Biologic Knee Arthroplasty in 360 Degrees for Early Osteoarthritis Treatment

Authors
Alberto Gobbi MD
O.A.S.I. Bioresearch Foundation Gobbi N.P.O.
Via Amadeo 24, 20133 Milan, Italy
E-mail: agobbi@cartiagedoctor.it

*Macarena Morales MD
O.A.S.I. Bioresearch Foundation Gobbi N.P.O.
Via Amadeo 24, 20133 Milan, Italy
E-mail: dra.macarenamorales@hotmail.com

Giacomo Valsecchi
O.A.S.I. Bioresearch Foundation Gobbi N.P.O.
Via Amadeo 24, 20133 Milan, Italy
E-mail: fellow@oasiortopedia.it

Abstract
This article gives a comprehensive review of a two-step single surgical alternative that searches to preserve the patient's cartilage and joint. It addresses the knee from a 360-degree perspective; First, from the articular side, full-thickness cartilage lesions are treated with hyaluronic acid (HA) scaffold combined with bone marrow aspirate concentrate (BMC), which restores the articular cartilage with a hyaline-like tissue. Then, deep inside the subchondral bone, a minimally invasive procedure called Osteo-Core-Plasty (OCP) is conducted when it is affected. This procedure serves to restore the subchondral bone with structural bone autograft and BMAC derived signaling cells. The HA-BMC cartilage preserving technique with more than ten years of follow-up provides persistent and prosthesis sparing surgical results, while OCP offers the further benefits of the new technology for deep joint bone-core treatment and regeneration with significant improvement in clinical score outcomes and magnetic resonance imaging. Given the evidence, these articular preservation techniques can be considered the new paradigm knee arthroplasty surgery as they can achieve a valuable and holistic approach to early osteoarthritis treatment.

Keywords: stem cells, scaffold, osteoarthritis, hyaluronic acid, cartilage regeneration, subchondral bone, bio-orthopaedics
1. Introduction:
Osteoarthritis (OA) is one of the most prevalent degenerative joint diseases; the aggregated global prevalence of knee OA can be as high as 16% (95% CI, 14.3%-17.8%) in individuals more than 15 years old and 22.9% (95% CI, 19.8%-26.1%) in individuals aged 40 and over, with a peak prevalence at 70-79 years old. Its main characteristic is the generation of significant joint pain and functional impairment, accounting for the 15th highest cause of years lived with disability worldwide. OA is a multifactorial disease that depends on individual factors like gender, genetic inheritance, and acquired factors like high-impact sports or previous knee injury. In addition, it has increasingly been correlated with patients' metabolic conditions, including visceral obesity, insulin resistance, low-HDL cholesterol, and high triglycerides. The exponential increase of OA makes this disease a major social problem, which nowadays, with better diagnostic technologies and a better understanding of OA pathogenesis, makes it imperative to search for long-term reproducible and accessible solutions for cartilage injury with its primary focus on disease prevention and early treatment rather than end-stage disease solutions like total knee arthroplasty (TKA). This article describes two minimally invasive joint-preserving surgical techniques for early osteoarthritis, HA-BMAC scaffold for articular cartilage lesions and Osteo-Core-Plasty for subchondral bone treatment.

2. One-step treatment for chondral lesion HA-BMAC

2.1. Articular cartilage
Joints are lined with smooth articular cartilage essential for low friction movement and optimal shock absorption. Chondral lesions occur mainly in the medial femoral condyle, which is related to the direct loading stress that receives, and almost 60% of the incidence has been reported in patients between 40 and 50 years of age; a significant percentage population which may not be yet suitable for arthroplasty. Cartilage repair treatments were developed with their primary focus set on regeneration and replacement of the hyaline cartilage rather than compromising the articulation with TKA. Over the years, several techniques in cartilage restoration have been developed. Autologous chondrocyte implantation (ACI) was one of the first techniques shown to stimulate the production of hyaline-like repair tissue, providing a stable clinical improvement. The evolution of this technique led to the development of scaffolds that allowed cell ingrowth but did not eliminate the need for the second-stage chondrocyte harvest and cultivation. For this purpose, a one-step procedure was created that led to BMAC use, which contains multipotent stem cells (MSC) and growth factors with a hyaluronan-based scaffold to treat chondral injuries.

2.2. Hyaluronan-based scaffold
Tissue engineering aims to use biodegradable polymers as temporary scaffolds for the in vitro growth of cells; these must be biocompatible and promote chondrocyte attachment and proliferation. Hyaluronic acid is a naturally occurring glycosaminoglycan that has proven to be an ideal molecule for tissue engineering in cartilage repair. Through chemical modifications, it may be processed into stable configurations to produce...
biodegradable structures with different physical forms and in-vivo residence times (Fig.1) 14. Furthermore, extensive biocompatibility studies have demonstrated their safety and ability to be reabsorbed without an inflammatory response 15,16. For this reason, a three-dimensional non-woven HA scaffold is used in the described cartilage repair technique to support in vitro chondrocytes growth and help promote the expression of their original chondrogenic phenotype 15.

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{image.png}
\caption{Hyaluronic-Based Scaffold}
\end{figure}

2.3. Bone marrow aspirate concentrate
BMC consists of bone marrow stem cells (BMSC), platelets containing growth factors, and hematopoietic cells facilitating osteochondral healing 17,18. Under static culture conditions, BMC have been shown to interact with the non-woven hyaluronic acid scaffold, providing cellular migration, adhesion, and proliferation 19,20. Several studies support the HA-BMAC combination as a valuable tool for treating full-thickness cartilage lesions of the knee 21–24. Nejadnik et al. compared the clinical outcomes of patients treated with first-generation autologous chondrocyte implantation (ACI) and patients treated with autologous BMSC and concluded that BMSC are as effective as chondrocytes for articular cartilage repair 25. In another study, patients treated with matrix-induced autologous chondrocyte implantation (MACI) were compared with patients treated with BMSC combined with HA scaffold; at three years follow up, there were no significant statistical differences between the two groups, concluding that both of these techniques are viable and effective 26, with the difference that HA-BMAC surgical technique can be performed in just one surgery without the need of further cell cultivation or amplification.

2.4. Surgical Technique
The procedure is performed under general anesthesia. Before the intervention begins, the injured knee is examined to recognize other possible concomitant pathologies like instability. Afterward, the ipsilateral iliac crest is exposed for bone marrow aspiration. Cartilage lesions are identified during diagnostic arthroscopy. Arthroscopic intervention is only possible if the lesion can
be fully visualized with the arthroscope and reached with the chondrectomes; if not, an arthrotomy is performed. First, thorough debridement of the loose chondral tissue is necessary, ensuring that the lesion's borders are vertical to the subchondral plane (Fig.2). The calcified cartilage layer overlying the subchondral bone is removed, preserving the subchondral plate. The lesion dimensions are measured to prepare the matching implant using the three-dimensional HA scaffold. BMAC can be activated with the batroxobin enzyme to form a sticky clot (Fig 3), facilitating easier application (Fig.4). Finally, the HA-BMAC is implanted into the lesion (Fig. 5). A crucial part of the procedure is to check the implant stability; for this purpose, the joint is manipulated through a range of motion several times while the scaffold is observed via arthroscopy. Fibrin glue can the be applied to improve implant stability 23,24,27.

In cases where osteochondral lesions are evident, a malleable bone graft inlay can be constructed with morselized bone autologous cancellous graft rich in mesenchymal stem cells collected simultaneously from bone marrow aspiration site. This technique was described by Sadlik et al. 28 and is referred to as Biologic Inlay Osteochondral Reconstruction (BIOR). This single-stage reconstruction procedure's versatility makes it an interesting off-shelf surgical treatment method, given the cost-effective nature and technical versatility of the technique.

Figure 2. Intraoperative image: Prepared cartilage defect in the medial femoral condyle

Figure 3. Intraoperative image: Activated BMAC
Figure 4. Intraoperative image: A) BMAC extraction from iliac crest. B) Sized hyaluronic-acid scaffold. C) HA Scaffold seeded with BMC

Figure 5. Intraoperative image: HA-BMAC implanted into the cartilage defect.

3.5.1 Clinical Outcomes

HA- BMAC surgical technique for full-thickness chondral lesion treatment has ten years of good to excellent outcomes. A group of twenty-three physically active patients with a mean age of 48.5 years treated with HA-BMAC technique were followed prospectively. Chondral defect size was at least one cm² and classified as grade IV according to International Cartilage Repair Society (ICRS) criteria. The defect could be localized in the patella, trochlea, or femoral condyle. Magnetic resonance imaging was used for diagnostic and pre-operative assessment of cartilage lesions. For outcome measure, patient-reported assessment Tegner Activity Scale, visual analog scale (VAS), International Knee Documentation Committee (IKDC) subjective score, and Knee injury and Osteoarthritis Outcome Score (KOOS) were used preoperatively, at short-term follow-up.
(2 years), and long-term follow-up. At the final follow-up, all scores were significantly increased (P < 0.001). Median cartilage lesion size was 6.5 cm² (range: 2 to 27 cm²), and a negative correlation was found between patient age and final outcome scores of; IKDC, Tegner, and KOOS. Results also demonstrated that differently sized osteochondral lesions could be addressed with this technique, from minor-sized lesions to significant defects up to 22 cm² showing good clinical outcomes at long-term follow-up. Interestingly, when one compares bone marrow stimulating procedures such as microfracture, the HA-BMAC technique has proven effective in treating patients over 45 years of age. In conclusion, cell-based cartilage repair performed in a single stage with an HA scaffold associated with BMAC has demonstrated successful long-term clinical outcomes, comparable with outcomes expected from 2-stage procedures. Nevertheless, is essential to recall that to obtain the desired results, the knee joint should be considered in its entirety, and other lesions such as meniscal tears, knee malalignment, instability, or even metabolic diseases have to be treated to achieve an optimal result.

3. One-step treatment for subchondral bone Osteo-Core-Plasty

3.1. Subchondral bone:
Subchondral bone is essential for optimal cartilage functioning. Its trabecular component provides elasticity and shock absorption during weight-bearing, and its compact subchondral bone plate provides firm support for cartilage. Moreover, it is designed to dissipate the axial load across the joint, sparing the overlying articular cartilage. Another essential function of subchondral bone is to provide blood supply to cartilage, as it possesses an essential arteriovenous complex that penetrates the subchondral bone plate and reaches the calcified cartilage layer. These vascular perforations were shown to be present at a higher degree in weight loading areas, which coincide with areas of greater bone remodeling, supporting the critical role that vascularity has in the natural healing processes.

When subchondral bone is damaged, it releases inflammatory mediators that can eventually degrade the deeper layers of articular cartilage. Changes observed on the microarchitectural level correspond to coalescing microfractures seen in Magnetic Resonance Imaging (MRI) as bone marrow edema lesions. Furthermore, the increasing rate of new bone formation reduces the size of bone marrow spaces, potentially resulting in an ischemic state, with decreased healing capacity due to poor tissue nutrition. If the inflammatory process continues, its mechanical properties become permanently altered, conducting to a sclerotic bone with reduced shock-absorbing capability and increased risk of shear-induced tensile failure of articular cartilage.

For this reason, the goal for subchondral bone treatment includes decreasing the progression of the disease through pain relief and restoration of bone architecture. Bone marrow adjuncts to address subchondral lesions have been widely researched as they have proven to have a beneficial effect in improving function; Hernigou et al., in an RCT in 120 knees, compared subchondral bone infiltrations with intra-articular injection of bone marrow concentrate mesenchymal stem cells in bilateral knee osteoarthritis. They concluded that implantation of MSCs in the subchondral bone was more effective in preventing TKA than the intra-articular injection of the same dose in the contralateral knee with the same osteoarthritis grade. In a pilot study of a
combined subchondral and intraarticular BMAC injective treatment, Kon et al. showed overall positive outcome results and safety in treating patients with symptomatic knee OA associated with subchondral bone alterations; as they showed to progress with a reduction of bone marrow edema at 12 months follow-up 40.

3.2. Surgical Procedure
The Marrow Cellution System consisting of an advanced method to collect high quality bone marrow aspirate (BMA) and intact cancellous bone dowels creates the opportunity to address subchondral lesions in an innovative minimally invasive treatment called “Osteo-Core-Plasty”. The procedure facilitates: A) Bone marrow decompression to decrease intraosseous pressure and necrotic bone resection. B) Minimally invasive BMAC administration to improve biological healing potential and C) Structural support with bone autograft (bone dowels) with osteoconductive, osteoinductive, and osteogenic capacity components to provide an optimized environment for subchondral bone regeneration.

3.2.1. Osteo-Core-Plasty: Initial Phase
The procedure's initial phase is to obtain the autologous bone marrow aspirate samples for biological healing stimulation and cancellous bone graft for structural support (Marrow Cellution, Aspire Medical Innovation, Germany) 41. The patient, under regional or spinal anesthesia, is placed in a supine position as used in standard knee arthroscopy. A bone marrow aspiration needle is inserted into the cortex of the iliac crest; once the needle passes through the cortex, the sharp stylet is exchanged for a blunt stylet that is manually advanced into the medullary canal. The blunt stylet is then replaced with a fenestrated aspiration cannula (Fig.7). The difference of this system with standard marrow aspiration is that the aspirate flow is collected exclusively laterally as the tip of the aspiration cannula is closed, allowing marrow collection perpendicular to and around the channel created by the device's tip (Fig.8). This allows the extraction of multiple small volumes of high-quality bone marrow aspirate collected from various sites.
distributed within the marrow cavity. Finally, a special trephine needle is used for bone dowel harvest depending on the severity and the size of the lesion to be treated. (Fig. 9)

A single puncture with this technique is functionally equivalent to repeated puncture sites with a traditional trocar needle collecting small aspirate volumes, but with substantial savings of time, effort, patient trauma, and risk of infection. The background of this benefit is supported in a recent study by Everts et al., in which the count of colony-forming units (CFU) was significantly increased only in the first 10 ml of BMAC. Hernigou et al. supported the results obtained in this study, showing that large volume aspirates tend to be infiltrated by significant amounts of peripheral blood, containing fewer MSCs, leading to lower CFU/f counts. This approach also overcomes the requirement of additional manipulation techniques i.e. centrifugation. It has been shown that Marrow Cellution contains a higher quantity of specific cell markers such as; CD73+, CD105+, CD117+ (c-Kit); five times more than crest aspirate, and tenfold more than tibia aspirate. Other studies have also supported these findings, for example, in a side-by-side comparison from the same patients using the contralateral iliac crest, the level of CFU-fs/mL was significantly higher in the Osteo-Core-Plasty compared to BMCs and showed the same numbers of CD34+ and CD117+ cells compared to centrifugation techniques.

Figure 7 Osteo-Core-Plasty (Marrow Cellution). Instruments included; Sharp stylet, blunt stylet, and fenestrated aspiration cannula.
3.2.2. Osteo-Core-Plasty: Second phase

The second phase of the procedure is the delivery of intact autogenous cancellous dowels and bone marrow aspirate to the subchondral lesion site. Anteroposterior and lateral fluoroscopic images cross-referenced with the MRI study are used to place the guide pin precisely in the subchondral defect (Fig. 10-11), a cannulated drill is inserted over the guide pin and its left for a few minutes in the bone to perform core decompression (Fig. 12). K-Wire and necrotic bone core are then removed. Extraction/Delivery Tool containing Marrow Cellution™ bone core graft is then inserted (Fig 13-15). A probe is used to push the bone core graft to the distal position. Then, the Marrow Cellution™ Liquid is
injected (Fig. 16) \(^{41}\). A final arthroscopic look is performed to confirm the lack of intra-articular leakage.

Figure 10. The procedure performed under radioscopic guidance. Images in correspond to Fig 6 MRI, medial femoral condyle subchondral lesion.

Figure 11. Osteo-Core-Plasty. Radioscopic guided pin placement over a tibial subchondral cyst.
Figure 12. Osteo-Core-Plasty: Representation of minimally invasive core decompression and debridement of the subchondral lesion.

Figure 13. Osteo-Core-Plasty: Intact bone dowels

Figure 14. Osteo-Core-Plasty: Extraction/Delivery tool containing bone core graft.
3.3. Clinical Outcomes

Fifteen patients with symptomatic Bone Marrow Lesions (BML) of the knee treated with the Osteo-Core-Plasty technique were included and followed prospectively for a minimum of 12 months. Inclusion criteria were carefully selected patients, with symptomatic bone marrow lesions, with OA, grade I-II, no malalignment that did not respond to conservative treatment for more than three months. Exclusion criteria were poor subchondral bone quality, instability, severe osteoarthritis, osteonecrosis with collapse. Each patient was evaluated before the surgery and respectively at 6 and 12 months using the scores of Tegner, Marx, IKDC, KOOS and VAS. All of the clinical scores except Tegner and Marx score showed an overall statistically significant improvement through the entire follow-up (p<0.05) and a significant improvement (p<0.05) between each follow-up period (T0 versus T1; T0 versus T2; T1 versus T2). No complications were reported. These preliminary results confirm that biological subchondral bone augmentation by Osteo-Core-Plasty technique is a safe and effective minimally invasive treatment option for symptomatic BML in the knee at 1-year follow-up (Fig.17).
Figure 17. Osteo-Core-Plasty. M.R.I. of a tibial cyst treated with OCP, at 12 months follow-up. Images in correspondence with X-Rays in figure 11.

Table 1. Benefits of Marrow Cellution

<table>
<thead>
<tr>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximizes Cell Yield</td>
</tr>
<tr>
<td>Minimally Invasive</td>
</tr>
<tr>
<td>Centrifugation not Required</td>
</tr>
<tr>
<td>Never Leaves the Sterile Field</td>
</tr>
<tr>
<td>Reduces Blood Contamination</td>
</tr>
<tr>
<td>Regulatory Compliant</td>
</tr>
<tr>
<td>Reduces Donor Site Morbidity</td>
</tr>
<tr>
<td>It does not Burn any Bridge</td>
</tr>
</tbody>
</table>

4. Conclusions
Cartilage and subchondral bone work in synchronization; therefore, it is crucial to address both of them to achieve optimal results. For this purpose, joint preserving prosthesis sparing surgical techniques such as HA-BMAC for cartilage lesions and Osteo-Core-Plasty for subchondral bone defects have been developed. Both are single-step osteochondral repair treatments that eliminate the need for a two-step procedure, thereby reducing the cost and morbidity to the patient. In addition, HA-BMAC is a safe and accessible procedure that provides excellent clinical outcomes at long-term follow-up in small or large lesions, single or multiple injuries, and in various compartments; Osteo-Core-Plasty, on the other hand, is a new minimally invasive procedure with reported efficacy in treating painful subchondral bone lesions. Given the evidence and versatility of this treatment approach, it may become essential in early osteoarthritis cartilage treatments and should be seriously considered in younger, active patients who wish to reduce pain.
Bibliography

38. Radin EL, Rose RM. Role of subchondral bone in the initiation and

46. Osteo-Core-Plasty™ with Marrow Cellution™ | Aspire Medical Innovation.