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Abstract 

The emergence of nephron progenitor cells (NPCs) in early embryonic life leads to the many rounds 

of nephrogenesis that result in a richly endowed kidney by the end of gestation. A delicate balance 

between NPC differentiation and self-renewal must be maintained to guarantee optimal nephron 

endowment. Genetic errors which disturb NPC cell fate can result in premature NPC depletion and 

renal hypoplasia/dysplasia or permit the β-catenin mutations that accompany malignant 

transformation into a Wilms tumor. Retention of a small population of NPCs scattered throughout 

the adult kidney are important for recovery from acute tubular injury later in life. In this review, 

we track the origin and characteristics of NPC, describe the phase of NPC priming prior to nephron 

induction and describe NPC differentiation during nephrogenesis. We then cover the role of NPC 

in human renal disease, including mechanisms by which quiescent NPCs repair the injured adult 

kidney and the human diseases linked to dysfunction of NPCs. 
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1. Introduction 

Nephron progenitor cells (NPCs) represent a 

population of highly specialized cells in the 

developing kidney. When they receive the 

right inductive signal, a differentiation 

cascade is unleashed, and these cells go on to 

form the mature nephron structures of the 

kidneys (each linked to the collecting duct 

system). NPCs in lower organisms can 

generate new nephrons in response to injury 

throughout their entire lifespan. In contrast, 

the NPC pool in mammals is nearly depleted 

in the perinatal period; all nephrons are 

formed during embryogenesis and final 

nephron number is set before birth in 

humans.1, 2 Although NPCs originate at an 

early embryonic stage, a small subset are 

maintained into postnatal life and play an 

important repair function in the mature 

kidney. In humans with acute injury to renal 

tubules, acute tubular necrosis (ATN) may be 

severe enough to cause cessation of urine 

output. Remarkably, kidney function can be 

restored, though recovery may take days to 

weeks. Recovery involves repopulation of 

damaged tubular segments by proliferation of 

injury-resistant NPCs scattered throughout 

the kidney.3, 4 In this review, we cover the role 

of NPCs in both mammalian kidney 

development and renal disease. 

 

2. Development of NPCs 

2.1  Embryology of kidney development 

Early in embryonic development, the inner 

cell mass differentially expresses stem cell 

genes and genes responsible for tissue 

specificity and commitment to certain cell 

fates, with high and low expression, 

respectively. Around E6.5 in mouse 

embryonic development, the primary germ 

layers (endoderm, mesoderm and ectoderm) 

begin to form.5 Transcription factor Odd-

skipped-related-1 (Osr1) marks the entire 

mesoderm at this stage, however, gradients of 

inhibitory growth factors in the lateral plate 

and paraxial mesoderm eventually restrict 

expression to the intermediate mesoderm.6, 7 

Organs derived from the intermediate 

mesoderm, including kidneys and gonads, fail 

to develop in Osr1 knockout mice.8, 9 Around 

E8.5, a subset of Osr1(+) intermediate 

mesoderm differentiate into the epithelial 

cells of the paired nephric ducts which express 

Pax2, Pax8 and Gata3.10, 11 At this stage, 

another subset of Osr1(+) intermediate 

mesoderm remain mesenchymal and begin 

expressing Wilms tumour 1 (Wt1) around 

E9.0.12 Osr1(+);Wt1(+) cells form the 

metanephric mesenchyme which contain the 

NPC population. Similar to Osr1 knockout 

mice, kidneys fail to develop in Wt1 knockout 

mice.13 As the Pax2;Pax8;Gata3 expressing 

nephric ducts extend caudally in the embryo, 

around E10.5, they reach the glial-derived 

neurotrophic factor (GDNF) secreting 

metanephric mesenchyme (27th/28th somite) 

which stimulates an outgrowth from the 

nephric duct. This outgrowth, the ureteric bud 

(UB), invades and induces the metanephric 

mesenchyme to condense around the UB tip.14 

This “cap” of cells represents the early 

“primed” NPC population prior to induction 

of nephrogenesis. The first UB branching 

event occurs where it forms the characteristic 

T-like structure around E11.5 in mouse 

kidney development.15 Around this stage, the 

transcription factors Cited1 and Six2 are 

expressed in the cap mesenchyme and these 

cells represent the population of NPCs ready 

to initiate nephrogenesis.16-23 
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2.2 Origins of the NPC 

Whereas mesenchymal stem cells are 

pluripotent, NPCs arise at E9.0 in mouse 

kidney when a subset of intermediate 

mesoderm cells begin to express the master 

transcription factor, Wt1, committing them to 

nephrogenesis. This unlocks the 

undifferentiated stem cell state in which many 

genes required for nephrogenesis are broadly 

suppressed by epigenetic silencing. This is 

organized by polycomb repressive complexes 

(PRC) which methylate histones, making 

many genes inaccessible to transcription 

machinery. Maintenance of self-renewal and 

stem-like states have been shown to be 

dependent on histone methylation in human 

embryonic stem cells (hESCs) and epidermal 

progenitor cells.24, 25 WT1 is crucial for the 

transition from undifferentiated stem cell in 

Osr1(+) mesoderm to committed NPC in 

metanephric mesenchyme. Expression of this 

transcription factor suppresses gene silencing 

by inhibiting the catalytic subunit (EZH2) of 

the PRC. WT1 suppresses EZH2 through at 

least 2 concerted mechanisms. WT1 binds 

directly to the EZH2 promoter to suppress 

transcription and also engages microRNAs to 

suppress EZH2 translation.26, 27 Thus, the 

onset of Wt1 expression sets early NPC fate 

and commits the cells to nephrogenesis. 

WT1(+) NPCs will give rise to all the tubular 

segments from glomerulus to distal 

convoluted tubule. 

 

2.3   NPC Priming 

Although NPCs are committed to 

nephrogenesis at this stage, they are not yet up 

to the task. In 2005, Carroll et al. identified 

WNT9B as the inductive WNT-ligand and 

showed that it is produced by the adjacent 

UB.28 A Wt1(+) cell line (M15), isolated by 

Hastie et al. from E10.5 mouse mesonephric 

mesenchyme, was found to be unresponsive to 

WNT9B.29 In the interval between E10.5 and 

E11.5 which marks the arrival of the UB, early 

NPCs are primed to respond to the inductive 

signal. Additional transcription factors 

(EYA1, SIX2, CITED1, SALL1) mark the 

fully primed NPC which can unleashes the β-

catenin signalling pathway in response to 

WNT9B.17, 18, 20, 30, 31 

 

An essential part of NPC priming involves the 

expression of missing elements in the β-

catenin pathway. When M15 cells were 

analyzed for constituents of the WNT/β-

catenin pathway, they were found to lack 

some key elements present in mature 

Cited1(+) NPCs from the cap mesenchyme of 

E17 mouse kidney.29 M15 cells lack both 

Frizzled 5 (Fzd5) and R-spondin1 (Rspo1) 

mRNA expression. FZD5 is part of the WNT 

co-receptor complex expressed at the cell 

surface of NPCs in the cap mesenchyme; 

RSPO1 stabilizes the co-receptor complex 

and amplifies the canonical WNT-signal.29 

Addition of these missing components to M15 

cells in vitro permitted a robust response (11-

fold increase) to WNT9B. Vidal et al detected 

Rspo1 and Rspo3 transcripts in the 

nephrogenic zone of E14.5 mouse kidneys.32 

Knockout of R-spondin alone in mouse 

embryonic kidney cap mesenchyme gave no 

kidney phenotype but mice with double 

knockout of Rspo1;Rspo3 in Six2(+) NPCs 

had hypoplastic/dysplastic kidneys. 
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2.4   WNT/β-catenin signalling and induction 

of NPCs 

Once the NPCs are fully primed, they respond 

to WNT-signalling with robust activation of 

the β-catenin pathway, releasing the 

differentiation cascade and a burst of rapid 

cell division which drives nephrogenesis. 

Iglesias et al detected high levels of canonical 

WNT-signalling activity in both cap 

mesenchyme NPCs and UB cells of 

embryonic mouse kidneys (Figure 1).33 β-

catenin knockout in UB cells causes renal 

dysplasia in mouse kidneys.34 β-catenin 

knockout in mouse metanephric mesenchyme 

resulted in small, dysplastic kidneys.35 

 

 
Figure 1. Active WNT/β-catenin signalling in embryonic mouse kidney. A section from an E15 

kidney of the TOPGAL mouse. These mice contain the β-galactosidase gene driven by a TCF 

promoter (β-catenin responsive). Kidneys were stained with X-gal to detect the β-galactosidase 

signal. ub: ureteric bud epithelia; imm: induced metanephric mesenchymal cells. Republished from 

Iglesias et al 2014.33 

 

2.5   Self-renewal of NPCs 

In humans, the metanephric kidney begins to 

function by about 10 weeks of age but UB 

branching and successive generations of 

nephrons are continued until 36-38 weeks 

gestation. Since each generation of nephrons 

consumes NPCs, it is important to replenish 

the NPC pool throughout the embryonic 

period. NPC survival and self-renewal are 

driven by low levels of β-catenin, stimulated 

by WNT9B from the UB.36 Failure to 

maintain the NPC pool throughout 

nephrogenesis results in reduced nephron 

number, smaller kidney size and is associated 

https://esmed.org/MRA/mra/
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with an increased risk of developing renal 

insufficiency in later life.37 Differentiation of 

NPCs to form the renal vesicle (RV) appears 

to require additional signals which amplify the 

level of β-catenin signalling. An inner layer of 

NPCs develop intimate contact with WNT11-

expressing cells at the distal UB tip and appear 

to modify their polarity and behaviour.38 

Although movement of uninduced NPCs is 

likely random, it has been proposed that the 

induced NPCs may move directionally along 

the underarm of the UB branch. There, they 

are exposed to additional signals which result 

in high levels of β-catenin signalling.39 This 

induces both a burst of proliferation40 and 

simultaneous differentiation into the RV.36, 39 

One proposed mechanism postulates stromal 

cell influence on NPC behaviour in the 

underarm niche of the UB (Figure 2). It is 

plausible that defects in the regulation of these 

NPC events could be involved in some forms 

of renal dysplasia but have not been reported 

in humans to date. 

 

 
Figure 2. Schematic of canonical WNT-signalling in NPCs. Self-renewing NPCs (light blue); 

differentiating NPCs (medium blue); renal vesicle (RV - dark blue); ureteric bud (red); distal 

ureteric bud tip (dark red); cortical stromal cells (green); medullary stromal cells (orange). 

Modified from Ramalingam et al 2018.36 

 

2.6   NPC transcription factors in kidney 

development and human renal disease 

2.6.1 SALL1 

In Six2(+) cells, Sall1 expression promotes 

self-renewal and positively regulates NPC 

genes Cited1 and Osr1.31 Sall1 deletion in 

mice resulted in depletion of the NPC pool, 

decreased survival of differentiated cells and 

severe renal dysgenesis. SALL1 mutations 

have been identified in individuals with 

https://esmed.org/MRA/mra/
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Townes-Brocks syndrome (TBS). Several 

organ systems are affected in individuals with 

TBS, however, a commonly observed 

phenotype includes renal hypoplasia, 

dysplasia and kidney failure.41, 42 Botzenhart 

et al describe 56 SALL1 mutations, with 46 of 

them located in a small stretch within exon 2 

of the gene and 10 of them associated with a 

renal phenotype.43 Faguer et al describe two 

additional SALL1 mutations in TBS patients, 

both occurring in the hotspot region in exon 2. 

One mutation identified was a frameshift 

mutation caused by an insertion 

(c.981_982insTGGC) and the second 

mutation was a frameshift mutation caused by 

an insertion-deletion 

(c.1451_1458delACAGGTTCinsT) with both 

mutations predicted to generate non-

functional, truncated proteins.44 Both 

individuals in their report displayed renal 

hypodysplasia and chronic renal failure. A 

frameshift mutation resulting in formation of 

a premature stop codon in SALL1 was 

reported (c.3414–3415delAT 

(p.T1138fs1152X)) in an individual with an 

isolated renal phenotype who developed 

bilateral renal hypoplasia.45 Additional 

mutations are listed in Table 1. 

 

Table 1: Human renal hypoplasia/dysplasia causing mutations in key NPC genes 
 

Gene 
Mutation (DNA sequence 

change) 
Amino acid change Reference 

BMP4 

c.130G>T p.G44* 46 

c.272C>G p.S91C 

47 

c.347C>G p.T116S 

c.450C>G p.N150K 

EYA1 

c.1179insGGG p.394insG 

Partial gene deletion Loss of function 

c.1360T>C p.S454P 

48 

c.1414T>G P.L472R 

c.823C>T Premature stop codon 

c.1251T>CC Frameshift 

c.755InsC Frameshift 

c.1555InsTTGT Frameshift 

c.1359InsC Frameshift 

c.1372T>AGAGC Frameshift 

c.1599 +5 G>C Aberrant Splicing 

c.1498 +2 T>G Aberrant Splicing 

Exon 11-16 del20-37Kb Large deletion 

Exon 9 del5.6Kb Large deletion 

Exon 11-15 del5.8-7Kb Large deletion 

c.1377-2A>G - Boys Town National 

Research Hospital 

(unpublished) 
c.303C>A p.Tyr101* 

c.619G>T p.G207* 
49 c.806delC p.A269fs 

c.1048_1050+1del - 

https://esmed.org/MRA/mra/
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c.1319G>A p.R440Q 

c.1487_1488del p.V496fs 

c.727G>T p.E243* 
50 

IVS15-3C>T (SNP) - 

c.920delG p.G307fs 51 

c.1475+1G>C - 52 

c.1381delA p.R461fs467* 53 

c.966+5G>A - 54 

c.1474_1475insC p.R492Pfs*40 55 

c.319G>A p.Gly107S 

56 

c.430C>T p.Gln144* 

c.586_596dup 

(+)636_644delInsTG 

p.[Ser200IlefsX12 + 

Ser213GlyfsX112] 

c.616dupT p.Tyr206LeufsX50 

c.989A>T p.Glu330Val 

c.1100+1G>C - 

c.1216_1219dup p.Arg407Glnfs*13 

c.1231_1232dupAT p.Tyr412Serfs*24 

c.1372_1375dupTCCC p.Arg459Leufs*41 

c.1425delA p.Leu476Trpfs*9 

c.1434dup p.Val479Serfs*20 

c.1542_1546delAAAAG p.Arg514Serfs*83 

c.1554T>G p.Tyr518* 

c.1655dup p.His552Glnfs*47 

c.1678T>C p.*560Gln 

c.104−?_461+?del - 

Entire gene deletion - 

c.880C>T p.R294* 

57 

c.1459T>C p.S487P 

c.1604_1607del p.E535fs 

c.1691delC p.A564fs 

c.1220G>A p.Arg407Gln 

c.781C>T Premature stop codon 
58 c.1501delAAAG Frameshift 

c.1592delC Frameshift 

c.1442T>C - 59 

c.1042-1G>A - 
Molecular Otolaryngology 

Research Laboratory 

c.124_432del309 p.V42_Q185del 60 

c.1050+1G>C - 
61 

c.1286A>G p.D429G 

c.1420-1421delCC Premature stop codon 62 

c.497T>A p.Y163* 

63 

c.1107T>A p. Y370* 

IVS9-2A>G Aberrant splicing 

IVS14- 1G>A Aberrant splicing 

c.952G>T Aberrant splicing 

https://esmed.org/MRA/mra/
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c.982C>T p.R328* 64 

c.164C>T p.T55M 

65 

c.348delA p.G117fs 

c.402C>A p.Y134* 

c.450_451del p.G151fs 

c.553C>T p.Q185* 

c.592G>T p.G198* 

c.634C>T p.Q212* 

c.638A>T p.Q213L 

c.640-15G>A new splice acceptor 

c.777dupA p.E260fs 

c.851C>G p.S284* 

c.863_866del p.K288fs 

c.967-1G>A - 

c.1050+1G>T - 

c.1081C>T p.R361* 

c.1138_1140+1delinsCTTC - 

c.1377_1378delinsAT p.K460* 

c.1476-2A>G - 

c.1496delT p.L499* 

c.1510C>T p.Q504* 

c.1579T>A p.Y527N 

c.1591A>T p.K531* 

c.1649T>A p.V550E 

c.1657_1659del p.V553del 

c.1697dupA p.H567fs 

c.790 C>T p. R265* 

66 

c.1680A>C p.*559Y 

c.1649 T>C p.L549P 

c.387insT - 

c.868-1G>A - 

c.1041+1G>T - 

c.1498+2T>G - 

c.1042-13 23bp inv - 

c.889C>T p.R297* 

c.1140+1G>T - 

c.1773C>G p.Y591* 

67 
c.1141-1G>A p.E380fs*387 

c.1360+4A>G p.G454fs*461 

c.920delG p.R307fs*365 

c.1627C>T p.Q543* 68 

c.867+5G>A p.Y244Sfs*8 
69 c.1261+5G>A - 

c.1397dupT p.L466Ffs*33 

c.579C>G p.Y193* 
70 

c.678C>G p.Y226* 

c.297delCCGTACGG Frameshift 71 

https://esmed.org/MRA/mra/
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c.870InsGT Frameshift 

c.967A>T pR323* 72 

OSR1 rs12329305 - 73 

SALL1 

c.981_982insTGGC - 
44 

c.1451_1458delACAGGTTCinsT - 

c.3414–3415delAT p.T1138fs1152* 45 

c.817delG - 74 

c.814C>T - 

43 

c.995delC - 

c.1119_1197del79 - 

c.1134delT - 

c.1174_1175delCT - 

c.1273delC - 

c.1516_1517dupAT - 

c.3249_3255del7 - 

SIX1 

c.679G>T p.D227Y 
45 

c.619insG - 

c.397-399delGGA p.delE133 75 

c.328C>T p.R110W 76 

SIX2 

c.402C>T p.L43F 
47 c.997C>T p.P241L 

c.1100–1101GG>AA p.D276N 

WNT9B 
c.949G>A p.G317R 

77 
c.11dup p.P5Afs*52 

 

2.6.2 EYA1 

EYA1 is expressed in cap mesenchyme NPCs 

and functions as a transcriptional co-activator. 

NPC-specific knockout of Eya1 in mice 

resulted in premature differentiation of the 

NPC population.30 Six2 expression was 

minimal in Eya1 knockout NPCs suggesting 

Eya1 is essential for expression of Six2 to 

maintain the NPC pool in an undifferentiated 

state. EYA1 was identified as a causative gene 

for Branchio-Oto-Renal (BOR) syndrome in 

1997.78 As the name suggests, the syndrome is 

associated with branchial, otic and renal 

anomalies. Individuals with BOR syndrome 

display a phenotype ranging from renal 

hypoplasia to bilateral agenesis. Over 100 

EYA1 mutations have been reported, 

accounting for ~40% of all BOR syndrome 

cases.52, 56, 65 SIX1 and SIX5 have also been 

associated with BOR, however, these account 

for only 5% of cases.76, 79 Additional 

mutations are listed in Table 1. 

 

2.6.3 SIX2 

Knockout of Six2 in mice results in severe 

renal hypoplasia due to compromise of the 

NPC pool.22 Similarly, SIX2 mutations cause 

renal hypoplasia in humans. Three missense 

mutations in SIX2 (c.402C>T (p.L43F); 

c.997C>T (p.P241L); c.1100–1101GG>AA 

(p.D276N)) were described by Weber et al in 

5 patients with renal hypoplasia, dysplasia 

and/or vesico-ureteral reflux.47 These 

mutations occurred in highly conserved amino 

acids in the six domain of SIX genes or the 

SIX2 specific C-terminal domain.  

 

2.6.4 SIX1 

https://esmed.org/MRA/mra/
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Like SIX2, SIX1 is essential for NPC survival 

and differentiation. Interestingly, Xu et al 

analyzed the metanephric mesenchyme of 

Six1-null mice and observed a significant 

reduction in Six2 expression.80 SIX1 mutations 

have been linked to BOR syndrome in several 

individuals. Ruf et al describe a family with 

an in-frame deletion in SIX1 (c.397-

399delGGA) resulting in the deletion of a 

glutamate amino acid.75 The patient described 

developed one hypoplastic/dysplastic kidney 

with vesicoureteral reflux and renal failure. 

SIX1 mutations (c.679G>T (p.D227Y)) were 

reported in two siblings who also had a 

frameshift mutation in PAX2.45 One 

individual developed bilateral renal 

hypoplasia and the second developed bilateral 

renal dysplasia. The father of the children who 

passed on the PAX2 variant had isolated renal 

hypodysplasia and chronic renal 

insufficiency. The mother carried the SIX1 

variant, however, had no symptoms. 

Additional mutations are listed in Table 1. 

 

2.6.5 OSR1 

Osr1 expression marks the intermediate 

mesoderm lineage which gives rise to NPCs; 

Osr1 knockout in mice results in renal 

agenesis.8, 9 In humans, a hypomorphic OSR1 

variant (rs12329305) is associated with an 

11.8% reduction in kidney volume in the 

newborn.73 The reduction in kidney volume 

was accompanied by a significant increase in 

cord blood cystatin C levels, suggesting these 

individuals have reduced kidney function.  

Lozić et al found an association between the 

same OSR1 variant and congenital anomalies 

of kidney and urinary tract (CAKUT).81 

 

2.7    NPC growth factors in kidney 

development and renal disease 

2.7.1 BMP4 

BMP4 is expressed in the developing 

metanephric mesenchyme and acts as an 

inhibitor of GDNF to prevent ectopic UB 

outgrowths in the early stages of kidney 

development.82, 83 Bmp4 knockout mice 

exhibit a number of CAKUT phenotypes, 

including renal hypoplasia/dysplasia.82 Three 

missense mutations in the prodomain of 

BMP4 were identified in 5 individuals 

(c.272C>G (p.S91C); c.347C>G (p.T116S); 

c.450C>G (p.N150K)).47 Three individuals in 

this study developed renal hypoplasia or 

dysplasia and one individual had renal 

agenesis. Another missense mutation in 

BMP4 was identified resulting in formation of 

a premature stop codon (c.130G>T (p.G44*)) 

in a patient who developed renal hypoplasia 

requiring renal replacement therapy.46  

 

2.7.2 WNT9B 

Mutations of WNT9B, compromise NPC 

induction and are associated with abnormal 

kidney development. In mice, knockout of 

Wnt9b resulted in loss of the NPC population, 

causing  severe renal hypoplasia.28 Lemire et 

al identified two novel WNT9B variants in two 

unrelated families.77 The proband from the 

first family had a homozygous missense 

mutation c.949G>A (p.G317R) in WNT9B 

and developed bilateral renal cystic dysplasia 

and chronic kidney disease. Two previous 

pregnancies were terminated due to 

development of severe bilateral renal agenesis 

and oligohydramnios. Both fetuses had a 

homozygous c.949G>A (p.G317R) mutation. 

In the second family, the proband had a 

homozygous c.11dup (p.P5Afs*52) mutation 

https://esmed.org/MRA/mra/
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in WNT9B and developed renal 

hypoplasia/dysplasia with progressive renal 

insufficiency. The parents of this proband 

gave birth to 2 other infants who died on day 

1 and day 20 of life. The genotypes of the 

siblings were not characterized; however, 

oligohydramnios was confirmed in one 

sibling. 

 

3. Malignant transformation of NPCs 

(Wilms tumour) 

3.1  Genetics of hereditary Wilms tumours 

Wilms tumour (WT) is an embryonal tumour 

that occurs in the first few years of life 

Hereditary forms of WT (Drash syndrome and 

WAGR syndrome) led to the discover of the 

WT1 gene.84 WT1 mutations are detected in 

approximately 20% of WTs and the current 

understanding of WT indicates that NPCs 

harbouring a germline WT1 mutation are 

susceptible to somatic mutations which 

eliminate the trans WT1 allele.85 In an NPC, 

lacking WT1 expression, responsiveness to 

WNT9B is precluded.  The clonal progeny of 

a mutant NPC form undifferentiated clusters 

in the kidney, termed nephrogenic rests 

(Figure 3). These cell clusters show no β-

catenin signalling activity and undergo 

malignant transformation frequently 

associated with a new constitutively-active β-

catenin gene (CTNNB1) missense mutation. 

Although nephrogenic rest cells are prone to 

malignant transformation, they can be found 

in normal kidneys where they usually involute 

during the first year of life.86 Nephrogenic 

rests look phenotypically like NPCs; WTs 

characteristically retain expression of NPC 

transcription factors such as CITED1 and 

SIX2.87 

 

 
Figure 3. A) Cystic nephrogenic rest (NR) in a patient with a germline WT1 missense mutation 

and Drash Syndrome; B) Malignant Wilms tumour (WT) with darker staining sits adjacent to the 

NR. 
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3.2  β-catenin (CTNNB1) mutations in Wilms 

Tumour 

Approximately 15% of all WTs contain 

activating mutations in CTNNB1.88 The most 

common CTNNB1 mutations alters the critical 

serine 45 residue targeted by GSK3β and the 

β-catenin destruction complex.89, 90 This 

mutation permits constitutive activation of the 

canonical WNT-signalling pathway, driving 

unregulated NPC growth and proliferation 

since β-catenin can no longer be targeted for 

ubiquitination and proteasomal degradation.91 

Interestingly, Maiti et al. showed that 95% of 

WTs analyzed in their study had both WT1 

and CTNNB1 mutations.88 Fukuzawa et al 

analyzed WT tissue and the neighbouring 

nephrogenic rests and detected WT1 

mutations in both compartments. In contrast, 

CTNNB1 mutations were only detected in 

tumour tissue, suggesting CTNNB1 mutations 

are a late mutational event in the progression 

of Wilms tumorigenesis in WT1-null cells.92 

Huang et al generated a mouse model in which 

WT1-knockout was targeted to either 

Cited1(+) NPCs, Six2(+) NPCs or Foxd1(+) 

stromal cells. Seventy-three percent (8/11) of 

Cited1 mutants generated WTs in contrast to 

45% (9/20) of Six2 mutants. No tumours were 

generated in the Foxd1 mutants. This suggests 

the NPC are particularly susceptible to 

malignant transformation when they lose 

WT1 expression.93  

 

Multiple reports have identified multifocal 

WT cases in which each tumour harboured a 

unique activating β-catenin mutation, 

suggesting a random somatic event.94, 95 This 

observation also suggests that there may be a 

selective pressure for this mutational event in 

WT1-null cells. In WT without activating 

mutations in CTNNB1, other mechanisms that 

result in nuclear localization/activation of β-

catenin are seen. In a subset of tumours 

analyzed by Su et al, nuclear translocation of 

β-catenin was detected in 53% (10/19) of 

tumours, even though only 15.8% (3/19) of 

tumours had a mutation in CTNNB1.96 

 

A plausible mechanism for the increased 

incidence of CTNNB1 mutations in WT1-null 

cells involves the regulation of EZH2 by 

WT1. Akpa et al showed that expression of 

WT1 normally suppresses EZH2, allowing 

expression of CTNNB1.27 Thus, loss of WT1 

in NPCs precludes normal β-catenin, needed 

for the response to ureteric bud WNT9B. It is 

unclear whether the frequent occurrence of 

activating CTNNB1 mutations is a random 

mutational event that drives rapid cell division 

or whether loss of WT1 somehow destabilizes 

the NPC genome. 

 

3.3  Genomic stability in the NPC 

Although WT1-null WTs do not exhibit an 

obvious mutator phenotype, it is conceivable 

that loss of WT1 creates a low level of 

genomic instability which drives frequent 

mutations in specific genes. Given the 

important role WT1 plays in setting the NPC 

cell fate early in kidney development, loss of 

WT1 may alter expression of specific DNA-

repair genes, thus explaining the incidence of 

common co-mutations in WT1-null WTs. 

Mutations in well-known DNA repair genes 

are rare in WT,97-99 however, the possibility 

remains that gene expression of specific repair 

genes could be altered at either the 

transcriptional or epigenetic level in WT1-

null cells.  
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4. NPCs and repair of kidney injury 

Although NPCs play a crucial role in primary 

nephrogenesis prior to birth, a small subset of 

embryonic NPCs were found to be retained by 

the mature kidney.100 Unlike zebrafish which 

can generate new nephrons throughout adult 

life, mammalian kidneys cannot form new 

nephrons after the perinatal period. However, 

the observations by Sagrinati suggest that 

adult NPCs are retained to repair renal tubules 

following acute injury later in life. It is a 

common occurrence in hospital intensive care 

units to observe complete shutdown of urine 

output in patients who have experienced 

hypotensive shock or exposure to nephrotoxic 

drugs. Renal biopsy shows structural damage 

to both the renal glomerulus and renal tubules, 

particularly the renal proximal tubule. Anuria 

may persist for weeks, requiring dialysis and 

other supportive measures. However, in most 

cases, there is a dramatic turn of events which 

leads to restoration of urine output and general 

recovery of renal function, to baseline levels. 

The mechanism by which renal tubules are 

repaired is not well understood and could 

involve the adult NPCs described by Sagrinati 

et al. 

 

In their report from 2006, Sagrinati et al 

showed that NPCs retained in the adult kidney 

express stem cell markers CD24/CD133. 

Others have added additional NPC markers 

such as Vimentin and VCAM1.101, 102 These 

cells have the ability to self-renew and 

differentiate into both podocytes and tubular 

epithelial cells.103 As development of the 

embryonic kidney proceeds, the number of 

these cells fall but remain detectable in the 

urinary pole of Bowman’s capsule, the renal 

proximal tubule and in some segments of the 

distal nephron (Figure 4).4 Analysis of human 

kidneys with acute tubular necrosis (ATN) 

identified an increased number of CD24(+) 

cells in the injured tubules compared to 

control.104 Additionally, 85% of the CD24(+) 

cells in ATN biopsy samples were 

proliferating, suggesting a contribution to the 

repair of damaged tubules. Isolated 

CD24/CD133(+) were also shown to be more 

resistant to cell death compared to 

CD24/CD133(-) cells.3 Using a confetti 

immunofluorescent reporter driven by the 

Pax2 promoter to mark NPCs, Lazzeri et al 

showed that large stretches of damaged 

epithelium were repopulated from single NPC 

clones.4 Single cell analysis showed that 

NPCs represent about 1 in 16 renal proximal 

tubule cells in the adult human kidney.102 
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Figure 4. Schematic of NPCs from the Pax2(+) lineage within the mature nephron structure 

(red dots). Aquaporin-1 (AQP1) positive proximal tubules (light grey); Tamm–Horsfall Protein 

(THP) positive distal tubules (dark grey); OSOM: outer stripe of outer medulla; ISOM: inner stripe 

of outer medulla. Adapted from Lazzeri et al 2018.4 

 

4.1  Therapy of acute renal injury with 

exogenous NPCs 

Interestingly, Sagrinati et al and Lazzeri et al 

showed that CD24/CD133(+) NPCs could be 

harvested from both human fetal and adult 

kidneys and infused into mice with glycerol 

induced acute tubular necrosis (ATN) to 

accelerate recovery. The exogenous cells 

integrate into damaged segments of the renal 

tubular epithelium and significantly reduced 

blood urea nitrogen (BUN) and renal 

fibrosis.100, 103 Zhang et al showed that 

integration of exogenous CD24(+) NPCs from 

embryonic mouse kidney into glycerol injured 

adult mice is highly dependent on the integrity 

of β-catenin signalling.105 Pre-treatment of 

CD24+ cells with a canonical WNT-

signalling inhibitor (IWR-1) prior to infusion 

resulted in a significant decrease in the 

number of integrated cells. Preliminary data 

from our lab showed that early unprimed 

NPCs from E10.5 mouse kidney are unable to 

integrate into glycerol-injured renal tubules 

(data not published).  

 

Several groups have investigated the ability of 

mesenchymal stem cells (MSCs) to 

repopulate the damaged kidney. Amniotic 

fluid and bone marrow derived mesenchymal 

stem cells (MSCs) have been tested 
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extensively in mouse models with AKI. Rota 

et al infused MSCs from amniotic fluid and 

Morigi et al tested MSCs from bone marrow. 

Both improved recovery of AKI compared to 

untreated mice.  However, 90% of exogenous 

cells were not integrated into the tubular 

epithelium.106, 107 Thus, the beneficial effects 

of MSC therapy are thought to occur through 

paracrine secretion of protective growth 

factors and cytokines rather than repopulation 

of the damaged tubule.  

 

Several groups have tested the ability of 

human urine-derived cells to treat 

immunodeficient mice with cisplatin or 

ischemic AKI. Human urine-derived cells 

improved repair when analyzing blood 

biomarkers and tubular injury.108-111 Similar 

results were observed in a diabetic 

nephropathy mouse model.112 Although these 

cell types improved repair, closer examination 

of the published immunofluorescence and 

immunocytochemistry images again showed 

minimal cell integration into tubular epithelial 

cells. Therefore, it is likely that these cell 

types primarily exert their protective function 

through paracrine secretion of growth 

factors/cytokines, similar to amniotic fluid 

and bone marrow derived MSCs.  

 

Arcolino et al. recently described a protocol 

permitting the isolation of nephron 

progenitor-like cells from urine of newborn 

babies (gestational age of 31-36 weeks).113 

Cell sorting of neonatal urine samples using 

cell surface markers including CD24, CD133 

and SIX2 isolates a putative NPC-like 

population. Culture of these cells in podocyte 

differentiation-medium for 7 days upregulated 

transcript levels of podocyte markers 

PODOCALIXYN, SYNAPTOPODIN, CD2AP 

and NEPHRIN.  In cisplatin-treated proximal 

tubules cells, caspase 3 levels were 

significantly reduced by co-culture with NP-

like cells derived from neonatal urine. 

However, the evidence for repair AKI by 

exogenous NPC from perinatal urine remains 

elusive.  

 

5. Conclusions 

This review provides an update on the biology 

of NPCs during embryonic kidney 

development and summarizes recent evidence 

that mutation of NPC genes contribute to 

human syndromes of kidney hypoplasia or 

dysplasia. In contrast, loss of the master NPC 

gene, WT1, disturbs NPC fate and leads to 

Wilms tumor.  Finally, it is tempting to hope 

that infusion of exogenous NPC may, one day, 

be useful in repopulating the human nephron 

after acute kidney injury. 
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