RESEARCH ARTICLE

Mesenchymal stem cells versus their extracellular vesicles in treatment of liver fibrosis: Is it possible to compare?

Authors

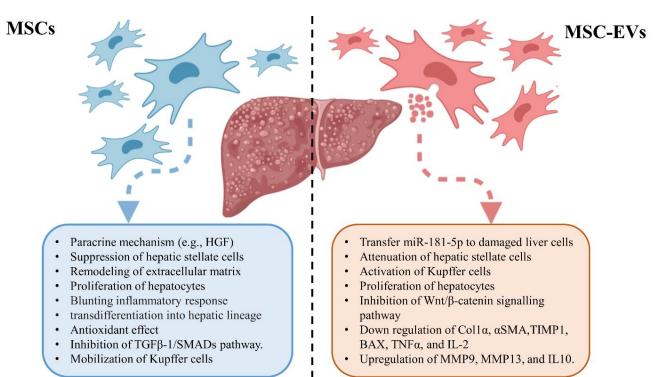
Attia, N^{a,b,c,d}, Khalifa, YH^c, Rostom, DM^c, Mashal, M^{b,d}

Affiliations

- a. Department of Basic Sciences, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda
- b. The Center of research and evaluation, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda
- c. Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
- d. NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain

Corresponding author:

Noha Attia MD, MSc, PhD Department of Basic Sciences, The American University of Antigua - College of Medicine, University Park, Jabberwock Beach Road, P.O. Box 1451, Coolidge, Antigua and Barbuda. Tel: +1(268)4848900, Email: Noha.attia@alexmed.edu.eg


Abstract

Liver fibrosis (LF) is a worldwide health problem that is associated with a range of complications and high mortality. Due to the scarcity of liver donors, mesenchymal stem cell (MSC) therapy emerged as an alternative therapeutic strategy. However, it is widely accepted that most of the transplanted MSCs exhibit their therapeutic impact mainly via a bystander paracrine (medicinal) capacity. In addition to their secretory proteins, MSCs also produce various types of extracellular vesicles (EVs) that are classified into three main subtypes: microvesicles, exosomes and apoptotic bodies. Thanks to their peculiar cargo composition (e.g., proteins, lipids, and nucleic acids), EVs serve as an advantageous candidate for cell-free therapy. Recently, MSC-derived EVs (MSC-EVs) have gained the podium due to their regenerative and immunomodulatory effect. In mitigation/treatment of LF, a plethora of recent studies have shown the anti-inflammatory, anti-fibrotic and cytoprotective effects of both MSCs and MSC-EVs in various in vitro and in vivo models of LF. However, despite the limited evidence, we sought in this mini review to sort out the established data and formulate several challenging questions that must be answered to pave the way for further clinical applications. One of the major questions to ask is "Which is the best therapeutic approach, MSCs or MSC-EVs?" We tried to highlight how difficult it might be to compare the two approaches while our understanding of both candidates is still deficient. Among the major obstacles against such comparison is the inaccurate equivalent dose determination, the unknown in vivo behavior, and the undetermined lifespan/fate of each. Currently, the fields of MSCs and MSC-EVs seem to be rich in ideas but lacking in appropriate technologies to test these ideas. Nevertheless, continuous efforts are likely to help resolve some of the challenges listed here.

Keywords: Mesenchymal stem cells; Extracellular vesicles; Exosomes; Cirrhosis; Cell-free therapy

Graphical abstract

List of abbreviations

AD AFP	Adipose-derived Alpha-fetoprotein
ALB	Albumin
ASCs	Adipose derived stromal cells
BA	Biliary atresia
BDL	Bile duct ligation
BM	Bone marrow
CBDL	Common bile duct ligation
CCl ₄	Carbon tetrachloride
CFU-F	Colony forming unit
	fibroblast
CK18	Cytokeratin 18
CM-DiI	Chloromethyl-DiI
c-Met	Mesenchymal epithelial
	transition factor-
	phosphorylated type
DLS	Dynamic light scattering
DMN	Dimethyl nitrosamine
ECM	Extracellular matrix
EGFP	Enhanced green fluorescence
	protein

EMT	Epithelial mesenchymal
	transition
EVs	Extracellular vesicles
Ex	Exosomes
GSH	Glutathione
h	Human
hAm-	human amnion-derived
MSCs	mesenchymal stem cells
Hep Par 1	Human Hepatocyte Paraffin 1
HGF	Hepatic growth factor
HNF-4	Hepatocyte Nuclear Factor 4
HSCs	Hepatic stellate cells
hUC	human umbilical cord
hUCPVCs	Human umbilical cord
	perivascular cells
IH	Intrahepatic
IHC	Immunohistochemistry
IP	Intraperitoneal
IS	Intrasplenic
IV	Intravenous
KC	Kupffer cell
LPS	Lipopolysaccharide
M1	Macrophages 1
MDA	Malondialdehyde
	-

miR	Micro RNA
MMP	Matrix metalloproteinases
MSCs	Mesenchymal stem cells
MVs	Microvesicles
NTA	Nanoparticle Tracking
	Analysis
PKH dye	Paul Karl Horan dye
SC	Subcutaneous
SMA	Smooth muscle actin
SOD	Superoxide dismutase

1. Background

Significant liver fibrosis (LF) is the eventual fate of all chronic liver injuries, mainly impacting younger patients who usually perish due to the sequelae of liver failure, portal hypertension, and cirrhosis-induced hepatocellular carcinoma. Among other etiologies, LF is impeded by hepatitis B and C, iron overload, biliary obstruction, and autoimmune liver disease.

Worldwide, liver cirrhosis and liver cancer represent the 11th and the 16th most common cause of death, respectively. Together, they account for 3.5% of all worldwide demises ¹. Thus far, liver transplantation seems to be the only effective remedy for patients with decompensated liver disease. Nevertheless, the scarcity of donors in many countries has highlighted the need for alternative therapies. Stem cells have shown great potential in liver injury repair and disease treatment, despite various pressing issues to be resolved before the clinical application.

Among the various of stem cell types, MSCs have become a popular research topic thanks to their ethical and safety profile, easy isolation, large-scale expansion, and paracrine activity. MSCs have been isolated from various tissue types, for instance; bone marrow (BM),² adipose tissue,³ amniotic fluid,⁴ amniotic membrane,⁵ dental tissues,⁶ endometrium,⁷ menstrual blood,⁸ peripheral blood,⁹ placenta,² fetal membrane,¹⁰ salivary

SPIO SRY	Superparamagnetic iron oxide Sex-determining region Y
TAA	Thioacetamide
TGF-β	Transforming growth factor-β
TIMP	Tissue inhibitor of
	metalloproteinases
TS	Trans-splenic
UC	Umbilical cord
WB	Western blot

glands,¹¹ skin,¹² sub-amniotic umbilical cord lining membrane,³ synovial fluid and Wharton's jelly. Therefore, MSCs are considered to be a promising candidate for Many medicine. regenerative studies displayed the effect of MSC-based therapy in a variety of disorders such as, acute myocardial infarction,¹³ stroke,¹⁴ liver cirrhosis,¹⁵ amyotrophic lateral sclerosis,¹⁶ graft-versus-host disease,17 solid organ transplant rejection,¹⁸ chronic wound healing ¹⁹, bone repair 20 , and autoimmune disorders.

MSCs are well known of their ability to differentiate into various mesodermal lineage cells (e.g., osteoblasts, chondroblasts, adipocytes, myocytes, and tenocytes), they can probably generate cells of other lineages, endodermal (e.g., hepatocytes, enterocytes, and islet cells), and ectodermal (e.g., epithelial, glial, and neural cells)²¹.

For decades, MSC-based therapies were believed to boost the structure and function of injured/diseased tissues by means of direct cell replacement. Nevertheless, it soon became clear that a relatively limited number of MSCs were eventually retained at the sites of injury, suggesting their bystander paracrine capacity. ²² Consequently, a conceptual shift has confirmed that MSCs enhance tissue repair mainly thru their paracrine factors, cell-to-cell communication or various types of extracellular vesicles (EVs). ²³ However, a major question remains to be answered: Is it possible to determine which approach is more effective for MSC therapy, cell-based or cell-free? In other words, in terms of LF therapeutics, which way to go, MSCs or their EVs (MSC-EVs)?

In this review, we will discuss both choices in light of recent publications and try to see if it is possible to answer such pressing question.

2. MSC-based cell therapy for LF

Many studies investigated the therapeutic effects of MSCs on LF (as seen in table 1), albeit the underlying mechanisms are not fully understood. Many studies showed that MSCs act mainly through paracrine mechanisms rather than trans-differentiation. The paracrine mechanism is the secretion of soluble factors and the transmission of microvesicles containing proteins, mRNAs, genes and miRNAs.²³ One of the secreted factors is hepatic growth factor (HGF), which displays antiapoptotic activity in hepatocytes and acts as an important part in the regeneration of the liver. ²⁴⁻²⁶ In addition, the antifibrotic effects of MSCs can be a result of a combined set of mechanisms including modulation of immune system, inhibition of transforming growth factor- β (TGF- β) mediated differentiation of hepatic stellate 25,27,28 cells (HSCs) into myofibroblasts, oxidative stress inhibition, and matrix remodeling. 29,30

Various studies suggested that MSCs depict an antifibrotic effect through up-regulation of matrix metalloproteinase (MMP-13) and down-regulation of tissue inhibitor metalloproteinase (TIMP-1). ^{31,32} It was also stated that the increased levels of hepatic glutathione (GSH) and superoxide dismutase (SOD) and decrease of malondialdehyde (MDA) following MSCs injection suggested their possible therapeutic role involving an antioxidant effect. ^{33,34}

In addition, MSC therapy has an immunosuppressive effect, thru upregulating anti-inflammatory T regulatory cells and reducing pro-inflammatory Thelper (1 and 17) cells. It was noted that the gene expression levels of IL-1 β , IL-6, and INF- γ were reduced. ³⁵⁻³⁸

One of the suggested effects of MSCs therapy in LF is their transdifferentiation into hepatic progenitor cells or hepatocytes. This was confirmed by loss of CK90 expression, increased hepatic HGF, MMP-2 mRNA and CK19 mRNA.^{33,39} A possibility of increased binding between HGF and its receptor; mesenchymal epithelial transition factorphosphorylated type (c-Met) in the liver after MSC transplantation was also reported, leading to liver cell proliferation. ⁴⁰ On the other side, it has been displayed that MSCs could promote the conversion of Kupffer cells (KCs) from the (M1) macrophage phenotype to the M2. The M2 macrophages are known to secrete IL-10 leading to macrophages apoptosis of M1 and subsequently recovery of liver insult. ⁴¹

Interestingly, MSCs are capable of homing to sites of injury and inflammation. However, the dynamics and molecular mechanisms of MSCs trafficking to sites of injury are not fully understood which makes a barrier to clinical translation of MSC-based therapies. ⁴² It could be of utmost importance to trace the transplanted MSCs in vivo and determine their short-term as well as long-term fate. Many studies have used the Sex-determining region Y (SRY) gene as a method for in vivo cell tracking. ^{24,28,29,31,32,41} Other studies detected human hepatocyte-like cells [human Hepatocyte Paraffin 1 (Hep Par 1), alphafetoprotein (AFP), cytokeratin 18 (CK18), CK19, CK7, and albumin (ALB)] in non-human species. ^{25,27}

In addition, Transgenic mice expressing enhanced green fluorescence protein (EGFP) have been successfully used for MSCs tracking.²⁸ Fluorescence microscopy have been used to confirm the liver-specific homing of fluorescent MSCs labelling dyes. ^{35,38,39} The tracking of MSCs was also detected by double staining of anti-human specific nuclear antigen and anti-human albumin. ⁴⁰ Another tracking methods was the use of superparamagnetic iron oxide (SPIO) nanoparticles-labelled MSCs. followed by their visualization in liver tissue by Prussian blue staining. Labelling with SPIO nanoparticles was considered to be a nontoxic and noninvasive method for MSCs tracking after injection.²⁹

Concerning the administration route, the most used mode of MSC transplantation to

date was the intravenous (IV) route. This mode of administration has revealed clinical effectiveness in different studies.²³ However, some studies reported that most of the intravenously administered MSCs settle in the lung microvasculature even in the absence of lung injury. In addition to the IV route, local infusion of MSCs into the portal vein comprises a convenient way for MSCs transplantation. This delivers a bigger number of cells to the injured liver, thus increasing their functional potential. Yet, numerous studies postulated that the transportal infusion of MSCs could lead to a temporary interruption to the hepatic blood flow. ⁴³ In addition, the trans-splenic (TS) route has been used as a potential method of MSC administration. Unfortunately, only 1% of the transplanted cells were retained in the liver parenchyma. ^{29,39} Thus, all of the aforementioned transplantation avenues are still far from being considered ideal.

Page 6 of 20

Cell source	LF model		Cell dose			Cell characterization (in vitro)	Cell tracking (in vivo)	Main results	Mechanism (s) of action	Ref.
	Species	LF Induction	Cell Number	Injection Frequency	Injection route					
Rat BM- MSCs	Rats	IP CCl ₄ (1 ul/g BW twice/week for 9 weeks)	3 x 10 ⁶	Single dose at week 9	IV	 Positive for CD90 Negative for CD45 CFU-F assays 	No tracking	 Regression of fibrous tissue deposition Attenuation of hepatocellular damage, structurally and functionally 	Paracrine mechanisms	23
hUC- MSCs	Hamsters	IP CCl4 100 µl/animal twice/week for 8 weeks	3 x 10 ⁶	Single dose at week 8	IH	 Multi- differentiation potential Positive for CD44, CD90, CD73, CD105 Dual expression of CD105/90 Negative for HLA-DR, CD34 and CD45 	IHC for human hepatocyte-like cells	 Regression of fibrous tissue deposition Improved liver functions 	 Paracrine mechanisms Suppression of hepatic stellate cells. 	25
hUC- MSCs	Rats	SC CCl4 2 ml/kg (twice/ week for 7 weeks)	5 x 10 ⁶	Single dose at week 3	IV	 Positive for CD90, CD105 and CD73 Negative for CD34, CD19, CD11b, HLA- DR and CD45 	Immunohistochemically for human hepatocyte- like cells	Improved biochemical and histopathologic changes	 Suppression of hepatic stellate cells. Decreased collagen deposition Enhanced extracellular matrix remodeling <i>via</i> the up-regulation of MMP-13 and down-regulation of TIMP-1. 	27

Table (1): Effect of MSCs from different sources on LF.

Rat BM- MSCs	Rats	IP CCl4 (1 ml/kg BW twice/week for 6 weeks)	3 x 10 ⁶	Single dose at week 6	IV	Positive for CD29	SRY gene	Improved histopathological examination, biochemical and molecular findings.	 Up-regulation of MMP-1 Down-regulation of TIMP-1 	32
Mice BM- MSCs	Mice	IP CCl ₄ (7 ml/kg body weight twice/week for 12 weeks)	1 x 10 ⁶	Single dose at week 8	IV	 Positive for CD90, CD29 and CD105 Negative for CD45, CD34 and CD80 	SRYEGFP transgenic mice	Regression of fibrous tissue deposition	 Paracrine mechanisms Immunomodulatory properties on hepatic stellate cells and native hepatocytes. 	28
hUC- MSCs	Rats	Oral CCl4 via gavage tube (first at a dose of 0.5 ml /kg of BW and then at 1 ml/kg each time twice/week for 8 weeks)	5 x 10 ⁵	Single dose at week 4	IH	Positive for CD44 and CD105, CD29, CD51, SH2 and SH3	Double Staining of anti- human specific nuclear antigen and anti-human albumin	 Improved biochemical and histopathological parameters Reduced hepatic inflammation 	Increased binding between HGF and its receptor (c-Met) leading to liver cell proliferation	40
Mice BM- MSCs	Mice	BA by rhesus rotavirus in neonatal mice (20 μl of 1.2x10 ⁵ pfu/ml of RRV within 24 h of birth)	1 x 10 ⁶	Single dose on day 7	IP	 Positive for CD5 Negative for CD45, CD11b, 	No tracking	Reduced MDA levels and increased GSH and SOD levels	Antioxidant effect	34
Rat BM- MSCs	Rats	SC CCl4 (0.2 ml/100 g BW twice/ week for 6 weeks)	1 x 10 ⁷	Single dose at week 6	IV	Positive for CD29 and CD44	GFP-labeled BM-MSCS	Enhancement of liver function, confirmed by histopathology	Blunted inflammatory response	35
Rat BM- MSCs	Rats	SC CCl ₄ (0.2 ml/100 g BW	3 x 10 ⁶	Single dose at week 6	IV	Positive for CD29	SRY	• Decrease in liver collagen gene expression	Paracrine mechanisms such as secretion of HGF, which shows	24

		twice/week for 6 weeks)						• Decrease in hydroxyproline content	antiapoptotic activity in hepatocytes	
Rat BM- MSCs	Rats	0.04% TAA in drinking water for 8 weeks	2 x 10 ⁶	Single dose at week 8	TS	Positive for CD90	Cell Stalker-CSR	 Repair of damaged hepatocytes Intracellular glycogen restoration Regression of fibrous tissue deposition 	In vivo transdifferentiation from MSCs to hepatic progenitor cells	39
Rat ASCs	Rats	SC CCl ₄ (1.5 ml/kg twice/week for 12 weeks)	5 x 10 ⁶	Double dose at weeks 10 &12	Portal vein	 Positive for CD73 and CD90 Negative for CD45 	No tracking	histological regression of fibrous tissue deposition	Paracrine mechanisms such as HGF secretion	26
Rat BM- MSCs	Rats	BDL	3 x 10 ⁶	Single dose at week 4	IV	 Positive for CD105 and CD90 and CD73 Multi- differentiation potential 	PKH-26 fluorescent dye	Restored liver functions and histological structure	 An antioxidant effect. Transdifferentiation of MSCs into hepatic lineage 	33
Rat BM- MSCs	Rats	CBDL	1 x 10 ⁶	Single dose at week 2	IV	 Positive for CD29, CD90, and CD106 Negative for CD3, CD4 and CD25 Multi- differentiation potential 	GFP-labeled BM-MSCs	Decreased fibrosis scores	Blunted inflammatory response	38
Mice BM- MSCs	Mice	IP CCl4 (1 ml/kg BW twice/week for 12 weeks)	1 x 10 ⁶	Single dose at week 12	IV	Cell morphology: spindle-shaped	No tracking	Regression of fibrous tissue deposition	Inhibition of TGFβ- 1/SMADs pathway.	30
Mice BM- MSCs	Mice	IP CCl ₄ (1 µl/g BW twice/week for 6 weeks)	1 x 10 ⁶	Twice/week for three weeks	IV	Positive for CD29 and CD44	No tracking	Regression of fibrous tissue deposition	Immunosuppressive and anti-inflammatory effects	37

Pag	e 9	0	f 20

Rat	Rats	IP CCl4	3 x 10 ⁶	starting at week 6	IV	 Negative for CD45 CD31 CD11b CD86 and CD135 and CD31 Positive for CD52 	SRY	and inflammatory response Regression of	Immunosuppressive	31
BM- MSCs		(0.5 ml/kg BW twice/week for 4 weeks)		at week 4		CD29, CD73 AND CD105 • Negative for CD34, CD45 and MHC-II		fibrous tissue deposition in terms of liver functions and histological features.	and antioxidant effects	
hUC- MSCs	Rats	IP DMN (10 ml/kg for three consecutive days/ week for 3 weeks)	5 x 10 ⁶	Single dose on day 7	IV	 Positive for CD44, CD73, CD90 and CD105 Negative for CD11b, CD19, CD34, CD45 and HLA-DR Multi differentiation potential 	SRY	Alleviated liver fibrosis	Mobilization of KCs	41
Rat BM- MSCs	Rats	IP CCl4 (1 ml/kg BW twice/week for 8 weeks)	1 x 10 ⁶	Single dose at week 8	Portal vein	 Positive for CD90+, CD44+, Negative for CD34 CFU-F assays 	Prussian blue staining for SPIO labeled BM- MSCs	Regression of fibrous tissue deposition on histological and molecular levels.	 Inhibition of TGFβ- mediated cell differentiation into myofibroblasts ECM Remodeling 	29

3. Limitations of MSC-based cell therapy

Despite the plethora of studies presenting MSCs as heroic cells in treatment of LF, several critical concerns to be resolved before the establishment of MSC therapy, for instance: [1] The MSC source. Despite the numerous tissues from which MSCs are obtained, understanding what population is optimal for liver regeneration is still lacking. [2] The MSC dose (cell number, route and frequency of injection). A critical step in the development of any novel therapeutic agent is the optimal dosing. Some studies reported that the degree of tissue repair was proportionate to the dose of MSCs. Still, further studies are needed to establish an optimal therapeutic dose and route of injection. [3] The MSC fate in vivo. Once MSCs are transplanted, it is still arguable how many cells manage to engraft successfully fibrosed into the liver. Furthermore, MSC life span and performance (i.e., differentiation, proliferation, cell fusion, or paracrine secretion) in vivo are still questions without definitive answers. [4] The MSC tumorigenicity. Another limitation of MSC-based cell therapy was the debatable theories regarding their role in tumor pathogenesis. However, these effects were explained by many as a result of contamination of MSCs culture or the use of immune-deficient animal models. ²⁹ On the other side, accumulating evidence revealed that MSC therapy can be a safe and effective strategy for LF.

4. MSC-EVs-based cell-free therapy for LF

EVs are broadly defined as lipid bilayer enclosed cargo of biomolecules released by cells into their surrounding microenvironment, and include particles described as ectosomes, exosomes, microvesicles, and apoptotic bodies, among others. The size of EVs vary widely from <50 nm to several micrometers in diameter. As well, their chemical compositions, and suggested functions depend mainly on their cell of origin and their process of production. ⁴⁴ MSC-EVs derived from different MSCs origins, have been shown to ameliorate chronic LF in different animal models (as seen in table 2), mainly through the reduction of collagen deposition modulating the inflammatory response, and hepatic cell proliferation/survival.

The research community has consistently promoted the importance of RNA contents in EVs. For instance, EVs, exosomes in particular, derived from hUC-MSCs were able to reduce hepatic inflammation and collagen deposition in carbon tetrachloride-(CCl₄-) induced LF. At a molecular level, the expression of collagen types I and III, and TGF- β transcripts was reduced by the administration of EVs. In Addition, EVs reduced epithelial-to-mesenchymal transition (EMT)-pathway by reducing Smad2 phosphorylation.⁴⁵

The administration of EVs derived from murine adipose stem cells (ASCs) overexpressing miR-181-5p was found to reverse the CCl₄-induced liver injury and downregulate fibrosis-promoting transcripts, such as collagen I, vimentin, alpha-smooth muscle actin (α -SMA), and fibronectin. In addition, in vitro miR-181-5p down-regulated signal transducer and activator of transcription (STAT)-3 and Bcl-2, thus suppressing HSCs' activation, and induced autophagy through the up-regulation of Beclin-1.⁴⁶

Furthermore, EVs from amnion-derived MSCs (Am-MSC) attenuated fibrosis, KC number, and HSC activation. Am-MSC-EVs were shown to reduce the expression level of pro-inflammatory molecules, in vitro. TNF- α , IL-1-beta, and MCP-1, in KCs stimulated

with LPS were significantly reduced. In addition, the reduction of nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) transcriptional activity induced by LPS was demonstrated, basically through the inhibition of the phosphorylation of IkB- α and p65 by suppressing the earlier steps of the LPS/TLR4 signaling pathway.⁴⁷

In another rat model of CCl₄-induced LF, EVs derived from hBM-MSCs have been shown to reduce HSC activation.⁴⁸ This latter effect has been linked to the inhibition of several genes in the Wnt signaling pathway, such as peroxisome proliferator-activated receptor (PPAR)-gamma, beta-catenin, WNT3a, and WNT10b. Moreover, the EVtreated animals exhibited reduced mRNA expression levels of inflammatory cytokines (e.g., IL-1, IL-2, IL-6, IL-8, IL-10, and TNF- α).⁴⁸ Similar findings were also demonstrated using murine BM-MSC-EVs on both histopathological and biochemical levels by down-regulating the expression of α -SMA.^{23,49} Moreover, decrease in level of quantitative gene expression of TGF- β , collagen-1 α , IL-1 β was reported.⁵⁰

In a thioacetamide (TAA)-induced chronic LF model in mice, antifibrotic effects of EVs obtained from hESC-derived MSCs has been reported. Further molecular analyses showed a concomitant up-regulation of matrix

metalloproteinase (MMP) 9 and 13, antiand anti-inflammatory apoptotic genes, (e.g., cytokines IL-10 and TGF- β), accompanied by down-regulation of collagen, α-SMA, and TIMP-1 transcripts, and of pro-apoptotic and pro-inflammatory genes (e.g., TNF- α and IL-2). ⁵⁰

One of the main drawbacks in the use of EV treatments is their rapid clearance from target organs and hence may reduce their efficiency. For this reason, Mardpour et al. ⁵¹ tested EVs encapsulated in polyethylene glycol macromeres (gel-EVs) in the treatment of TAA induced LF. Authors claimed that the gel-EVs accumulated in the liver and gradually released their content over a period of 1 month, as indicated by in vivo tracking experiments. The authors concluded that on both histological and molecular levels, gel -EVs had a superior anti-fibrotic, anti-apoptotic, and anti-inflammatory effect when compared with the free-EVs.⁵¹

EVs derived from human cord perivascular cells (hUCPVCs), an alternative source of MSCs, were also tested in a TAA-chronic liver injury model. In comparison to naïve hUCPVC-EVs, the hUCPVC-EVs over-expressing insulin growth factor 1 (IGF-1) showed a stronger anti-fibrotic effect and were the only group capable of reducing the activation of HSCs. ⁵²

Page 12 of 20

MSCs-EVs source	LF	LF model MSCs-EVs dose			characterization (in vitro) EVs tracking	MSCs- EVs tracking (in vivo)	EVs Main results	Mechanism(s) of action	Ref.	
	Species	LF induction	EVs concentration	Injection timing and Frequency	Injection route					
hUC- MSCs-EX	Mice	IP CCl ₄ (0.6 mL/kg BW, twice within 1 week)	250 mg hUCMSC-Ex in 330 mL PBS	Single dose at week 6	IH	 BCA protein quantification Morphology: TEM WB: CD9, CD81 	cross linkable membrane dye, CM- Dil <i>In- vivo</i> imaging system	 Reduced collagen deposition (Masson's Trichrome) Inhibition of collagen mRNA Recovery of serum AST 	Inhibition of EMT and reduction of TGF- β phosphorylation through inactivating TGF- β 1/Smad signalling pathway Smad2 expression.	45
miR-181- 5p modified murine ASCs-Ex	Mice	IP CCl ₄ (0.05 ml/kg BW twice/week for 8 weeks.)	0.4 μg/μl, 100 μl	Twice a week for 8 weeks concomitantly with CCl ₄	IS	 BCA protein quantification Morphology: TEM WB: CD63, CD81 	No tracking	 Down-regulation of collagen I, vimentin, α-SMA and fibronectin in liver Improvement of liver function 	 Selective transfer of miR-181-5p to damaged liver cells In vitro activated autophagy and down regulated expression of fibrotic genes by inhibiting the STAT3/Bcl- 2/Beclin 1 pathway. 	46

Table (2): Effect of MSCs –EVs from different sources on LF.

hAm- MSCs-EVs	Rat	IP CCl ₄ (2 mL/kg BW twice/week for six weeks)	20 μg/kg BW	Single dose at week 3	IV	 Qubit protein assay Size distribution: qNano system Morphology: SEM WB: CD 81 	No tracking	 Decreased collagen deposition (Masson's trichrome) Decreased HSCs activation (α-SMA) Reduced inflammation (decrease number of CD 68⁺ KCs) Decreased levels of pro inflammotory and fibrotic cytokines (TNF-α, IL 1β and II-6, and TGF- β. 	Attenuating HSC and KC activation.	47
hBM- MSCs-Ex	Rat	IP CCL ₄ (3 ml/kg BW twice/ week for 8 weeks)	250 mg Ex	Single dose at week 8	IV	 BCA protein quantification Morphology: TEM WB: CD9, CD63, CD81, TSG101, and Alix NTA concentration and size distribution 	No tracking	 Reduced collagen deposition (Masson's trichrome and Sirus red) Reduced hepatic hydroxyproline Reduced oxidative stress (MDA) Reduced HSCs activation (α-SMA) Decreased levels of pro- inflammatory cytokines IL- 1,2,6,8,10 & TNF- α) Increased proliferation (Ki-67 and HNF-4) 	 Inhibits Wnt/β-catenin signalling pathway: Stimulating hepatocyte regeneration Inhibiting HSCs 	48

hES- MSCs-EVs	Rat	IP TAA (200 mg/kg BW twice/ week for 16 weeks)	350 μg EVs	Single dose at week 16	IS	 BCA protein quantification Size and relative intensity: DLS Morphology: SEM WB: CD81, CD63, and TSG101 	PkH-26 red florescence linker membrane lipophilic dye	 Rreduced collagen deposition and density (Masson's trichrome) Decreased apoptosis (caspase density). 	 Down-regulation of major contributors to fibrosis: <i>Col1α</i>, <i>α</i>-<i>SMA</i>, and <i>TIMP1</i> Up-regulation of key factors in degradation of ECM <i>MMP9</i>, <i>MMP13</i> Up-regulation of anti-apoptotic gene (<i>BCL-2</i>) and anti-inflammatory cytokines (<i>TGF-β1</i> and IL-10) Down-regulation of pro-apoptotic gene (<i>BAX</i>) and pro-inflammatory cytokines (TNFα and <i>IL-2</i>) 	50
hES-MSCs EVs	Rats	IP TAA (200 mg/kg BW twice/ week for 16 weeks)	350 μg protein content	Single dose at week 16 (Free-EVs and hydrogel- laden EVs)	IP	 BCA protein quantification Size and relative intensity: DLS Morphology: SEM and TEM WB: TSG101, CD81, CD63, and CD9 	PKH-26 red florescence linker membrane lipophilic dye	 Reduced fibrosis (Masson'strichrome and IHC anti collagen) Reduced HSCs activation (α-SMA) Reduced inflammation and necrosis Reduced apoptosis (Caspase 3) Improved serum AL 	 Inactivation of HSCs α-SMA on gene and protein levels Reduction in TIMPI increases degradation of ECM <i>MMP9</i> and <i>MMP13</i> Reduction of TNF- α and IL2 as pro- inflammatory cytokines and elevated levels of anti-inflammatory cytokine IL10 Hydrogel has better results due to 	51

hUCPVCs - EVs	Mice	IP TAA (0.2 mg/g BW, 3 times/week, for 8 weeks).	15 μg EVs	3 doses (one /5 days) at week 6	IV	 Size and relative intensity: DLS Morphology: TEM Flow cytometry: CD63 and CD81 	No tracking	 Reduced collagen deposition (Sirus red COL1A2) Reduced HSCs activation (α-SMA) Reduced pro- fibrogenic cytokine TGF-β1 	 sustained systemic delivery for up to 1 month hUCPVCs overexpressing hIGF-I reduced gene expression of fibrogenic-related molecules Triggering hepatic macrophages to switch their phenotype towards anti-inflammatory phagocytes 	52
MSCs-MV	Rat	SC CCL ₄ (0.2ml/100 g BW twice/week for 6 weeks)	(4 μg/ml PBS)	Twice a week for 4 weeks at week 6	IV	 Bradford protein quantification Morphology: TEM Size and relative intensity: DLS WB: CD63, CD81 and CD83 	No tracking	 Reduced collagen deposition and inflammation Increased serum albumin, VEGF Decreased serum ALT Decreased gene expression of TGF- β, collagen-1α, IL- 1β. 	 Anti-fibrotic Anti-inflammatory Pro-angiogenic properties 	49
Rat BMSCs- EVs	Rat	IP CCL ₄ (1 µl/g BW twice/week for 9 weeks)	80 μg protein content	Single dose at week 9	IV	 Lowry protein quantification Morphology: TEM Size and relative intensity: DLS 	No tracking	 Decreased collagen deposition (Masson's trichrome) Decreased HSCs activation (α SMA) Decreased inflammation Improved liver regeneration Improved serum AST and ALT 	 Anti-fibrotic effect induced by attenuating HSC activation Anti-inflammatory properties though paracrine action. 	23

5. Limitations of MSC-EVs-based cell-free therapy

Although MSC-EVs-based therapeutics for the treatment of LF seem to have a great potential, numerous challenges must be addressed before moving from benchtop research to bedside medicine. [1] First of which is defining the best cell source to obtain the EVs. Since EVs can be obtained from various stem cell sources, maintained in different culture conditions (e.g., hypoxia, growth factors), all of which may alter the EVs contents and thus influence their effects in tissue regeneration. Therefore, a direct comparison of the effect of EVs from different cell sources on LF is still required. [2] Developing an optimized method for EVs isolation that is highly reproducible and efficient with high yield of purified EVs represents another major challenge for the clinical application of EVs. [3] Establishing a better understanding of how EVs work and defining their active components is also required to identify which components are beneficial and which might be harmful. [4] A absorption, of distribution. database metabolism, and excretion of EVs should also be established in order to reach the maximum therapeutic potential and wellestablished dosage. [5] Most researchers address the beneficial effects of EVs, but the unknown negative effects have to be also clarified. [6] Moreover, better targeting mechanisms of EVs should be developed to decrease off-target effects. Obviously, further research is still necessary for methodology standardization and large-scale production to ensure continuous supply of high quality MSC-EVs with predictable and reproducible therapeutic effects.

6. Conclusion remarks

Due to the true unmet need for an optimal therapeutic avenue to mitigate the progression and manifestation of LF, a

Copyright 2020 KEI Journals. All Rights Reserved

plethora of studies suggest that MSC-based cell therapy should be highly considered. In addition, one of the most impressive aspects of MSCs therapy for LF is the wide variety of their cell-free products that could be considered as promising candidates in preclinical and clinical research. More specifically, MSC-EVs are considered the next-generation cell-free therapeutics for uncurable diseases. Nonetheless, we are still far from a concrete understanding of the exact mechanism(s) behind any discerned improvement. Establishing real comprehension of their therapeutic benefits will enable the medical community to make more informed decisions as to whether MSCs or their EVs (MSC-EVs) could be a worthwhile choice for treatment of LF. In our recent study, ²³ we tried to establish a provisional comparison between the two modalities in order to determine which can be a better option when it comes to LF. However, we were challenged by a huge number of unknowns that significantly hindered our goal. At the beginning, we had to set up an equivalent dose for both MSCs and MSC-EVs. Nevertheless, the ambiguity of the fate of both, in vivo, made it almost impossible to determine how many cells would be equivalent to a precise quantity of EVs. Moreover, one of the most adopted EVs quantification method is their "protein content equivalent", which is far from giving accurate and reliable results. Recently, thanks to the introduction of Nanoparticle Tracking Analysis (NTA), it is possible to make an estimate of the particle concentration and size distribution even in a polydisperse sample. However, being a relatively new technique, undergoing NTA is still active standardization which is a prerequisite for reproducibility and data interpretation Clearly, efficient commercialization of MSCs/MSC-EVs would offer an entirely new therapeutic paradigm in health care. Yet, unfortunately, and despite the encouraging

data obtained by either modality, a competent comparison is still out of reach.

Declaration of Competing Interest

The authors have no commercial, proprietary, or financial interest

Author Contributions

Conception and design of the study: N.A. Acquisition of data: N.A., D.M.R., Y.H.K,

References

- 1. Asrani SK, Devarbhavi H, Eaton J, Kamath PSJJoh. Burden of liver diseases in the world. 2019;70(1):151-171.
- 2. Miao Z, Jin J, Chen L, et al. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. 2006;30(9):681-687.
- 3. Kern S, Eichler H, Stoeve J, Klüter H, Bieback KJSc. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. 2006;24(5):1294-1301.
- 4. Roubelakis MG, Pappa KI, Bitsika V, et al. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. 2007;16(6):931-952.
- 5. Alviano F, Fossati V, Marchionni C, et al. Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. 2007;7(1):1-14.

M.M. Drafting or revising the manuscript: N.A., M.M. All authors have approved the final article.

Acknowledgement

This work was funded by the American University of Antigua college of medicine.

- 6. Rodríguez-Lozano FJ, Bueno C, Insausti CL, et al. Mesenchymal stem cells derived from dental tissues. 2011;44(9):800-806.
- 7. Meng X, Ichim TE, Zhong J, et al. Endometrial regenerative cells: a novel stem cell population. 2007;5(1):1-10.
- 8. Ulrich D, Muralitharan R, Gargett CEJEoobt. Toward the use of endometrial and menstrual blood mesenchymal stem cells for cell-based therapies. 2013;13(10):1387-1400.
- 9. Fernández M, Minguell JJ. Human mesenchymal stem cells from peripheral blood. In: Google Patents; 2001.
- in't Anker PS, Scherjon SA, Kleijburgvan der Keur C, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. 2004;22(7):1338-1345.
- Rotter N, Oder J, Schlenke P, et al. Isolation and characterization of adult stem cells from human salivary glands. 2008;17(3):509-518.
- 12. Al-Nbaheen M, Ali D, Bouslimi A, et al. Human stromal (mesenchymal) stem cells from bone marrow, adipose

tissue and skin exhibit differences in molecular phenotype and differentiation potential. 2013;9(1):32-43.

- Citro L, Naidu S, Hassan F, et al. 13. Comparison of human induced pluripotent stem-cell derived cardiomyocytes with human mesenchymal stem cells following acute myocardial infarction. 2014;9(12):e116281.
- Honmou O, Houkin K, Matsunaga T, et al. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. 2011;134(6):1790-1807.
- 15. Kharaziha P, Hellström PM, Noorinayer B, et al. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I–II clinical trial. 2009;21(10):1199-1205.
- 16. Mazzini L, Mareschi K, Ferrero I, et al. Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis. 2006;28(5):523-526.
- Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graftversus-host disease: a phase II study. 2008;371(9624):1579-1586.
- Franquesa M, Hoogduijn MJ, Reinders ME, et al. Mesenchymal Stem Cells in Solid Organ Transplantation (MiSOT) 4th meeting: Lessons learned from first clinical trials. 2013;96(3):234.
- 19. Mehanna RA, Nabil I, Attia N, et al. The effect of bone marrow-derived mesenchymal stem cells and their conditioned media topically delivered in fibrin glue on chronic wound healing in rats. 2015;2015.
- 20. Attia N, Mashal M, Grijalvo S, et al. Stem cell-based gene delivery mediated by cationic niosomes for

bone regeneration. 2018;14(2):521-531.

- 21. Attia N, Mashal M. Mesenchymal Stem Cells: The Past Present and Future. 2020.
- 22. Attia N, Santos E, Abdelmouty H, et al. Behaviour and ultrastructure of human bone marrow-derived mesenchymal stem cells immobilised in alginatepoly-1-lysine-alginate microcapsules. 2014;31(6):579-589.
- 23. Rostom DM, Attia N, Khalifa HM, Abou Nazel MW, El Sabaawy EAJTE, Medicine R. The Therapeutic Potential of Extracellular Vesicles Versus Mesenchymal Stem Cells in Liver Damage. 2020.
- 24. Aziz MA, Atta H, Mahfouz S, et al. Therapeutic potential of bone marrowderived mesenchymal stem cells on experimental liver fibrosis. *Clinical biochemistry*. 2007;40(12):893-899.
- 25. Kamel MM, Baz HGE, Demerdash Z, et al. Cord blood-derived mesenchymal stem cells with hepatogenic differentiation potential ameliorate chronic liver affection in experimental models. *Advances in Clinical and Experimental Medicine.* 2018;27(10):1329-1339.
- 26. Yu F, Ji S, Su L, et al. Adipose-derived mesenchymal stem cells inhibit activation of hepatic stellate cells in vitro and ameliorate rat liver fibrosis in vivo. *Journal of the Formosan Medical Association.* 2015;114(2):130-138.
- 27. Zhang G-Z, Sun H-C, Zheng L-B, Guo J-B, Zhang X-L. In vivo hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells: Therapeutic effect on liver fibrosis/cirrhosis. *World journal of gastroenterology*. 2017;23(46):8152.
- 28. Li Q, Zhou X, Shi Y, et al. In vivo tracking and comparison of the therapeutic effects of MSCs and HSCs

for liver injury. *PloS one*. 2013;8(4):e62363.

- 29. Khalifa YH, Mourad GM, Stephanos WM, Omar SA, Mehanna RA. Bone Marrow-Derived Mesenchymal Stem Cell Potential Regression of Dysplasia Associating Experimental Liver Fibrosis in Albino Rats. *BioMed Research International.* 2019;2019.
- Zhang L, Zhou D, Li J, et al. Effects of Bone Marrow-Derived Mesenchymal Stem Cells on Hypoxia and the Transforming Growth Factor beta 1 (TGFβ-1) and SMADs Pathway in a Mouse Model of Cirrhosis. *Medical science monitor: international medical journal of experimental and clinical research.* 2019;25:7182.
- 31. Raafat N, Aal SMA, Abdo FK, El Ghonaimy NM. Mesenchymal stem cells: in vivo therapeutic application ameliorates carbon tetrachloride induced liver fibrosis in rats. *The international journal of biochemistry* & cell biology. 2015;68:109-118.
- 32. Motawi TM, Atta HM, Sadik NA, Azzam M. The therapeutic effects of bone marrow-derived mesenchymal stem cells and simvastatin in a rat model of liver fibrosis. *Cell biochemistry and biophysics*. 2014;68(1):111-125.
- 33. Mohamed HE, Elswefy SE, Rashed LA, Younis NN, Shaheen MA, Ghanim AM. Bone marrow-derived mesenchymal stem cells effectively regenerate fibrotic liver in bile duct ligation rat model. *Experimental Biology and Medicine*. 2016;241(6):581-591.
- 34. Lei J, Chai Y, Xiao J, et al. Antifibrotic potential of bone marrow-derived mesenchymal stem cells in biliary atresia mice. *Molecular medicine reports*. 2018;18(4):3983-3988.

- 35. Idriss NK, Sayyed HG, Osama A, Sabry D. Treatment efficiency of different routes of bone marrowderived mesenchymal stem cell injection in rat liver fibrosis model. *Cellular Physiology and Biochemistry*. 2018;48(5):2161-2171.
- 36. Watanabe Y, Tsuchiya A, Seino S, et al. Mesenchymal stem cells and induced bone marrow-derived macrophages synergistically improve liver fibrosis in mice. *Stem cells translational medicine*. 2019;8(3):271-284.
- 37. Huang B, Cheng X, Wang H, et al. Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively. *Journal of translational medicine*. 2016;14(1):45.
- 38. Duman DG, Zibandeh N, Ugurlu MU, et al. Mesenchymal stem cells suppress hepatic fibrosis accompanied by expanded intrahepatic natural killer cells in rat fibrosis model. *Molecular biology reports.* 2019;46(3):2997-3008.
- 39. Hwang S, Hong HN, Kim HS, et al. Hepatogenic differentiation of mesenchymal stem cells in a rat model of thioacetamide-induced liver cirrhosis. *Cell biology international*. 2012;36(3):279-288.
- 40. Tsai PC, Fu TW, Chen YMA, et al. The therapeutic potential of human umbilical mesenchymal stem cells from Wharton's jelly in the treatment of rat liver fibrosis. *Liver transplantation*. 2009;15(5):484-495.
- 41. Chai N-L, Zhang X-B, Chen S-W, Fan K-X, Linghu E-Q. Umbilical cordderived mesenchymal stem cells alleviate liver fibrosis in rats. *World journal of gastroenterology*. 2016;22(26):6036.

- 42. Rustad KC, Gurtner GC. Mesenchymal Stem Cells Home to Sites of Injury and Inflammation. *Advances in wound care.* 2012;1(4):147-152.
- 43. Squires JE, Soltys KA, McKiernan P, et al. Clinical hepatocyte transplantation: what is next? 2017;4(4):280-289.
- 44. Veziroglu EM, Mias GIJFiG. Characterizing extracellular vesicles and their diverse RNA contents. 2020;11.
- 45. Li T, Yan Y, Wang B, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. 2013;22(6):845-854.
- 46. Qu Y, Zhang Q, Cai X, et al. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. *J Cell Mol Med.* 2017;21(10):2491-2502.
- 47. Ohara M, Ohnishi S, Hosono H, et al. Extracellular Vesicles from Amnion-Derived Mesenchymal Stem Cells Ameliorate Hepatic Inflammation and Fibrosis in Rats. *Stem Cells International.* 2018;2018:3212643.
- 48. Rong X, Liu J, Yao X, Jiang T, Wang Y, Xie F. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis

through the Wnt/ β -catenin pathway. *Stem Cell Res Ther.* 2019;10(1):98-98.

- 49. Sabry D, Mohamed A, Monir M, Ibrahim HA. The Effect of Mesenchymal Stem Cells Derived Microvesicles on the Treatment of Experimental CCL4 Induced Liver Fibrosis in Rats. *Int J Stem Cells*. 2019;12(3):400-409.
- 50. Mardpour S, Hassani SN, Mardpour S, et al. Extracellular vesicles derived from human embryonic stem cell-MSCs ameliorate cirrhosis in thioacetamide-induced chronic liver injury. *Journal of cellular physiology*. 2018;233(12):9330-9344.
- 51. Mardpour S, Ghanian MH, Sadeghiabandansari H, et al. Hydrogel-Mediated Sustained Systemic Delivery of Mesenchymal Stem Cell-Derived Extracellular Vesicles Improves Hepatic Regeneration in Chronic Liver Failure. ACS Applied Materials & Interfaces. 2019;11(41):37421-37433.
- 52. Fiore E, Domínguez LM, Bayo J, et al. Human umbilical cord perivascular cells-derived extracellular vesicles mediate the transfer of IGF-I to the liver and ameliorate hepatic fibrogenesis in mice. *Gene Therapy*. 2020;27(1):62-73.