increasing the biting 

rate. However, at 25C̊, the rise in temperature 

starts to reduce lifetime. This increase in 

temperature causes a "sweet spot" for disease 

transmission, which can be seen in the figure 

above to be around 27°C-29°C.  

With representation for VBO values, the 

probability of a virulent bite occurring can be 

calculated with the equation below. 

 

 

𝑔𝑜𝑛𝑜(𝑇) = 1 +
37.1

𝑇 − 7.7
 

 Where T = temperature C̊ 
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 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑉𝑖𝑟𝑢𝑙𝑒𝑛𝑡 𝐵𝑖𝑡𝑒 = 1 − [1 − (𝐵𝑖𝑡𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 ∗ 𝑇𝜂)]
𝑉𝐵𝑂

 

𝑊ℎ𝑒𝑟𝑒 𝐵𝑖𝑡𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 [4] =
𝐹𝑔𝑜𝑛𝑜

(1+
37

𝑇−7.7
)

+
1−𝐹𝑔𝑜𝑛𝑜

(1.71+544347.6𝑇)−3.93 

                 𝐹𝑔𝑜𝑛𝑜 = min (𝑚𝑎𝑥 (
−2

3
+

1

30
𝑇, 0,0.5)) 

                 𝑇𝜂 = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑖𝑡𝑒 = 0.3 

 

The second bite's transmission efficiency is the 

probability the pathogen is transferred from the 

virulent mosquito to the human. The first bite's 

transmission efficiency is assumed and equal to 1 

in the RTT section of the equation, while the 

second is represented by a constant 0.3, based on 

literature11.  

 3.5 Opportunity for Transmission 

The final component of RCM is the opportunity of 

a virulent mosquito bite of a single susceptible 

person (SP). The equation below accounts for 

empirical insights about Anopheles biting 

preference and normalizes the effects of having 

many bloodmeal opportunities (larger populations 

decrease the probability of a single SP bite). 

 

𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦 𝑓𝑜𝑟 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =
𝐴𝑛𝑜𝑝ℎ𝑒𝑙𝑒𝑠 𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

(
0.002 ∗ 𝐵𝑙𝑜𝑜𝑑𝑚𝑒𝑎𝑙𝑠 + 100

100
)
 

Where Anopheles Preference is the mosquito’s preference of bloodmeal (dependent on 

species):  

𝐴𝑛𝑜𝑡ℎ𝑟𝑜𝑝𝑜𝑝ℎ𝑖𝑙𝑖𝑐 (𝑝𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑓𝑒𝑒𝑑 𝑜𝑛 ℎ𝑢𝑚𝑎𝑛𝑠) = 0.7 

𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑠𝑡𝑖𝑐 (𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝑏𝑖𝑡𝑒𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑎𝑛𝑖𝑚𝑎𝑙/ℎ𝑢𝑚𝑎𝑛 ) = 0.5 

𝑍𝑜𝑜𝑝ℎ𝑖𝑙𝑖𝑐 (𝑝𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑓𝑒𝑒𝑑 𝑜𝑛 𝑎𝑛𝑖𝑚𝑎𝑙𝑠) = 0.3 

                                        𝐵𝑙𝑜𝑜𝑑𝑚𝑒𝑎𝑙𝑠 = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 𝐿𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 +  𝑆𝑃 

The population is derived from the Gridded 

Population of the World from NASA 

Socioeconomic Data and Application Center 

while the livestock value is taken from the Food 

and Agriculture Organization of the United 

Nations Animal Production and Health Division 

Global Livestock Production and Health Atlas. 

SP is simply the number of susceptible persons 

in a 5 km x 5 km grid. 

There are over 60 species of Anopheles 

mosquitoes with the ability to transmit malaria to 

humans. A species presence map shows the 

dominant vector from the Malaria Atlas Project 

is referenced for the bloodmeal preference. The 

opportunity-for-transmission factor considers the 

population of the area of interest. If there is a 

large population in the area, there is likely a 

lower risk for a single person contracting the 

disease than for a smaller population in the area 
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(i.e., fewer people to bite, the more likely the 

mosquito will bite the one susceptible person). 

Sources have reported that sweat, temperature, 

respiration rate, carbon dioxide, etc. may 

encourage the Anopheles mosquito to bite more. 

This potential effect is not accounted for in the 

RCM.  

The compilation of RTT, opportunity for 

transmission, and probability of virulent bite 

produce the overall RCM equation shown below. 

 

 

 

 

RCM = RTT ∗
Anopheles Preference

(
(0.002 ∗ Bloodmeals + 100)

100 )
(1 − [1 − (Biting Rate ∗ 𝑇𝜂)] 

VBO
) 

 

4.0 Model Output 

This development combined the insights from 

hundreds of technical papers into a closed-form 

semi-empirical model leveraging real-time 

meteorological data, legacy public health 

information, and biologically-based mosquito 

disease dynamics. A full list of data sources used 

to create the RCM model can be found in 

Appendix D. The output of the RCM is a 

predictive risk value for contracting malaria with 

a 5km spatial resolution approximately two weeks 

in advance.  

The team created an overall risk assessment score 

for each 5 km x 5 km geographical grid box of 

interest.  The overall risk evaluation consisted of 

five different risk levels: Very Low, Low, 

Moderate, High, and Very High.  The risk value 

incorporates all the factors previously 

(plasmodium presence, weather, ETT, data 

confidence, and RCM) discussed in a 

multidimensional weighted assessment within the 

model via first principles and other inserted data 

streams.  The model continuously calculates a new 

risk value each day, creating a moving window of 

prediction.  From the current day to the maximum 

prediction day, each day receives an updated 

calculated risk value (i.e., RCM) and confidence, 

akin to a weather storm forecast. Hurricane 

prediction becomes more accurate as the storm 

travels closer to any particular location, and the 

time to arrival shortens. The modeling predicts its 

outcome with continuous opportunities to self-

update based on dynamic and sometimes chaotic 

weather patterns.  Hurricane accuracy improves 

with monitoring the storm’s track and calculating 

its next movements.  Unlike storm modeling, the 

RAID infectious disease prediction remains 

geographically stationary across the area of 

interest, yet becomes increasingly more accurate 

through the time domain as prediction days count 

down from its maximum prediction down to the 

current day.  As a hurricane track can provide a 

substantial warning to prepare for hurricanes, 

similarly RAID offers a significant warning to 

prepare for outbreaks and epidemics.  The 

dynamic prediction window continuously updates 

each day in the 14-day prediction window, 

informing the health of shifting near-real-time 

risk.  

 

Regional Threshold for 

Transmission 

Opportunity for 

Transmission 

Probability of Virulent Bite 
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5.0 Validation  

Actual historical malaria outbreaks were selected 

to test model performance and validity.  

Validation scenarios selected only included 

outbreaks with data that the model was blind to 

and had never trained from.  Further, none of the 

team reviewed or used the data in any aspect of 

model creation.  Doing so would invalidate the 

model’s legitimacy from the team’s perspective. 

As such, the criteria for selecting validation sites 

and scenarios were: 1) the outbreak data were 

never used in any way to create any portion of the 

model, and 2) no one on the team knew the 

existence of these potential validation scenarios 

until they were presented to the team and entered 

into the model.  

Validation Scenario #1 – Kenya (Dec 2015 – Jan 

2016) 

A validation case was conducted for an outbreak 

in Garba Tula, Kenya, occurring in Dec 2015. The 

team ran the RAID model from late 2015 to early 

2016. The model provided increasing levels of risk 

and detailed the reasons for RAID’s depiction of 

the outbreak.  

Once fully calculated, the result of RCM is 

converted into a threat level of Low, Moderate, 

High, and Very High. 

Green – All Clear There is a low probability that 

conditions will soon be present that would result 

in malaria contraction by susceptible individuals. 

RCM is less than .001. 

Yellow – Alert (Monitor Situation) Risk of 

contracting malaria is moderate, and conditions 

may exist where malaria mitigation measures 

should be employed to prevent malaria 

contraction. RCM is between .001 and .025. 

Red – Warning (Act) Risk of contracting malaria 

is high, and conditions exist where malaria 

mitigation measures must be employed to prevent 

the contraction of malaria. The local conditions 

will likely be stable transmission processes (i.e., 

endemic population).  This level's first 

determination suggests the first virulent bite will 

likely occur in the next two weeks.  RCM is 

between .025 and .25. 

Black – Enhanced Warning (Act) Risk of 

contracting malaria is very high, and conditions 

exist where malaria mitigation measures must be 

employed to prevent malaria's rapid outbreak. The 

local conditions will likely be rapid transmission 

processes (i.e., epidemic population). RCM is 

greater than or equal to .25. 

A full year was easily analyzed due to the 

automation of downloads from sensor feeds for 

model input. The first figure below depicts key 

RAID parameters over time and demonstrates the 

rise in RCM values in December 2015. 
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Taking a closer look at the December RCM values 

with reported cases and weather conditions 

reinforces the utility of RAID to predict outbreaks 

consistent with observed public health outcomes. 

The graphic below compares outputs of RAID 

between March 19 and November 19.  Note, the 

increasing risk factor is alarming as the country is 

heading into what will become a significant 

malaria epidemic.  

The malaria outbreak in Kenya in Dec 2015 

reported four deaths and 200 confirmed cases of 

malaria.  The model correctly predicted an 

increased risk for this episode about two weeks 

before the new and unexpected illness wave.  The 

entire district fits inside a single 5 km cell.  In 

hindsight, malaria experts explained the unusual 

occurrence was likely caused by the El Nino rainy 

season. 
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This validation scenario illustrates the model’s 

specificity or the model's ability to identify times 

when the disease will not be spiking correctly.  

Understanding and testing any model's sensitivity 

and specificity are critical to model utility. These 

precise values will need to be further researched 

and determined based on real-world model 

operationalization and utilization.  

 

Validation Scenario #2 – Am Timan, Chad 

(March-August 2013)  

Given the timeframe of the outbreak (August 

2013), the team retrieved the relevant model 

inputs from historical data from March-August 

2013. 

The following figures provide a rolling prediction 

of RCM based on the value of the critical factors 

of the RCM. 



Peter Demitry et al.   Medical Research Archives vol 8 issue 10. October 2020     Page 2 of 36 

Copyright 2020 KEI Journals. All Rights Reserved                http://journals.ke-i.org/index.php/mra 

This first graph shows the model starting on April 

11, calculating the RCM for April 25. As time 

progresses and new weather data is available, the 

RCM values are depicted below. While listed as 

High throughout May, such risk's confidence was 

not high, except in late May and again in late June. 

The characterization of the environment in Am 

Timan shows a constant high PP presence, 

indication an extended period of ideal outbreak 

weather would escalate the RCM values. 
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Because symptoms can take approximately 14 

days to manifest in humans, we expect the 

observed caseloads to lag behind the date RCM 

predicts a virulent bite.  Malaria cases in Am 

Timan reported throughout August continually 

climbed well above background endemic 

caseloads to over 14000 cases by the end of the 

month (compared to just over 1200 at the 

beginning of the month).  It is evident that by late 

July, all RAID factors supporting RCM valuations 

are maximum due to weather changes.  The 

consistent very high RCM and high confidence 

values for RCM starting in late June and persisting 

through late July are consistent with the 

progression of cases reported for the area. 

 

 

 

 

6.0 Conclusion 

This paper describes the motivation and 

techniques for creating a predictive awareness tool 

for malaria outbreaks via the ‘RAID’ modeling 

technique. Validation scenarios are presented 

confirming the initial achievements in predicting a 

true positive (sensitivity) and a second validation 

case showing specificity success.  The team 

demonstrated that adopting tools from other 

analytical applications could be useful in certain 

types of infectious disease prediction models.  The 

exemplar described herein presented a fourteen-

day moving predictive window ahead of malaria 

spikes in clinical illness.  The model also 

demonstrated one validation scenario where 

modeling correctly forecasts the decrease of 

clinical illness.  This represents the first time such 

predictive modeling has been successfully 

applied.  In no case did the team leave out any 

examined scenarios, or data that would not 

indicate the model does not work. Still, the team 

acknowledges that while the model is currently 

mature, further real-world testing is required to 

obtain rigorous sensitivity and specificity values 

in any ongoing effort to further refine and 

optimize the model.  The team hopes to achieve 

further validation through further work with 

NFIM, academic, and other philanthropic groups.  

Malaria sickens an estimated 3.4 billion people in 

92 countries.  Over 1.1 billion are at high risk. 

Tools like this model could provide public health 

authorities with 14 days of predictive lead-time 

that could save millions of lives and allow 

decreased economic disease burdens.  Future 

papers will describe how RAID has been 

successfully modified to predict Dengue Fever 

and Chikungunya virus outbreaks. 
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Appendix A – Diversity Prediction Theorem 

 

Predicting is an essential activity for models. 

There is often a focus on selecting the best model; 

however, a diverse suite of models (i.e., model of 

models) will always be more accurate than its 

average member. More analytically, the suite's 

squared error is equal to the average model's 

individual squared error minus the model legacies' 

diversity. This may be stated as:  

(model of models error)2 = ∑(model 

error)2/number of models  -  ∑(diversity of model 

of models) 
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This is known as the Diversity Prediction 

Theorem (DPT). This, in turn, means that the 

"model of models" error is equal to the average 

model's error minus the diversity of the models' 

suite. Therefore, as we get better models (e.g., less 

average error) with more diversity, the smaller the 

"model of models" error will be. Since it is 

challenging, if not impossible, to determine the 

best model, we opted for using this approach to 

advance the state of the art in disease outbreak 

prediction by combining a variety of community-

accepted techniques. 

For both the weather and plasmodium pool 

surrogates, DPT was used to combine multiple 

triggers into one test instead of selecting the best 

single indicator (or model). This qualitative 

approach mirrors a Kalman filter that uses all data 

to produce the most accurate prediction of the 

future rather than a single measurement. Just as 

with DPT, a Kalman filter weighs more accurate 

individual estimates heavier, yet includes all 

estimates to produce a better representation of all 

available data. 

It is not just a hunch that a group of people makes 

better decisions than a monolithic team. The DPT 

states the team's predictive capability is 

determined equally by the quality of the 

individuals and the diversity in their backgrounds. 

This means a more diverse group, with moderately 

smart people, will outperform a single brilliant 

person. As a result, a meeting slated for 

establishing future key actions is better if there is 

a little disagreement rather than no disagreement. 

This diversity in opinion hints at a better eventual 

outcome. 

 

Primary sources for this summary are: 

1. Ioannides Y and Page S. The Difference: How 

the Power of Diversity Creates Better Groups, 

Firms, Schools, and Societies. Journal of 

Economic Literature. 2007. 

2. Page S. The Hidden Factor: Why Thinking 

Differently Is Your Greatest Asset. Chantilly, 

VA: The Great Courses. 2011. 

 

Appendix B – Activity-Based Intelligence 

Principles 

 

The RAID Team applied and refined Activity-

Based Intelligence (ABI) methodologies and 

heuristics that focus primarily on interactions, 

choke points, and transactions rather than objects. 

These techniques include:  

• geo-reference to discover (location is a critical 

dimension of data meaning) as per local RCM 

calculations, 

• sequence neutrality (most recent data is not 

necessarily the most credible data) as per 

DPT,  

• data neutrality (source of data does not rule 

out use) as per DPT, and  

• knowledge management (data is collected 

with its interface to the user in mind), as per 

the VBO development. 

In researching the utility of early warning through 

predictive awareness, the RAID team studied the 

basics of this field and summarized several 

general warning lessons applicable to RAID. 

• Education about a warning system is needed 

before an event. 

• Alerting needs to attract attention. 

• People seek social confirmation of warnings 

before taking protective action. 

• Messages should contain information that is 

important to the population. 

• Wording should consider the demographics of 

affected populations. 

• Be precise: explain when, where, what, and 

why. 

• Warnings and alerts should be consistent both 

during escalation and during downgrading. 

Primary sources for this summary are: 
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1. Public Response to Alerts and Warnings 
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2013. ISBN 978-0-309-29033-3. 

2. Geotargeted Alerts and Warnings: Report of a 

Workshop on Current Knowledge and 

Research Gaps, NAS, 2013. ISBN 978-0-309-

28985-6. 

Appendix C – Unit Analysis 

 

Coordinate transformations and dimensional 

analysis are valuable in reducing the complexity 

of existing models and creating new models. The 

analysis of malaria outbreaks in literature has been 

depicted on a wide variety of axes (e.g., time, 

probability, temperature, etc.). To create an end-

to-end evaluation of the local interactions that 

predicts an outbreak (i.e., warns of the impending 

event,) the x-axis was standardized to days since 

the key aspect of warning is time.   

To determine the y-axis, each aspect of the local 

interactions (e.g., biting rate, biting preference, 

mosquito lifetime, sporogony cycle, gonotrophic 

cycle, etc.) was analyzed to determine the most 

significant parameter(s) for RCM. The figure 

below shows the unit analysis highlighting 

temperature as a driving factor.  

 

 

Temperature had a higher-order effect on the 

probability of a susceptible person becoming 

infected; temperature was used four times in the 

final calculations. The temperature and standing 

water combination threshold were the second most 

critical; this combination appeared twice.  All 

other parameters only exhibited linear effects (i.e., 

showed up once) on results. In summary, 

temperature appeared in the two most important 

terms with an exponential impact in both, 

corroborating the decision to focus local 

interactions around Marten's temperature-

dependent survivability curve. This realization 

catalyzed the conversion of Marten's probability 

of survival equation into a lifetime as a function of 

temperature for a specified segment of the 
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population. This permitted the creation of the 

Vector Population Days (VPD) term, representing 

possible virulent biting days. 
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Appendix E – Model Input Data Sources 

Data Source Parameter(s) Resolution Short Description 

NOAA Global 

Forecast System 

(GFS) 

Temperature (K)   
Best available operational analysis for the 2013 

Chad case.  NOAA National Center for 

Environmental Prediction’s operational Global 
Forecast System (GFS).  Available through 

NOAA servers and web servers at the Center for 

Ocean-Land-Atmosphere Studies (COLA) 
located at George Mason University.  Fields 

downloaded include temperature, horizontal (u- 

and v-component) winds, soil moisture, 

precipitation, and relative humidity. Analyses 
and forecasts available 2-4X/day at 0.5-1-deg 

resolution. 

Wind 

Speed/Direction 

(m/s, Knots), 
only in testing 

0.5 and 1-deg 

data.  (0.5 deg 

available for 
Aug 2013) 

Relative 

Humidity (%) 
  

Soil Moisture 
(%) (0-10 cm 

below ground 

  

Daily summed 
precipitation 

(mm) 

  

European 

Center for 
Medium Range 

Weather 

Prediction 

Interim 
Reanalysis 

(ERA) 

Soil Moisture 

(%) (0-7 cm 

below ground) 

0.75-deg 
Atmospheric reanalysis produced by the 

European 

Soil Moisture 

(%) (0-7 cm 
below ground) 

0.75-deg 

Centre for Medium-Range Weather Forecasts 
(ECMWF).   Used for soil moisture.  4X/day 

values downloaded and averaged.  Global fields 

were retrieved and tailored to region of interest. 

      

NOAA CPC 

African Rainfall 

Climatology, 

Version 2 
(ARC2) 

    

This data is a result of a project to create a 

satellite-estimated precipitation climatology 

over the Africa domain.  This method uses 3-

hourly GPI and GTS data, exclusively. 

Daily summed 

precipitation 
accumulation 

(mm) 

0.1-deg 

For creation of the climatological GPI, 3-hourly 

Meteosat data was obtained directly from 

Eumetsat's archived data group, while daily-

updating products use 3-hourly data pulled from 
NOAA's Meteosat data feed. 

    

Data is available through NOAA CPC ftp site 

(binary downloads) and Columbia University’s 

International Research Institute for Climate and 
Society 

North American 

Land Data 

Assimilation 
System 

(NLDAS) 

    
NASA-led land data assimilation data set, which 

includes 0.125-deg, hourly precipitation 
accumulation over the Continental U.S.  

Daily summed 

precipitation 

(mm) 

0.125-deg 

  Temperature (K) 

  

Global, NASA based reanalysis using the 

GEOS-5 Global Circulation Model.  Resolution 

is .6 deg in longitude and .5 deg in latitude.  

This data set was also used to produce seasonal 
climatologies covering 30 years. 

NASA MERRA 

Renalysis 

Wind 
Speed/Direction 

(m/s, Knots), 

only in testing 
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Relative 

Humidity (%) 

  
Daily summed 
precipitation 

(mm) 

NOAA-CIRES 

20th Century 
Reanalysis 

    

For analysis of 40-year seasonal mean monthly 

temperatures, cloud cover, relative humidity for 
Chad case 

NOAA CPC 

Unified 

Precipitation 

    

Monthly-averaged fields used to compute 30-

year averages to obtain a regional climatology 

of cloud cover and temperature changes 
expected from season-to-season.  This 

precipitation data set was used for the Chad and 

Liberia cases. 

Gridded 
Population of 

the World 

(GPW) 

Human 

Population 
  

Available through NASA’s Socioeconomic 

Data and Applications Center (SEDAC).  
Estimates every 5 years projected out to 2015. 

Malaria Atlas 

Project EIR 
2010 Map 

EIR 5km 

Entomological Inoculation Rate (EIR) of 
Plasmodium falciparum global map.  EIR is the 

number of mosquito bites per night times the 

proportion of bites positive for sporozoites 

Malaria Atlas 

Project 

Dominant 

Anopheles 
Species Map 

Anopheles 
species 

5km 

A map with the dominant or combination of 

dominant vector species found in 5km pixels.  
Vector identification is used to calculate the 

RCM for a given region. 

MODIS 

Spectral Image 
EVI, NDVI 5km 

NDVI (Normalized Difference Vegetation 

Index) is a vegetative index that measures an 

area's vegetative health or greenness.  
Photosynthetic vegetation will absorb solar 

radiation but strongly reflect near-infrared 

waves.  NDVI = (NIR-Red)/(NIR + Red).  EVI 
(Enhanced Vegetation Index), incorporates the 

blue spectral band to increase sensitivity to 

highly vegetative areas and reduce atmospheric 

influences.  MODIS has a 250m resolution, 
which is aggregated to 5km. 

Food and 

Agriculture 
Organization of 

the United 

Nations Animal 

Production and 
Health Division 

Global 

Livestock 
Production and 

Health Atlas 

Livestock 

Population 
5km 

GLiPHA is an interactive, electronic atlas 

containing global animal production and health 
statistics. Sub-national statistics relating to the 

livestock sector can be viewed cartographically 

against a back-drop of selected maps, such as 

livestock densities, land-use, and topography.  
GLiPHA draws on data managed within the 

Global Livestock Impact Mapping (GLIMS), a 

global, sub-national data warehouse containing 
a multitude of livestock-sector related 

information.  
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International 

Association for 
Medical 

Assistance to 

Travellers 

World Malaria 
Risk Chart 

Plasmodium 
species, 

Historical 

Transmission 

Risk 

Country (some 
regional) 

Geographical distribution of principal malaria 

vectors, Plasmodium falciparum drug-resistant 
areas, and guidelines for suppressive medication 

by country.  

World Health 

Organization 

2012 World 
Malaria Report 

API Sub-national 

The World Malaria Report 2012 summarizes 

information received from 104 malaria-endemic 

countries and other sources and updates the 
2011 report analyses. It highlights the progress 

made towards the global malaria targets set for 

2015 and describes current challenges for global 
malaria control and elimination.  Annual 

Parasite Incidence (API) is the confirmed cases 

during one year for population surveillance per 
1000 people 

Center for 

Disease Control 

Health 
Information for 

International 

Travel 2014 

Plasmodium 
Species 

Country (some 
regional) 

CDC Health Information for International 

Travel (commonly called the Yellow Book) is 

published every two years by CDC as a 
reference for those who advise international 

travelers about health risks. The Yellow Book is 

written primarily for health professionals. 

AVHRR 

Spectral Image 
NDVI 5km 

NDVI (Normalized Difference Vegetation 
Index) is a vegetative index that measures the 

vegetative health or greenness of an area.  

Photosynthetic vegetation will absorb solar 

radiation but strongly reflect near-infrared 
waves.  NDVI = (NIR-Red)/(NIR + Red).  

AVHRR has a 1km resolution, which is 

aggregated to 5km. 

Malaria Atlas 

Project Parasite 

Rate (Pl. 

falciparum and 
Pl. vivax) 

Parasite Rate 5km 

Global distribution of Parasite Rate (PR) for the 

two most prevalent Plasmodium species.  PR is 
the proportion of the human population found to 

carry asexual blood-stage parasite 

 

 


