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Abstract  

 

Selenium (Se) is an essential trace element of considerable interest in humans from both a 

nutritional and a toxicological perspective because of the narrow margin between intakes that 

result in efficacy and toxicity. It is used as selenocysteine in a few selenoproteins with important 

physiological functions. Moreover, at supranutritional doses, Se-containing compounds have 

attracted interest as potential anticancer agents with high efficacy and selectivity against cancer 

cells. Thus, Se is becoming a widely used dietary supplement. However, accumulating evidence 

indicate that adverse health effects are associated with excess dietary supplementation. Therefore, 

characterizing the toxicity of Se metabolic intermediates are important steps to better understand 

both the beneficial and toxic mechanisms of Se. This review focuses on the metabolism of Se and 

the biological mechanisms explaining the toxicity of important Se-metabolites in the yeast 

Saccharomyces cerevisiae. Conclusions drawn from these studies support the use of yeast as a 

valuable model system to elucidate the mode of action and the biological effects of supranutritional 

Se in higher eukaryotes. 
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1-Introduction 

Selenium (Se) is an essential trace 

element for many living species, including 

humans. It is required to synthesize a few 

selenoproteins, in which Se is specifically 

incorporated as the amino acid selenocysteine 

(SeCys) 1. So far, 25 selenoproteins have been 

identified in humans 2. Many of them possess 

redox properties and function as antioxidants 

in which SeCys is the catalytic residue 3. Se 

deficiency has been associated with 

cardiomyopathy, increased risk of mortality, 

poor immune function and cognitive decline 
4. Moreover, the last decades have witnessed 

a growing interest in Se biology because of its 

reported beneficial effects in prevention 

against cancer and other diseases at 

supranutritional intake levels 5, 6. Se is 

becoming a widely used dietary supplement 

for humans and livestock7. Potential benefits 

are, however, not without risk because of the 

relatively narrow window between intakes 

that result in efficacy or toxicity 8, 9, as high 

levels of blood selenium have been associated 

with an increased risk of developing certain 

types of cancer, hypertension, chronic 

diseases such as  diabetes, and 

neurodegenerative diseases 10. 

Selenium-enriched yeast (Se-yeast) 

produced by growing Saccharomyces 

cerevisiae in selenite- or selenate-enriched 

media, is a recognized source of organic Se 

used to supplement the dietary intake of this 

important trace mineral. One of the 

advantages of using yeast for Se 

supplementation is its high capacity of 

accumulation of Se resulting in the 

production of organic Se-enriched products at 

an industrial scale. Metabolization of 

selenocompounds in vivo gives rise to 

multiple different metabolites, as observed in 

Se-yeast 11, 12. The biological activity of 

different Se species, as well as their toxicity 

in yeast and in humans, depends upon their 

transformation into different active products 
13. Understanding the metabolic pathways 

and toxicity of Se in yeast is important, not 

only for the optimization of the production 

process of Se-yeast, but also to produce yeast 

enriched in specific Se metabolites that may 

be beneficial for human health. Moreover, 

yeast can be used as a model system to 

understand the mode of action and the 

biological effects of supranutritional Se in 

higher eukaryotes 14, 15. 

 

2-Inorganic selenium transport in yeast 

Inorganic Se is commonly found in 

four oxidation states: +6 (e. g. selenate, 

SeO4
2-), +4 (selenite, SeO3

2-), 0 (Se0, 

elemental Se) and -2 (selenide, H2Se/HSe-) 16. 

Inorganic Se compounds do not have specific 

transporters for uptake in S. cerevisiae. 

Elemental selenium, which is insoluble, is not 

expected to be transported across membranes. 

Volatile H2Se is believed to cross membranes 

by diffusion 17. 

Selenic acid (H2SeO4) is a strong 

diacid (both pKa being <2), thus at 

physiological pH, selenate is exclusively 

found as selenate (SeO4
2-) anion. SeO4

2- is 

taken up by sulfate transporters 18. Two 

membrane transporters (encoded by SUL1 

and SUL2) take up external sulfate with high-

affinity (5-10 µM). Single mutants exhibited 

only a small decrease in sulfate uptake. 

Double mutants have no detectable sulfate 

transport and are highly resistant to selenate. 

Both SUL1 and SUL2 are under the control of 

the transcriptional activator Met4p. MET4 is 

negatively regulated by sulfur amino acids, 

creating a negative feedback loop that 
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decreases sulfur assimilation when sulfur 

metabolites are sufficiently abundant 19. 

Thus, SUL1 and SUL2 are repressed in 

growth medium containing > 0.1 mM 

methionine 20. The activity of both sulfate 

permeases is inhibited by selenate and 

chromate. Sulfate permeases have nearly the 

same affinity for sulfate, selenate 20, and 

chromate 21. 

Selenious acid is a weak diacid with 

pKa1 and pKa2 of 2.57 and 6.60, respectively. 

This means that H2SeO3, hydrogenoselenite 

(HSeO3
−) and selenite (SeO3

2−) occur in 

solution, in proportions depending on the pH. 

An initial study on the kinetics of selenite 

uptake suggested the existence of two 

transport systems: a high-affinity system and 

a low-affinity system operating at different 

selenite concentration 22. These systems were 

later characterized as the high- and low-

affinity phosphate transporters 23. In S. 

cerevisiae, the inorganic phosphate (Pi) 

acquisition system is composed of five 

transporters 24. The high-affinity transport 

system (KM~10-25 µM), composed of 

Pho84p and Pho89p, is transcriptionally up-

regulated by the phosphate signal 

transduction pathway (PHO) in response to Pi 

starvation 25. The Pho84p transporter operates 

preferentially at neutral and acidic pH, while 

Pho89p is functional at alkaline pH. The 

transporters Pho87p, Pho90p, and Pho91p are 

constitutively transcribed and take up 

phosphate with low affinity (KM~1-2 mM) 26. 

Their activity is post-transcriptionally down-

regulated at low phosphate conditions by 

Spl2p, a member of the PHO regulon. Thus, 

this regulatory mechanism results in cells that 

use either the high-affinity (when Pi 

concentration in the growth medium is < 0.5 

mM) or the low-affinity transport systems, 

depending on phosphate availability 27. 

Comparison of the Vmax/ KM of the 

transporters for Pi or for selenite showed that 

while Pho84p is slightly more efficient than 

the low-affinity carriers for selenite transport, 

it has a much higher affinity for Pi than for 

selenium. Thus, the high-affinity transporter 

is very selective for Pi, whereas the low-

affinity system is much less discriminating 23. 

As a consequence of the regulation of the 

phosphate transport system, selenite toxicity 

depends on the phosphate concentration in 

the medium. Selenite toxicity is high in very 

low Pi  conditions and decreases with 

increasing Pi concentration up to 0.4 mM  Pi. 

When phosphate concentration in the culture 

medium is further increased, the transport of 

phosphate (and of selenite) is progressively 

taken over by the low-affinity carriers and 

selenite uptake and toxicity increase. Another 

membrane transporter, the monocarboxylate 

transporter Jen1p, takes up selenite efficiently 

when yeast cells are cultured in a non-glucose 

medium 28. Jen1p catalyzes transport of 

cellular metabolites such as acetate, pyruvate 

and lactate. Its expression is up-regulated 

when yeast cells are grown using non-

fermentative carbon sources, conditions 

which lead to increased selenite toxicity 29.  

https://esmed.org/MRA/mra/
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Figure 1. Transport and metabolism of Se in S. cerevisiae (adapted from 15). Names of genes 

involved in Se transport or enzymatic reactions are indicated in red. Selenate uptake and reduction pathway 

is indicated with blue arrows. Selenite transport and reduction to selenide is indicated with red arrows. 

Redox cycling of selenide with oxygen and GSH is indicated with green arrows. Organic Se primary 

metabolic pathways are represented with black arrows.  Abbreviations not used in the main text are as 

follows: APSe, adenylyl-selenate; PAPSe, phosphoadenylyl-selenate; SeAM, Se-adenosylmethionine, 

deSeAM, decarboxylated SeAM; MSeA, methylselenoadenosine; SeCyt, selenocystathionine. 

GSeH

MET6 CYS4 CYS3SeMet SeHCys SeCyt

SeAM SeAH

SeCys

SAM1
SAM2

Transmethylases

SAH1

STR3 STR2

deSeAM

MSeA

SPE2

SPE3

MEU1
Polyamine synthesis

Protein synthesis

Se-γ-Glu-Cys

GSH1

GSH2

SeO3
2-

GSSeHHSe-

GSSeSG

4 GSH
2 GSSG

GSH

GSSG

3 NADPH

3 NADP+

OAcHSer

MET6/MET10

SeO4
2-

APSe

PAPSe

ATP

PPi

ATP

ADP

MET3

MET14

MET16

MET17

GSHGSSG

Protein synthesis

Selenate

Selenite

SUL1, SUL2

PHO84, PHO87, PHO90, PHO91

M
e

th
io

n
in

e
s
a

lv
a

g
e
 p

a
th

w
a

y

GLR1

Se0
O2

H2O

O2
.-, H2O2, OH.

GSH

CH3SeH

MET17

RSH RSSR

NADPH

NADP+

SeSR

https://esmed.org/MRA/mra/
mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine
CH

mimi
Texte tapé à la machine
3

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine

mimi
Texte tapé à la machine



Myriam Lazard.          Medical Research Archives vol 9 issue 9. September 2021              Page 5 of 13 

 

Copyright 2021 KEI Journals. All Rights Reserved                         https://esmed.org/MRA/mra/  

3- Inorganic selenium toxicity in S. 

cerevisiae 

Once inside cells, selenate is reduced 

to selenite by the sulfate reduction pathway 

(Fig. 1, blue arrows). Selenite can be reduced 

to hydrogen selenide either enzymatically by 

sulfite reductase or by glutathione (GSH) 

according to the scheme presented in Fig. 1 17, 

30, 31. Selenite reacts spontaneously with GSH 

to produce selenodiglutathione (GSSeSG) 

which is further reduced by GSH into 

glutathione selenenylsulfide (GSSeH). The 

latter either spontaneously dismutates into 

Se0 and GSH or is further reduced to yield 

H2Se/HSe- (Fig. 1, red arrows).  In several 

bacteria and animal cells, hydrogen selenide 

provides Se for the synthesis of 

selenoproteins after activation to 

selenophosphate. This pathway does not exist 

in yeast or plants, which do not possess 

selenoproteins. H2Se/HSe- is readily oxidized 

by oxygen. This reaction produces Se0, which 

can be reduced by GSH with regeneration of 

H2Se/HSe-  that will initiate a new cycle of 

oxidation/reduction. These redox cycles 

produce reactive oxygen species (ROS) 32, 

and consume intracellular antioxidants such 

as thioredoxin and GSH and, consequently, 

the reducing cofactor NADPH (Fig. 1, green 

arrows) 33.  

A large body of evidence, 

accumulated in the course of the last decades, 

indicates that the toxicity of selenite/selenide 

is mainly caused by DNA damage 34, 35. In 

yeast, Letavayova et al. showed that selenite 

induces double strand breaks (DSB) and 

chromosome fragmentation 36. To explain 

these results, the authors proposed that 

selenite induces single-strand damage that is 

converted to DSB upon DNA replication. 

Such lesions can be repaired by homologous 

recombination (HR). Accordingly, a rad52 (a 

key gene in the HR pathway) mutant was 

found to be hypersensitive to sodium selenite 
37, 38. RAD9, a DNA-damage checkpoint gene, 

required for transient cell-cycle arrest and 

activation of DNA repair mechanisms in 

response to DSBs  39 was also found to be 

extremely sensitive to selenite. Genome-wide 

studies of yeast gene deletion mutants 

confirmed the importance of DNA repair 

systems, especially the homologous 

recombination pathway, in the resistance to 

selenite or selenide exposure 40, 41.  

In vitro studies 41, 42 showed that 

selenide directly induced DNA single-strand 

breaks. In contrast, selenite did not break 

DNA unless it was mixed with GSH, 

indicating that reduction of selenite into HSe- 

accounts for selenite-induced DNA damage 

in vivo. DNA fragmentation was strictly 

oxygen-dependent and was inhibited by 

mannitol, a hydroxyl radical scavenger, but 

not by superoxide dismutase or catalase 41. 

This suggests that hydroxyl or hydroxyl-like 

radicals produced upon oxidation of selenide 

by oxygen are the cause of DNA damage and 

inorganic Se toxicity. A recent study by 

Dereven'kov et al. suggests that GSSeH 

produced by redox cycling of HSe- with GSH 

reacts with hydrogen peroxide to generate 

hydroxyl radicals 43. 

In addition to DNA damage, selenite 

exposure promotes redox imbalance and 

oxidative stress 44. Genome-wide analyses of 

the S. cerevisiae transcriptome revealed that 

selenite treatment up-regulated genes 

involved in the oxidative stress response 

under the control of the Yap1p transcription 

factor 45, 46. Yeast redox state is controlled by 

the thioredoxin pathway and the glutathione 

system composed of GSH, GSH reductase 

https://esmed.org/MRA/mra/
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and glutaredoxins 47. Several genes belonging 

to the glutathione redox pathway, such as 

GSH1, GLR1, GRX1, GRX2, GRX3, GRX5 

and YAP1 were shown to play a role in 

tolerance to selenite exposure 29, 39, 48, 49. This 

is likely linked to the oxidation of GSH by the 

reductive metabolism of selenite/selenide 

resulting in a severe decrease of the 

reduced/oxidized ratio of all low-molecular 

weight thiols (glutathione, cysteine, 

homocysteine, γ-glutamyl-cysteine and 

cysteinyl-glycine) 50. In contrast, deletion of 

YCF1, encoding a vacuolar transporter, which 

detoxifies heavy metals by sequestration in 

the vacuole as GSH-conjugates, confers 

increased resistance to selenite exposure 39. 

To explain this paradoxical result, it was 

shown that transport to the vacuole of 

selenodiglutathione (GSSeSG) by Ycf1p 

results in cytosolic GSH depletion 51.  

 

4- Toxicity of seleno-amino acids 

Because of the chemical similarity 

between Se and sulfur (S), most enzymes 

involved in sulfur metabolism do not 

discriminate between the two chalcogen 

elements (see Fig. 1 for Se metabolic 

pathways in yeast). Thus, the yeast MET17 

gene product, encoding O-acetylhomoserine 

sulfhydrylase, catalyzes the incorporation of 

inorganic Se into O-acetylhomoserine 

(OAcHSer) to form selenohomocysteine 

(SeHCys), which is then used by methionine 

synthase (Met6p) to synthetize SeMet. SeCys 

is produced from SeHCys or SeMet by the 

transulfuration pathway. SeMet can be 

activated and transferred onto tRNA by 

methionyl-tRNA synthetase or used as 

substrate for S-adenosyl-methionine 

synthetase (encoded by SAM1/2) with similar 

efficiency to methionine 52. Similarly, 

cysteinyl-tRNA synthetase can aminoacylate 

its tRNA using SeCys instead of cysteine. 

Thus, both SeMet and SeCys can be 

incorporated in polypeptide chains 53, 54. An 

analysis of the Se content of Se-enriched 

yeast showed that around 60% of the Se was 

incorporated in proteins as SeMet and 10–

15% as SeCys 54. Numerous Se-containing 

low-molecular weight compounds, including 

non-proteinous SeMet account for the 

remaining Se. 

Several studies using yeast mutants 

show that SeMet itself is not toxic 55, 56. 

Although misincorporation of SeMet in 

proteins might in principle generate toxicity, 

it has been shown that the substitution of 

more than 90% of protein methioninyl 

residues by SeMet does not elicit significant 

toxicity in yeast, excluding a toxic effect of 

SeMet inserted into proteins in place of 

methionine 57-59. For example, a sam1sam2 

mutant, in which the conversion of 

methionine to S-adenosylmethionine is 

blocked, exhibited reduced SeMet toxicity 

compared with wild-type yeast and increased 

production of protein during growth in 

SeMet, although replacement of methionine 

by SeMet was nearly complete 60. These 

results suggest that a metabolite of SeMet is 

responsible for the toxicity of this compound 
61.  

Bockhorn et al. 59 screened a 

collection of single-gene deletion mutants of 

S. cerevisiae for resistance to SeMet and 

demonstrated that a mutant lacking 

cystathionine γ-lyase activity (Δcys3) showed 

the highest resistance to SeMet, suggesting 

that SeCys and/or a downstream metabolite 

of SeCys is responsible for SeMet toxicity. 

Another genome-wide screen revealed that 

tolerance against SeMet mainly involves 

https://esmed.org/MRA/mra/


Myriam Lazard.          Medical Research Archives vol 9 issue 9. September 2021              Page 7 of 13 

 

Copyright 2021 KEI Journals. All Rights Reserved                         https://esmed.org/MRA/mra/  

mechanisms related to the folding or removal 

of damaged proteins, suggesting that SeMet 

induces a proteotoxic stress 53. SeMet was 

also shown to induce an accumulation of 

protein aggregates by a mechanism that 

requires de novo protein synthesis. Protein 

aggregation was suppressed in a ∆cys3 

mutant unable to synthetize selenocysteine, 

suggesting that aggregation results from the 

metabolization of SeMet to SeCys followed 

by translational incorporation in the place of 

cysteine 53. In support of this hypothesis, 

introduction in S. cerevisiae cysteinyl-tRNA 

synthetase of a mutation reducing SeCys 

recognition increased resistance to the toxic 

effects of SeMet 62. Thus, misincorporation of 

SeCys in nascent polypeptides, resulting in 

protein misfolding and aggregation is likely 

to be the main pathway for seleno-amino 

acids toxicity. Random replacement of 

cysteine by SeCys may induce misfolding by 

formation of non-native intermolecular or 

intramolecular selenylsulfide or diselenide 

bridges resulting in the formation of insoluble 

protein adducts 53. 

In addition to protein aggregation, 

selenols produced from SeMet metabolism 

(SeHCys, SeCys and selenoglutathione 

(GSeH)) can induce an oxidative stress by 

reacting with low molecular thiols or selenols 

in the presence of oxygen to form mixed 

selenylsulfides or diselenides and generate 

superoxide radicals. Thus, mass 

spectrometry-based metabolomic studies in 

SeMet-treated cells showed that most of the 

selenols detected were in the oxidized forms 

and that low-molecular weight reduced thiols 

were significantly decreased, with 

concomitant increase in selenylsulfide 

compounds 63.  

 

5- Toxicity of methylselenol 

Among organic Se compounds, 

methylselenol (CH3SeH, MeSeH) is of 

particular importance because it has been 

postulated that the anticancer properties 

associated with high Se intakes were 

mediated primarily by this compound 64. 

Because of its volatility and reactivity, 

MeSeH is difficult to manipulate. Therefore, 

its toxicity is generally studied by using 

precursor molecules such as methylseleninic 

acid (CH3SeCOOH, MSA) or 

dimethyldiselenide (CH3SeSeCH3, DMDSe), 

which are reduced to MeSeH by intracellular 

thiols. Recently, to identify metabolic 

pathways affected by MeSeH, we studied the 

toxicity mechanisms of these precursors in S. 

cerevisiae. Our results show that MeSeH can 

serve as substrate for OAH-sulfhydrylase, 

which rapidly converts it into SeMet. Thus, in 

wild-type yeast cells, MeSeH enters the Se 

amino acid pool and its toxicity is mediated 

by the resulting SeMet 65. MeSeH precursors 

were also toxic, although at higher 

concentration, in a Δmet17 mutant devoid of 

OAH- sulfhydrylase activity. In this strain, a 

different mechanism of toxicity was 

uncovered. MeSeH is a strong reductant that 

can act as a catalyst able to disrupt disulfide 

bonds in proteins and to activate or inactivate 

redox-regulated proteins 66. We show that in  

Δmet17 cells, exposure to DMDSe caused a 

reductive endoplasmic reticulum (ER) stress, 

resulting in incorrect disulfide bond 

formation in newly synthesized proteins, 

which leads to accumulation and aggregation 

of unfolded proteins 67. These results suggest 

that MeSeH generated from DMDSe in the 

reducing environment of the cytosol diffuses 

across the ER membrane resulting in a 

reductive stress in this compartment. 

https://esmed.org/MRA/mra/
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6- Conclusion 

Studies using the yeast S. cerevisiae as 

a model organism demonstrate that the 

toxicity of Se compounds depends on the 

mode of action of their metabolites. The 

biological mechanisms explaining the 

toxicity of three important metabolites of Se 

have been characterized in this organism. 

Inorganic Se species that are metabolized into 

hydrogen selenide induce ROS-mediated 

DNA damage, GSH depletion and oxidative 

stress. Compounds that can be incorporated in 

the seleno-amino acid pool generate SeCys 

that induces cytosolic protein aggregation 

when it is mistakenly inserted into nascent 

polypeptides in the place of cysteine. Finally, 

MeSeH induces an ER stress by shifting the 

ER redox balance towards more reduced 

conditions, which results in protein 

misfolding in this compartment. In animal or 

human cells, selenite was also shown to 

induce ROS-dependent DNA strand breaks 

and/or base oxidation. Likewise, cytotoxicity 

of methylselenol is due to its ability to induce 

an ER stress, both in yeast or animal cells 68. 

These results, therefore, support the notion 

that studies in yeast can contribute to 

elucidate the mechanisms of Se toxicity in 

higher eukaryotes, including humans. 
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