RESEARCH ARTICLE

Retrospective analysis of COVID-19 patients in the region of Eastern Achaia, Greece, in a Primary and Secondary Healthcare Setting. Could initial laboratory findings and age prejudge patients' outcome?

Authors

Panagiota Xaplanteri¹, Vasileios Zoitopoulos², Vasiliki Diamanti², Athanasia Moutafidi¹, Panagiota Masoura¹, Charalampos Potsios³, Konstantina Filioti⁴, Angeliki Rapanou⁴, Christina-Panagiota Koutsouri⁴, Zoi Grammenidou⁴, Aimilios Tzoudas⁵, Chara Sakarelou⁶, Tatiana Beqo-Rokaj⁵, Katerina Ntzinia⁵, Elsa Kampos Martinez⁶, Georgios Papachristopoulos⁶, Constantinos A. Letsas⁴

Affiliations

¹Department of Microbiology, General Hospital of Eastern Achaia, Kalavrita, Greece ²Department of Microbiology, General Hospital of Eastern Achaia, Aigio, Greece ³Department of Internal Medicine, University General Hospital of Patras, Greece ⁴Department of Internal Medicine, General Hospital of Eastern Achaia, Aigio, Greece ⁵Department of Primary Healthcare, General Hospital of Eastern Achaia, Kalavrita, Greece ⁶Department of Internal Medicine, General Hospital of Eastern Achaia, Kalavrita, Greece

Correspondence

Panagiota Xaplanteri Email: panagiota.xaplanteri@gmail.com

Abstract

Background:

Since December 2019 mankind is agonized over the deadly coronavirus disease 2019 (COVID-19) which is due to the novel coronavirus (2019-nCoV) or Severe Acute Respiratory Syndrome Coronavirus-2 (Sars-cov-2).

Methods: In this retrospective study, laboratory findings and demographic features form all confirmed COVID-19 patients who attended the Emergency Department of both branches of our hospital during the first semester of 2021 were collected and analyzed. The working hypothesis was that initial laboratory data at the time the patients seeked medical assistant for the first time, regardless of comorbidities and day of onset of symptoms, can help predict patients' outcome. Demographic data and laboratory tests were compared between hospitalized and non-hospitalized patients.

Results: Data of 270 patients were collected and analyzed retrospectively. 31 blood measurement parameters performed in both hospital branches were compared between hospitalized and non-hospitalized patients. Of those, WBC count (p=0.016), neutrophil percentage (p<0.001), lymphocyte percentage (p<0.001), platelet count (p=0.041), glucose (p<0.001), urea (p<0.001), creatinine (p<0.001), SGOT (p=0.024), CK (p<0.053), LDH (p<0.001), GGT (p<0.001), sodium (p<0.001), calcium (p<0.001), high sensitivity Troponin I (p<0.001), and ferritin levels (p<0.001), proved statistically significant. Regarding demographic data, age was significantly linked to patients' survival.

Conclusion: Our data suggest that common initial laboratory findings of COVID-19 patients who seek for the first-time medical assistant regardless of comorbidities and time from onset of symptoms can give clues to the patient outcome. Age is also important for patients' survival. Especially in a Primary Health Care Setting, common blood parameters like WBC count, neutrophil and lymphocyte percentage, platelet count, glucose, urea, creatinine, SGOT, CK, LDH, GGT, sodium, calcium, high sensitivity Troponin I, and ferritin levels, could be really helpful to predict disease severity.

Keywords: COVID-19, Sars-cov-2, initial laboratory tests, patient's outcome, Primary Health Care Setting, Secondary Health Care Setting

1. Introduction

Since December 2019 humanity has come up against the deadly coronavirus disease 2019 (COVID-19) which is due to the novel coronavirus (2019-nCoV) or Severe Acute Respiratory Syndrome Coronavirus-2 (Sars-cov-2).¹ In a turmoil of lockdowns and reopening of tourism and activities of all sorts, Greece has come up against a rise in COVID-19 patients from January 2021 to June 2021.² During this time period, also vaccinations in healthcare workers and older population commenced.³

The clinical spectrum of COVID-19 varies widely, from asymptomatic disease to pneumonia and life-threatening complications, including acute respiratory distress syndrome (ARDS), multisystem organ failure and ultimately death.⁴ In the present study data were collected from General Hospital of Eastern Achaia, Greece, which has two branches. The first one, located in the city of Kalavrita is a

Primary Health Care Setting. The second branch is in the city of Aigio and is both a Primary and Secondary Health Care Setting. Both hospital branches treated COVID-19 symptomatic patients in the Emergency Department. Suspect patients who needed hospitalisation were admitted in specially designed rooms until the confirmatory real-time PCR (RT-PCR) assay for SARSCoV-19 and then were transferred to Tertiary Health Care Settings in the area for further treatment. The initial laboratory profile of the COVID-19 patients who attended the Emergency Department was retrospectively analyzed. The present study focuses on the laboratory findings of these patients at the time they sought help at the Emergency Department for the first time, regardless of concomitant diseases or days from onset of symptoms as a guide to patients' outcome. A total of parameters performed by 31 the Departments of Microbiology of both hospital branches in an emergency setting were included. Certain demographic features like age, gender, days of hospitalisation till recovery or death were also included to characterize more severe disease. Our data suggest that common initial laboratory findings of COVID-19 patients who seek for the first-time medical assistant regardless of comorbidities and time from onset of symptoms can give clues to the patients' outcome. Age is also important for patients' survival. Especially in a Primary Health Care Setting, parameters like WBC count, neutrophil and lymphocyte percentage, platelet count, glucose, urea, creatinine, SGOT, CK, LDH, GGT, sodium, calcium, high sensitivity Troponin I, and ferritin levels, could be helpful to prejudge disease severity. This study is pioneer for Greece as to our knowledge no such assay has been attempted including so many blood measurement parameters in symptomatic patients at the time of COVID-19 diagnosis.

2. Methods

All patients who attended the Emergency Department of both hospital branches with fever, cough and fatigue as the main symptoms and proved to be COVID-19 positive with RT-PCR on the nasopharynx obtained swabs, were enrolled in the present study. Demographic features as age and sex were also included. Their initial laboratory findings were retrospectively analyzed. The working hypothesis was that certain initial laboratory findings the time the patients firstly seek medical assistance can help predict the severity of disease and patient outcome. In the present study none of the adult patients who proved COVID-19 positive and were treated at the Emergency Department of our Hospital were excluded. In the region of Eastern Achaia, to our knowledge, 270 new cases of adult symptomatic patients were diagnosed and seeked medical attention to our hospital. All these patients were included in the present study. Though the sample size seems small, the authors of the present study consider it representative.

To compare laboratory findings, the patients were divided into two groups: those who were hospitalized and those who recovered at home. Then, comparison of the laboratory findings of both categories of patients was performed. In addition, demographic features like sex, age, days of hospitalisation were compared to search possible correlates to severe illness and death. Blood samples were obtained by the patients under strict precautions and sent to the laboratories of both hospitals. The selected laboratory findings for comparison in the present study were those that were routinely performed in the Emergency Departments of both hospital branches at the time:

- White blood cells count (WBC). Pathologic values were considered above >10000/mm³ or below 4000/mm³
- Neutrophils percentage (NEUT). Pathologic values were considered above 75% or below 40%
- Lymphocytes percentage (LYMPH). Pathologic values were considered above 45% or below 20%
- Monocytes percentage (MONO). Pathologic values were considered above 7.0% or below 3.0%
- Eosinophils percentage (EOS). Pathologic values were considered above 5.0%
- Basophils percentage (BAS). Pathologic values were considered above 2.0%
- Red Blood Cells count (RBC). Pathologic values were considered above 5500000/mm³ or below 4500000/mm³
- Hemoglobin (HGB). Pathologic values were considered above 17.0 g/dL or less than 14.0 g/dL for men and above 16.0 g/dL or less than 12.0 g/dL for women
- Hematocrit (HCT). Pathologic values were considered above 52% or less than 45% for men and above 48% and below 36% for women
- Mean Corpuscular Volume (MCV). Pathologic values were considered above 96 fL or less than 84 fL for men and above 96 fL or below 76 fL for women
- Mean corpuscular hemoglobin (MCH) measurement. Pathologic values were considered above 32 pg or below 27 pg
- Mean corpuscular hemoglobin concentration (MCHC). Pathologic values were considered above 36 g/dl or less than 30 g/dl

- Platelet count (PLT). Pathologic values were considered above 350000/mm³ or less than 150000/mm³
- Blood glucose levels (glucose). Pathologic values were considered above 110 mg/dl or less than 70 mg/dl
- Urea (urea). Pathologic values were considered above 50 mg/dl or less than 10 mg/dl
- Creatinine (creatinine). Pathologic values were considered above 1.30 mg/dl
- Glutamic-oxaloacetic transaminase (SGOT). Pathologic values were considered above 37 IU/L or below 15 IU/L
- Glutamic Pyruvic Transaminase (SGPT). Pathologic values were considered above 78 IU/L or less than 12 IU/L
- Lactate Dehydrogenase (LDH). Pathologic values were considered above 190 U/L or less than 100 U/L
- Creatine Kinase (CK). Pathologic values were considered above 308 IU/L or less than 26 IU/L
- Creatine kinase myocardial band (CK-MB). Pathologic values were considered above 25 IU/L or less than 7 IU/L
- Gamma-glutamyl Transferase (GGT). Pathologic values were considered above 85 IU/L or less than 5 IU/L
- C-Reactive Protein (CRP). Pathologic values were considered above 0.90 mg/dl
- Alkaline Phosphatase (ALP). Pathologic values were considered above 129 IU/L
- Serum amylase (AMYLASE). Pathologic values were considered above 115 IU/L
- Serum albumin levels (albumin). Pathologic values were considered above 5.0 gr/dl

- Potassium (potassium). Pathologic values were considered above 5.1 mmol/l or below 3.5 mmol/l
- Sodium (sodium). Pathologic values were considered above 145 mmol/l or less than 136 mmol/l
- Calcium (calcium). Pathologic values were considered above 10.1 mg/dl or below 8.5 mg/dl
- High sensitivity Troponin I. Pathologic values were considered above 34.2 pg/ml for men and above 15.6 pg/ml for women
- Ferritin. Pathologic values were considered above 274 ng/ml or less than 28 ng/ml for men and above 159 ng/ml or less than 6 ng/ml for women

3. Statistical analysis

Statistical analyses were performed using the software Excel (Microsoft, Redmond, WA, USA). Comparisons of the possible relations of laboratory findings between hospitalized and non-hospitalized COVID-19 patients were performed by Chi-Square tests and Spearman's rho correlation coefficient test by Statistical Package for the Social Sciences (SPSS) version 25.0. Two-sided comparisons with a P-value less than .05 were considered significant.

4. Results

A total of 270 patients were enrolled in the present study, 135 males (50%) and 135 females (50%). 94.81% of patients were of Greek origin. All attended the Emergency Department of both hospital branches complaining for fever, cough and fatigue as the main symptoms and proved COVID-19 positive. All patients were found SARS-CoV-2 positive from 1st January 2021 to 30th June 2021. Of those, 102 (37. 8%) patients were hospitalized, whereas the rest (62.2%) were treated and recovered at home in a Primary Health Care Setting. Of the hospitalized patients, 29 died (13 men

and 16 women). The median age of male patients was 54.6 years. The median age of female patients was 56.8 years. The median age of hospitalized patients was 65.97 years, whereas the mean age of the patients who recovered at home was 47.94 years.

4.1. Laboratory testing results

Laboratory testing results of 31 blood and serum parameters were retrieved and analyzed respectively from day one the patients seeked medical assistance.

53.3% of the patients with pathologic WBC count were hospitalized. 65.1% of non-hospitalized patients had normal WBC count. All patients who died had average WBC count above 10000/mm³. A Chi-Square statistical test was performed to compare the hospitalized patients to nonhospitalized ones in relation to the normal or abnormal values of the WBC. It was found that there is a statistically significant relationship in this comparison (p=0.016). Specifically, the patients who were hospitalized had a higher percentage of abnormal values and a correspondingly lower percentage of normal values than those who were non-hospitalized (tables 1a, 1b, and 40).

Regarding the percentage of neutrophils, 68.7% of hospitalized patients had abnormal values. The patients who died had an average percentage of neutrophils above 80.18%. A Chi-Square statistical test was performed to compare the hospitalized patients to non-hospitalized patients in relation to the normal or abnormal values of the NEUT. It was found that there is a statistically significant relationship in this comparison (p<0.001). Specifically, the patients who were hospitalized had a higher percentage of abnormal values and a correspondingly lower percentage of normal values than those who were non-hospitalized (tables 2a, 2b, 40).

Pathological rates of lymphocytes were observed in 51.5% of hospitalized patients. 75.7% of non-hospitalized patients had normal values. A Chi-Square statistical test was performed to compare the hospitalized patients to non-hospitalized patients in relation to the normal or abnormal values of the LYMPH. It was found that there is a statistically significant relationship in this comparison (p<0.001). Specifically, the patients who were hospitalized had a higher percentage of abnormal values and a correspondingly lower percentage of normal values than those who were nonhospitalized (table 3a, 3b).

Regarding monocytes, eosinophils, and percentage, a Chi-Square basophils statistical test was performed to compare hospitalized patients the to nonhospitalized patients in relation to the normal or abnormal values. It was found that there is no statistically significant relationship in this comparison (p=0.211, p=0.820, and p=0.408, respectively). (Tables 4a, 4b, 5a, 5b, 6a, 6b).

Red blood cell count in both hospitalized and non-hospitalized patients showed no statistically significant relationship (p=0.498). (Table 7a, 7b).

Regarding serum glucose values, 56.3% of hospitalized patients had pathologic values, whereas 83.2% of non-hospitalized patients had normal values. The average value of glucose for hospitalized patients who recovered was 146.26 mg/dl, whereas the patients who died had average glucose levels of 161.70 mg/dl. Chi-Square statistical test was performed to compare hospitalized patients to the nonhospitalized patients in relation to the normal or abnormal values of glucose. It was found that there is a statistically significant relationship in this comparison (p<0.001). (Tables 8a, 8b, and 40).

A Chi-Square statistical test was performed to compare the hospitalized patients to non-hospitalized patients in relation to the normal or abnormal values of amylase and albumin levels. It was found that there is no statistically significant relationship in this comparison (p=0.121 and p=0.804 respectively). (Tables 9a, 9b, 10a, 10b).

Regarding hemoglobin (p=0.094), hematocrit (p=0.107), MCV (p=0.652), MCH (p=0.989), and MCHC (p=0.068), Chi-Square statistical test found no statistically significant relationship in this comparison between hospitalized and nonhospitalized patients. (Tables 11a, 11b, 12a, 12b, 13a, 13b, 14a, 14b, 15a, 15b).

Hospitalized patients seemed to have abnormal platelet counts (either elevated or below normal values) in a percentage of 22.0%, whereas 65.8% of non-hospitalized patients had normal platelet count. A Chi-Square statistical test was performed to compare the hospitalized patients to nonhospitalized patients in relation to the normal or abnormal values of the PLT. It was found that there is a statistically significant relationship in this comparison (p=0.041). Specifically, the patients who were hospitalized had a higher percentage of abnormal values and a correspondingly lower percentage of normal values than those who were non-hospitalized (table 16a, 16b).

Regarding renal function: Urea values were higher in 69.8% of hospitalized patients. All hospitalized patients who recovered had an average urea value 50.48 mg/dl. Patents who died had average urea levels of 80.45 mg/dl. Non-hospitalized patients had average urea of 31.44 mg/dl. A Chi-Square statistical test was performed to compare the hospitalized patients to non-hospitalized patients in relation to the normal or abnormal values of urea. It was found that there is a statistically significant relationship in this comparison (p<0.001). Specifically, the patients who were hospitalized had a higher percentage of abnormal values and a correspondingly lower percentage of normal values than those who were non-hospitalized (tables 17a, 17b, and 40). Creatinine count was either elevated or below normal values in 86.7% of hospitalized patients. Patients who died had average creatinine of 1.42 mg/dl. A Chi-Square statistical test was performed to compare the hospitalized patients to non-hospitalized patients in relation to the normal or abnormal values of creatinine. It was found that there is a statistically significant relationship in this comparison (p<0.001). Specifically, the patients who were hospitalized had a higher percentage of abnormal values and a correspondingly lower percentage of normal values than those who were nonhospitalized (table 18a, 18b).

Regarding SGOT, 50.0% of hospitalized patients had abnormal values. Patients who died had an average value of 42.9 IU/L. Hospitalized patients who recovered had an average value of 34.61 IU/L, whereas non-hospitalized patients had an average value of 27.11 IU/L. A Chi-Square statistical test was performed to compare hospitalized patients to nonthe hospitalized patients in relation to the normal or abnormal values of SGOT. It was found that there is a statistically significant relationship in this comparison (p=0.024). Specifically, the patients who were hospitalized had a higher percentage of abnormal values and a correspondingly lower percentage of normal values than those who were non-hospitalized (tables 19a, 19b, and 40).

A Chi-Square statistical test was performed to compare the hospitalized patients to non-hospitalized patients in relation to the normal or abnormal values of SGPT. It was found that there is no statistically significant relationship in this comparison (p=0.625). (Table 20a, 20b). Regarding LDH, 50.3% of hospitalized patients had elevated values, whereas 82.7% of non-hospitalized patients had normal values. Average value for LDH for the patients who died was 380.90 U/L. Hospitalized patients who recovered had average value of 274.53 U/L, whereas nonhospitalized patients had average value of 201.83 U/L. A Chi-Square statistical test was performed to compare the hospitalized patients to non-hospitalized patients in relation to the normal or abnormal values of LDH. It was found that there is a statistically significant relationship in this comparison (p<0.001). Specifically, the patients who were hospitalized had a higher percentage of abnormal values and a correspondingly lower percentage of normal values than those who were nonhospitalized (tables 21a, 21b, and 40).

Regarding CK, 57.9% of hospitalized patients had abnormal values, whereas 64.3% of non-hospitalized patients had normal values. A Chi-Square statistical test was performed to compare the hospitalized patients to non-hospitalized patients in relation to the normal or abnormal values of CK. It was found that there is marginally statistically significant relationship in this comparison (p=0.053). Specifically, the patients who were hospitalized had a higher percentage of abnormal values and a correspondingly lower percentage of normal values than those who were nonhospitalized (table 22a, 22b).

Regarding CK-MB, Chi-Square statistical test was performed to compare the hospitalized patients to non-hospitalized patients in relation to the normal or abnormal values of CK-MB. It was found that there is no statistically significant relationship in this comparison (p=0.891). (Table 23a, 23b).

Regarding GGT, 75% of hospitalized patients had pathologic values, whereas 66.0% of non-hospitalized patients had

normal values. Average value for patients who died was 54.35 IU/L, for the hospitalized patients who recovered was 47.1 IU/L and for non-hospitalized patients 30.51 IU/L. A Chi-Square statistical test was performed to compare the hospitalized patients to non-hospitalized patients in relation to the normal or abnormal values of GGT. It was found that there is a statistically significant relationship in this comparison (p<0.001). Specifically, the patients who were hospitalized had a higher percentage of abnormal values and a correspondingly lower percentage of normal values than those who were nonhospitalized (tables 24a, 24b, and 40).

CRP values were elevated in a rate of 57% of hospitalized patients. 91.9% of nonhospitalized patients had normal values. Patients who died had an average value of 13.97 mg/dl. Hospitalized patients who recovered had average values of 6.93 mg/dl, whereas non-hospitalized patients had average values of 2.15 mg/dl. A Chi-Square statistical test was performed to compare the hospitalized patients to nonhospitalized patients in relation to the normal or abnormal values of CRP. It was found that there is a statistically significant relationship in this comparison (p<0.001). Specifically, the patients who were hospitalized had a higher percentage of abnormal values and a correspondingly lower percentage of normal values than those who were non-hospitalized (table 25a, 25b, and 40).

A Chi-Square statistical test was performed to compare the hospitalized patients to non-hospitalized patients in relation to the normal or abnormal values of ALP. It was found that there is no statistically significant relationship in this comparison (p=0.885). (Table 26a, 26b).

A Chi-Square statistical test was performed to compare the hospitalized patients to non-hospitalized patients in relation to the normal or abnormal values of potassium. It was found that there is no statistically significant relationship in this comparison (p=0.158). (Table 27a, 27b).

Regarding sodium, 60.9% of hospitalized patients had abnormal values, whereas 69.3% of non-hospitalized patients had normal values. A Chi-Square statistical test was performed to compare the hospitalized patients to non-hospitalized patients in relation to the normal or abnormal values of sodium. It was found that there is a statistically significant relationship in this comparison (p<0.001). Specifically, the patients who were hospitalized had a higher percentage of abnormal values and a correspondingly lower percentage of normal values than those who were nonhospitalized (table 28a, 28b).

Regarding calcium, 68.0% of hospitalized patients had abnormal values, whereas 90.2% of non-hospitalized patients had normal values. A Chi-Square statistical test was performed to compare the hospitalized patients to non-hospitalized patients in relation to the normal or abnormal values of calcium. It was found that there is a statistically significant relationship in this comparison (p<0.001). Specifically, the patients who were hospitalized had a higher percentage of abnormal values and a correspondingly lower percentage of normal values than those who were nonhospitalized (table 29a, 29b).

Regarding high sensitivity Troponin I, 70.5% of hospitalized patients had abnormal values, whereas 65.8% of nonhospitalized patients had normal values. Average value for patients who died was 92.04 pg/ml, for hospitalized patients who recovered 12.67 pg/ml, and for nonhospitalized patients 4.52 pg/ml. A Chi-Square statistical test was performed to compare the hospitalized patients to nonhospitalized patients in relation to the normal or abnormal values of troponin. It was found that there is a statistically significant relationship in this comparison (p<0.001). Specifically, the patients who were hospitalized had a higher percentage of abnormal values and a correspondingly lower percentage of normal values than those who were non-hospitalized (table 30a, 30b).

Regarding ferritin, 56.5% of hospitalized patients had abnormal values, whereas 74.3% of non-hospitalized patients had normal values. Average value for patients who died 739.07 ng/ml. Average value for hospitalized patients who recovered 505.99. Average value for nonhospitalized patients 258.29. A Chi-Square statistical test was performed to compare hospitalized patients the to nonhospitalized patients in relation to the normal or abnormal values of ferritin. It was found that there is a statistically significant relationship in this comparison (p<0.001). Specifically, the patients who were hospitalized had a higher percentage of abnormal values and a correspondingly lower percentage of normal values than those who were non-hospitalized (table 31a, 31b).

4.2 Correlates of the hospitalized patients regarding their demographic features (where available) were seeked out:

a) Depending on age and the average days for recovery or death: 95 patients recovered with mean age 63.1 years (standard deviation 17.3) whereas, 29 patents died with mean age 78.8 years (standard deviation 9.07). There is a statistically significant difference in the mean age of those who recovered and those who ended up (p<0.001). (Table 32).

b) Regarding the gender of the hospitalized patients and the outcome, statistical analysis showed that there is no statistically significant relationship between recovery-death of the hospitalized patients and gender (p=0.256). (Table 33). c) Correlates of age regarding days of hospitalisation were looked for and found not statistically significant (p=0.465). (Table 34).

d) Correlates of gender regarding days of hospitalisation were looked for and found there was no statistically significant difference (p=0.284). (Table 35).

e) Regarding age and days from hospitalisation to death for the hospitalized patients no statistically significant difference was found (p=0.154). (Table 36).

f) Regarding gender and days from hospitalisation to death for the hospitalized patients no statistically significant difference was found (p=0.091), (table 37). Mean days from hospitalisation to death for the male patients were 57.38. Mean days from hospitalisation to death for the female hospitalized patients were 24.27.

g) Regarding days of hospitalisation and days of hospitalisation till death for the hospitalized patients no statistically significant difference was found (p=0.749). (Table 38).

h) Days of hospitalisation and outcome. There was no statistically significant difference found between days of hospitalisation and outcome (p=0.145). (Table 39).

MDC

		WBC		
		Normal	Pathologi	
		values	cal values	Total
in hospitalisation	Count	81	21	102
	% within in	79.4%	20.6%	100.0%
	hospitalisation			
	% within WBC	34.9% ^a	55.3% ^b	37.8%
	% of Total number	30.0%	7.8%	37.8%
	of patients			
non-hospitalisation	Count	151	17	168
	% within non- hospitalisation	89.9%	10.1%	100.0%
	% within WBC	65.1% ^c	44.7% ^d	62.2%
	% of Total	55.9%	6.3%	62.2%
Total	Count	232	38	270

Table 1a. WBC Crosstabulation

a. % within WBC stands for the percentage of patients with normal WBC who were hospitalized

b. % within WBC stands for the percentage of patients with abnormal WBC who were hospitalized

c. % within WBC stands for the percentage of patients with normal WBC who were not hospitalized

d. % within WBC stands for the percentage of patients with abnormal WBC who were not hospitalized

Table 1b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the WBC. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	5.752ª	1	.016		
Continuity Correction ^b	4.919	1	.027		
Likelihood Ratio	5.577	1	.018		
Fisher's Exact Test				.019	.014
Linear-by-Linear	5.731	1	.017		
Association					
N of Valid Cases	270				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 14.36.

		NEUT		
		Normal	Pathologi	
		values	cal values	Total
in hospitalisatio	n Count	56	46	102
	% within in	54.9%	45.1%	100.0%
	hospitalisation			
	% within NEUT	27.6% ^a	68.7% ^b	37.8%
	% of Total	20.7%	17.0%	37.8%
non-hospitalisat	ion Count	147	21	168
	% within non-	87.5%	12.5%	100.0%
	hospitalisation			
	% within NEUT	72.4% ^c	31.3% ^d	62.2%
	% of Total	54.4%	7.8%	62.2%
Total	Count	203	67	270

Table 2a. NEUT Crosstabulation

a. % within NEUT stands for the percentage of patients with normal NEUT who were hospitalized

b. % within NEUT stands for the percentage of patients with abnormal NEUT who were hospitalized

c. % within NEUT stands for the percentage of patients with normal NEUT who were not hospitalized

d. % within NEUT stands for the percentage of patients with abnormal NEUT who were not hospitalized

Table 2b. Comparison of the hospitalized or non-hospitalized patients in relation to thenormal or abnormal values of the NEUT. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	36.148 ^a	1	.000		
Continuity Correction ^b	34.422	1	.000		
Likelihood Ratio	35.543	1	.000		
Fisher's Exact Test				.000	.000
Linear-by-Linear	36.014	1	.000		
Association					
N of Valid Cases	270				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 25.31.

			LYMPH Normal values	Pathologi cal values	Total
	in hospitalisation	Count	33	69	102
		% within in hospitalisation	32.4%	67.6%	100.0%
		% within LYMPH	24.3% ^a	51.5% ^b	37.8%
		% of Total	12.2%	25.6%	37.8%
	non-hospitalisation	Count	103	65	168
		% within non- hospitalisation	61.3%	38.7%	100.0%
		% within LYMPH	75.7% ^c	48.5% ^d	62.2%
		% of Total	38.1%	24.1%	62.2%
Total		Count	136	134	270

Table 3a. LYMPH Crosstabulation

a. % within LYMPH stands for the percentage of patients with normal LYMPH who were hospitalized

b. % within LYMPH stands for the percentage of patients with abnormal LYMPH who were hospitalized

c. % within LYMPH stands for the percentage of patients with normal LYMPH who were not hospitalized

d. % within LYMPH stands for the percentage of patients with abnormal LYMPH who were not hospitalized

Table 3b. Comparison of the hospitalized or non-hospitalized patients in relation to thenormal or abnormal values of the LYMPH. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	21.287 ^a	1	.000		
Continuity Correction ^b	20.145	1	.000		
Likelihood Ratio	21.639	1	.000		
Fisher's Exact Test				.000	.000
Linear-by-Linear	21.209	1	.000		
Association					
N of Valid Cases	270				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 50.62.

		MONO		
		Normal	Pathologi	
		values	cal values	Total
in hospitalisation	Count	26	76	102
	% within in	25.5%	74.5%	100.0%
	hospitalisation			
	% within MONO	44.8% ^a	35.8% ^b	37.8%
	% of Total	9.6%	28.1%	37.8%
non-hospitalisatio	on Count	32	136	168
	% within non-	19.0%	81.0%	100.0%
	hospitalisation			
	% within MONO	55.2% ^c	64.2% ^d	62.2%
	% of Total	11.9%	50.4%	62.2%
Total	Count	58	212	270

Table 4a. MONO Crosstabulation

a. % within MONO stands for the percentage of patients with normal MONO who were hospitalized

b. % within MONO stands for the percentage of patients with abnormal MONO who were hospitalized

c. % within MONO stands for the percentage of patients with normal MONO who were not hospitalized

d. % within MONO stands for the percentage of patients with abnormal MONO who were not hospitalized

Table 4b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the MONO. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	1.562 ^a	1	.211		
Continuity Correction ^b	1.203	1	.273		
Likelihood Ratio	1.539	1	.215		
Fisher's Exact Test				.224	.137
Linear-by-Linear	1.556	1	.212		
Association					
N of Valid Cases	270				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 21.91.

			EOS		
			Normal	Pathologi	
			values	cal values	Total
	in hospitalisation	Count	100	2	102
		% within in	98.0%	2.0%	100.0%
		hospitalisation			
		% within EOS	37.9% ^a	33.3% ^b	37.8%
		% of Total	37.0%	0.7%	37.8%
	non-hospitalisation	Count	164	4	168
		% within non-	97.6%	2.4%	100.0%
		hospitalisation			
		% within EOS	62.1% ^c	66.7% ^d	62.2%
		% of Total	60.7%	1.5%	62.2%
Total		Count	264	6	270

Table 5a. EOS Crosstabulation

a. % within EOS stands for the percentage of patients with normal EOS who were hospitalized

b. % within EOS stands for the percentage of patients with abnormal EOS who were hospitalized

c. % within EOS stands for the percentage of patients with normal EOS who were not hospitalized

d. % within EOS stands for the percentage of patients with abnormal EOS who were not hospitalized

Table 5b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the EOS. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	.052 ^a	1	.820		
Continuity Correction ^b	.000	1	1.000		
Likelihood Ratio	.052	1	.819		
Fisher's Exact Test				1.000	.591
Linear-by-Linear	.051	1	.821		
Association					
N of Valid Cases	270				

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.27.

BASO

	21100		
	Normal	Pathologi	
	values	cal values	Total
Count	101	1	102
% within in	99.0%	1.0%	100.0%
hospitalisation			
% within BASO	38.1% ^a	20.0% ^b	37.8%
% of Total	37.4%	0.4%	37.8%
Count	164	4	168
% within non-	97.6%	2.4%	100.0%
hospitalisation			
% within BASO	61.9% ^c	80.0% ^d	62.2%
% of Total	60.7%	1.5%	62.2%
Count	265	5	270
	%withininhospitalisation%%% <tr< td=""><td>valuesCount101%withinin99.0%hospitalisation% within BASO38.1%a% of Total37.4%Count164%within non-97.6%hospitalisation% within BASO61.9%c% of Total60.7%</td><td>valuescal valuesCount1011% within in99.0%1.0%hospitalisation</td></tr<>	valuesCount101%withinin99.0%hospitalisation% within BASO38.1%a% of Total37.4%Count164%within non-97.6%hospitalisation% within BASO61.9%c% of Total60.7%	valuescal valuesCount1011% within in99.0%1.0%hospitalisation

Table 6a. BASO Crosstabulation

a. % within BASO stands for the percentage of patients with normal BASO who were hospitalized

b. % within BASO stands for the percentage of patients with abnormal BASO who were hospitalized

c. % within BASO stands for the percentage of patients with normal BASO who were not hospitalized

d. % within BASO stands for the percentage of patients with abnormal BASO who were not hospitalized

Table 6b. Comparison of the hospitalized or non-hospitalized patients in relation to the
normal or abnormal values of the BASO. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	.685 ^a	1	.408		
Continuity Correction ^b	.131	1	.717		
Likelihood Ratio	.751	1	.386		
Fisher's Exact Test				.653	.375
Linear-by-Linear	.682	1	.409		
Association					
N of Valid Cases	270				

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.89.

DDC

			RBC		
			Normal	Pathologi	
			values	cal values	Total
	in hospitalisation	Count	62	40	102
		% within in	60.8%	39.2%	100.0%
		hospitalisation			
		% within RBC	36.3% ^a	40.4% ^b	37.8%
		% of Total	23.0%	14.8%	37.8%
	Non-hospitalisation	Count	109	59	168
		% within non-	64.9%	35.1%	100.0%
		hospitalisation			
		% within RBC	63.7% ^c	59.6% ^d	62.2%
		% of Total	40.4%	21.9%	62.2%
Total		Count	171	99	270

Table 7a. RBC Crosstabulation

a. % within RBC stands for the percentage of patients with normal RBC who were hospitalized

b. % within RBC stands for the percentage of patients with abnormal RBC who were hospitalized

c. % within RBC stands for the percentage of patients with normal RBC who were not hospitalized

d. % within RBC stands for the percentage of patients with abnormal RBC who were not hospitalized

Table 7b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the RBC. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	.459 ^a	1	.498		
Continuity Correction ^b	.299	1	.584		
Likelihood Ratio	.457	1	.499		
Fisher's Exact Test				.517	.292
Linear-by-Linear	.457	1	.499		
Association					
N of Valid Cases	270				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 37.40.

			glucose		
			Normal	Pathologi	
			values	cal values	Total
	in hospitalisation	Count	21	76	97
		% within in	21.6%	78.4%	100.0%
		hospitalisation			
		% within glucose	16.8% ^a	56.3% ^b	37.3%
		% of Total	8.1%	29.2%	37.3%
	non-hospitalisation	Count	104	59	163
		% within non-	63.8%	36.2%	100.0%
		hospitalisation			
		% within glucose	83.2% ^c	43.7% ^d	62.7%
		% of Total	40.0%	22.7%	62.7%
Total		Count	125	135	260

Table 8a. glucose Crosstabulation

a. % within glucose stands for the percentage of patients with normal glucose who were hospitalized

b. % within glucose stands for the percentage of patients with abnormal glucose who were hospitalized

c. % within glucose stands for the percentage of patients with normal glucose who were not hospitalized

d. % within glucose stands for the percentage of patients with abnormal glucose who were not hospitalized

Table 8b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the glucose. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	43.288 ^a	1	.000		
Continuity Correction ^b	41.616	1	.000		
Likelihood Ratio	45.319	1	.000		
Fisher's Exact Test				.000	.000
Linear-by-Linear	43.122	1	.000		
Association					
N of Valid Cases	260				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 46.63.

Table 9a.	ANTI LASE CIUSSIADU	lation						
			AMYLASE					
			Normal	Pathologi				
			values	cal values	Total			
	in hospitalisation	Count	86	7	93			
		% within ir	n 92.5%	7.5%	100.0%			
		hospitalisation						
		% within	n 36.1% ^a	58.3% ^b	37.2%			
		AMYLASE						
		% of Total	34.4%	2.8%	37.2%			
	non-hospitalisation	Count	152	5	157			
		% within non	- 96.8%	3.2%	100.0%			
		hospitalisation						
		% within	n 63.9%°	41.7% ^d	62.8%			
		AMYLASE						
		% of Total	60.8%	2.0%	62.8%			
Total		Count	238	12	250			

Table 9a. AMYLASE Crosstabulation

a. % within AMYLASE stands for the percentage of patients with normal AMYLASE who were hospitalized

b. % within AMYLASE stands for the percentage of patients with abnormal AMYLASE who were hospitalized

c. % within AMYLASE stands for the percentage of patients with normal AMYLASE who were not hospitalized

d. % within AMYLASE stands for the percentage of patients with abnormal AMYLASE who were not hospitalized

Table 9b. Comparison of the hospitalized or non-hospitalized patients in relation to the
normal or abnormal values of the AMYLASE. Chi-Square Tests

			Asymptotic Significance	Exact Sig. (2-	Exact Sig (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	2.410 ^a	1	.121	,	
Continuity Correction ^b	1.553	1	.213		
Likelihood Ratio	2.312	1	.128		
Fisher's Exact Test				.135	.108
Linear-by-Linear	2.400	1	.121		
Association					
N of Valid Cases	250				

a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 4.46.

			albumin		
			Normal	Pathologi	
			values	cal values	Total
	in hospitalisation	Count	95	2	97
		% within in	97.9%	2.1%	100.0%
		hospitalisation			
		% within albumin	38.3% ^a	33.3% ^b	38.2%
		% of Total	37.4%	0.8%	38.2%
	non-hospitalisation	Count	153	4	157
		% within non-	97.5%	2.5%	100.0%
		hospitalisation			
		% within albumin	61.7% ^c	66.7% ^d	61.8%
		% of Total	60.2%	1.6%	61.8%
Total		Count	248	6	254

Table 10a. albumin Crosstabulation

a. % within albumin stands for the percentage of patients with normal albumin who were hospitalized

b. % within albumin stands for the percentage of patients with abnormal albumin who were hospitalized

c. % within albumin stands for the percentage of patients with normal albumin who were not hospitalized

d. % within albumin stands for the percentage of patients with abnormal albumin who were not hospitalized

Table 10b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the albumin. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	.061 ^a	1	.804		
Continuity Correction ^b	.000	1	1.000		
Likelihood Ratio	.062	1	.803		
Fisher's Exact Test				1.000	.582
Linear-by-Linear	.061	1	.805		
Association					
N of Valid Cases	254				

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.29.

			HGB		
			Normal	Pathologi	
			values	cal values	Total
	in hospitalisation	Count	62	40	102
		% within in	60.8%	39.2%	100.0%
		hospitalisation			
		% within HGB	34.4% ^a	44.9% ^b	37.9%
		% of Total	23.0%	14.9%	37.9%
	non-hospitalisation	Count	118	49	167
		% within non-	70.7%	29.3%	100.0%
		hospitalisation			
		% within HGB	65.6% ^c	55.1% ^d	62.1%
		% of Total	43.9%	18.2%	62.1%
Total		Count	180	89	269

Table 11a. HGB Crosstabulation

a. % within HGB stands for the percentage of patients with normal HGB who were hospitalized

b. % within HGB stands for the percentage of patients with abnormal HGB who were hospitalized

c. % within HGB stands for the percentage of patients with normal HGB who were not hospitalized

d. % within HGB stands for the percentage of patients with abnormal HGB who were not hospitalized

Table 11b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the HGB. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	2.789 ^a	1	.095		
Continuity Correction ^b	2.361	1	.124		
Likelihood Ratio	2.764	1	.096		
Fisher's Exact Test				.109	.063
Linear-by-Linear	2.778	1	.096		
Association					
N of Valid Cases	269				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 33.75.

			HCT		
			Normal	Pathologi	
			values	cal values	Total
	in hospitalisation	Count	48	54	102
		% within in hospitalisation	47.1%	52.9%	100.0%
		% within HCT	33.3% ^a	42.9% ^b	37.8%
		% of Total	17.8%	20.0%	37.8%
	Non-hospitalisation	Count	96	72	168
		% within non- hospitalisation	57.1%	42.9%	100.0%
		% within HCT	66.7% ^c	57.1% ^d	62.2%
		% of Total	35.6%	26.7%	62.2%
Total		Count	144	126	270

Table 12a. HCT Crosstabulation

a. % within HCT stands for the percentage of patients with normal HCT who were hospitalized

b. % within HCT stands for the percentage of patients with abnormal HCT who were hospitalized

c. % within HCT stands for the percentage of patients with normal HCT who were not hospitalized

d. % within HCT stands for the percentage of patients with abnormal HCT who were not hospitalized

Table 12b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the HCT. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	2.593 ^a	1	.107		
Continuity Correction ^b	2.204	1	.138		
Likelihood Ratio	2.593	1	.107		
Fisher's Exact Test				.131	.069
Linear-by-Linear	2.583	1	.108		
Association					
N of Valid Cases	270				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 47.60.

			MCV		
			Normal	Pathologi	
			values	cal values	Total
	in hospitalisation	Count	79	23	102
		% within in	77.5%	22.5%	100.0%
		hospitalisation			
		% within MCV	37.1% ^a	40.4% ^b	37.8%
		% of Total	29.3%	8.5%	37.8%
	non-hospitalisation	Count	134	34	168
		% within non-	79.8%	20.2%	100.0%
		hospitalisation			
		% within MCV	62.9% ^c	59.6% ^d	62.2%
		% of Total	49.6%	12.6%	62.2%
Total		Count	213	57	270

Table 13a. MCV Crosstabulation

a. % within MCV stands for the percentage of patients with normal MCV who were hospitalized

b. % within MCV stands for the percentage of patients with abnormal MCV who were hospitalized

c. % within MCV stands for the percentage of patients with normal MCV who were not hospitalized

d. % within MCV stands for the percentage of patients with abnormal MCV who were not hospitalized

Table 13b. Comparison of the hospitalized or non-hospitalized patients in relation to thenormal or abnormal values of the MCV. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	.204 ^a	1	.652		
Continuity Correction ^b	.088	1	.766		
Likelihood Ratio	.202	1	.653		
Fisher's Exact Test				.648	.381
Linear-by-Linear	.203	1	.653		
Association					
N of Valid Cases	270				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 21.53.

			MCH		
			Normal	Pathologi	
			values	cal values	Total
	in hospitalisation	Count	79	23	102
		% within in	77.5%	22.5%	100.0%
		hospitalisation			
		% within MCH	37.8% ^a	37.7% ^b	37.8%
		% of Total	29.3%	8.5%	37.8%
	non-hospitalisation	Count	130	38	168
		% within non-	77.4%	22.6%	100.0%
		hospitalisation			
		% within MCH	62.2% ^c	62.3% ^d	62.2%
		% of Total	48.1%	14.1%	62.2%
Fotal		Count	209	61	270

Table 14a. MCH Crosstabulation

a. % within MCH stands for the percentage of patients with normal MCH who were hospitalized

b. % within MCH stands for the percentage of patients with abnormal MCH who were hospitalized

c. % within MCH stands for the percentage of patients with normal MCH who were not hospitalized

d. % within MCH stands for the percentage of patients with abnormal MCH who were not hospitalized

Table 14b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the MCH. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	.000 ^a	1	.989		
Continuity Correction ^b	.000	1	1.000		
Likelihood Ratio	.000	1	.989		
Fisher's Exact Test				1.000	.557
Linear-by-Linear	.000	1	.989		
Association					
N of Valid Cases	270				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 23.04.

b. Computed only for a 2x2 table

Table 15a. MCHC Crosstabulation

https://esmed.org/MRA/mra/

			Normal values	Pathologi cal values	
	in hospitalisation	Count	100	2	102
	ŕ	% within in	98.0%	2.0%	100.0%
		hospitalisation			
		% within MCHC	37.3% ^a	100.0% ^b	37.8%
		% of Total	37.0%	0.7%	37.8%
	Non-hospitalisation	Count	168	0	168
		% within non-	100.0%	0.0%	100.0%
		hospitalisation			
		% within MCHC	62.7% ^c	0.0% ^d	62.2%
		% of Total	62.2%	0.0%	62.2%
Total		Count	268	2	270

a. % within MCHC stands for the percentage of patients with normal MCHC who were hospitalized

b. % within MCHC stands for the percentage of patients with abnormal MCHC who were hospitalized

c. % within MCHC stands for the percentage of patients with normal MCHC who were not hospitalized

d. % within MCHC stands for the percentage of patients with abnormal MCHC who were not hospitalized

Table 15b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the MCHC. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	3.319 ^a	1	.068		
Continuity Correction ^b	1.188	1	.276		
Likelihood Ratio	3.918	1	.048		
Fisher's Exact Test				.142	.142
Linear-by-Linear	3.306	1	.069		
Association					
N of Valid Cases	270				

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 76.

b. Computed only for a 2x2 table

Table 16a. PLT Crosstabulation

		PLT		
		Normal	Pathologi	
		range	cal values	Total
in hospitalisation	Count	68	34	102

Copyright 2022 KEI Journals. All Rights Reserved

		% within in	66.7%	33.3%	100.0%
		hospitalisation			
		% within PLT	34.2% ^a	47.9% ^b	37.8%
		% of Total	25.2%	12.6%	37.8%
	non-hospitalisation	Count	131	37	168
		% within non-	78.0%	22.0%	100.0%
		hospitalisation			
		% within PLT	65.8% ^c	52.1% ^d	62.2%
		% of Total	48.5%	13.7%	62.2%
Fotal		Count	199	71	270

a. % within PLT stands for the percentage of patients with normal PLT who were hospitalized

b. % within PLT stands for the percentage of patients with abnormal PLT who were hospitalized

c. % within PLT stands for the percentage of patients with normal PLT who were not hospitalized

d. % within PLT stands for the percentage of patients with abnormal PLT who were not hospitalized

 Table 16b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the PLT. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	4.188 ^a	1	.041		
Continuity Correction ^b	3.625	1	.057		
Likelihood Ratio	4.121	1	.042		
Fisher's Exact Test				.046	.029
Linear-by-Linear	4.173	1	.041		
Association					
N of Valid Cases	270				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 26.82.b. Computed only for a 2x2 table

Table 17a. urea Crosstabulation

		urea		
		Normal	Pathologi	
		values	cal values	Total
in hospitalisation	Count	72	30	102
	% within i	n 70.6%	29.4%	100.0%
	hospitalisation			
	% within urea	31.7% ^a	69.8% ^b	37.8%
	% of Total	26.7%	11.1%	37.8%

non-	hospitalisation	Cou	Count		155	13	168
		%	within	non-	92.3%	7.7%	100.0%
		hospitalisation					
		% w	vithin urea		68.3% ^c	30.2% ^d	62.2%
	% o	f Total		57.4%	4.8%	62.2%	
Total		Cou	nt		227	43	270

a. % within urea stands for the percentage of patients with normal urea who were hospitalized

b. % within urea stands for the percentage of patients with abnormal urea who were hospitalized

c. % within urea stands for the percentage of patients with normal urea who were not hospitalized

d. % within urea stands for the percentage of patients with abnormal urea who were not hospitalized

Table 17b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the UREA. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	22.266 ^a	1	.000		
Continuity Correction ^b	20.677	1	.000		
Likelihood Ratio	21.673	1	.000		
Fisher's Exact Test				.000	.000
Linear-by-Linear	22.184	1	.000		
Association					
N of Valid Cases	270				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 16.24.b. Computed only for a 2x2 table

Table 18a. creatinine Crosstabulation

		creatinine		
		Normal	Pathologi	
		range	cal values	Total
in hospitalisation	Count	89	13	102
	% within in	87.3%	12.7%	100.0%
	hospitalisation			
	% within creatinine	34.9% ^a	86.7% ^b	37.8%
	% of Total	33.0%	4.8%	37.8%
non-hospitalisation	Count	166	2	168
	% within non-	98.8%	1.2%	100.0%
	hospitalisation			

	% within creatinine	65.1% ^c	13.3% ^d	62.2%
	% of Total	61.5%	0.7%	62.2%
Total	Count	255	15	270

a. % within creatinine stands for the percentage of patients with normal creatinine who were hospitalized

b. % within creatinine stands for the percentage of patients with abnormal creatinine who were hospitalized

c. % within creatinine stands for the percentage of patients with normal creatinine who were not hospitalized

d. % within creatinine stands for the percentage of patients with abnormal creatinine who were not hospitalized

Table 18b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the creatinine. Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	16.149 ^a	1	.000	sided)	Sidedy
Continuity Correction ^b	14.022	1	.000		
Likelihood Ratio	16.334	1	.000		
Fisher's Exact Test				.000	.000
Linear-by-Linear	16.089	1	.000		
Association					
N of Valid Cases	270				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 5.67.

b. Computed only for a 2x2 table

Table 19a. SGOT Crosstabulation

		SGOT		
		Normal	Pathologi	
		range	cal values	Total
in hospitalisation	Count	71	29	100
	% within in	71.0%	29.0%	100.0%
	hospitalisation			
	% within SGOT	33.8% ^a	50.0% ^b	37.3%
	% of Total	26.5%	10.8%	37.3%
non-hospitalisation	Count	139	29	168
-	% within non-	82.7%	17.3%	100.0%
	hospitalisation			
	% within SGOT	66.2% ^c	50.0% ^d	62.7%

	% of Total	51.9%	10.8%	62.7%			
Total	Count	210	58	268			
a. % within SGOT stands for	the percentage of pa	tients with nor	mal SGO	T who were			
hospitalized							
b. $\hat{\%}$ within SGOT stands for the percentage of patients with abnormal SGOT who were							
hospitalized							
c. % within SGOT stands for t	he percentage of patie	ents with norma	al SGOT w	ho were not			
hospitalized							
d. % within SGOT stands for	the percentage of pati	ents with abno	rmal SGO	T who were			
not hospitalized							

Table 19b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the SGOT. Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1- sided)
Pearson Chi-Square	5.093 ^a	1	.024		
Continuity Correction ^b	4.425	1	.035		
Likelihood Ratio	4.977	1	.026		
Fisher's Exact Test				.031	.019
Linear-by-Linear	5.074	1	.024		
Association					
N of Valid Cases	268				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 21.64.

b. Computed only for a 2x2 table

Table 20a. SGPT Crosstabulation

	1			
		SGPT		
		Normal	Pathologi	
		range	cal values	Total
in hospitalisation	Count	89	13	102
	% within in	87.3%	12.7%	100.0%
	hospitalisation			
	% within SGPT	38.4% ^a	34.2% ^b	37.8%
	% of Total	33.0%	4.8%	37.8%
non-hospitalisation	Count	143	25	168
	% within non-	85.1%	14.9%	100.0%
	hospitalisation			
	% within SGPT	61.6% ^c	65.8% ^d	62.2%
	% of Total	53.0%	9.3%	62.2%
Total	Count	232	38	270

a. % within SGPT stands for the percentage of patients with normal SGPT who were hospitalized

b. % within SGPT stands for the percentage of patients with abnormal SGPT who were hospitalized

c. % within SGPT stands for the percentage of patients with normal SGPT who were not hospitalized

d. % within SGPT stands for the percentage of patients with abnormal SGPT who were not hospitalized

Table 20b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the SGPT. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	.239 ^a	1	.625		
Continuity Correction ^b	.095	1	.757		
Likelihood Ratio	.242	1	.623		
Fisher's Exact Test				.719	.383
Linear-by-Linear	.239	1	.625		
Association					
N of Valid Cases	270				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 14.36.

b. Computed only for a 2x2 table

Table 21a. LDH Crosstabulation

			LDH		
			Normal	Pathologi	
			values	cal values	Total
	in hospitalisation	Count	18	78	96
		% within in	18.8%	81.3%	100.0%
		hospitalisation			
		% within LDH	17.3% ^a	50.3% ^b	37.1%
		% of Total	6.9%	30.1%	37.1%
	non-hospitalisation	Count	86	77	163
		% within non-	52.8%	47.2%	100.0%
		hospitalisation			
		% within LDH	82.7% ^c	49.7% ^d	62.9%
		% of Total	33.2%	29.7%	62.9%
Total		Count	104	155	259

a. % within LDH stands for the percentage of patients with normal LDH who were hospitalized

b. % within LDH stands for the percentage of patients with abnormal LDH who were hospitalized

c. % within LDH stands for the percentage of patients with normal LDH who were not hospitalized

d. % within LDH stands for the percentage of patients with abnormal LDH who were not hospitalized

Table 21b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the LDH. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	29.082 ^a	1	.000		
Continuity Correction ^b	27.684	1	.000		
Likelihood Ratio	30.818	1	.000		
Fisher's Exact Test				.000	.000
Linear-by-Linear	28.970	1	.000		
Association					
N of Valid Cases	259				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 38.55.

b. Computed only for a 2x2 table

Table 22a. CK Crosstabulation

			СК		
			Normal	Pathologi	
			values	cal values	Total
	in hospitalisation	Count	87	11	98
		% within in	88.8%	11.2%	100.0%
		hospitalisation			
		% within CK	35.7% ^a	57.9% ^b	37.3%
		% of Total	33.1%	4.2%	37.3%
	non-hospitalisation	Count	157	8	165
		% within non-	95.2%	4.8%	100.0%
		hospitalisation			
		% within CK	64.3% ^c	42.1% ^d	62.7%
		% of Total	59.7%	3.0%	62.7%
Total		Count	244	19	263

a. % within CK stands for the percentage of patients with normal CK who were hospitalized b. % within CK stands for the percentage of patients with abnormal CK who were hospitalized

c. % within CK stands for the percentage of patients with normal CK who were not hospitalized

d. % within CK stands for the percentage of patients with abnormal CK who were not hospitalized

Table 22b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the CK. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	3.729 ^a	1	.053		
Continuity Correction ^b	2.839	1	.092		
Likelihood Ratio	3.585	1	.058		
Fisher's Exact Test				.082	.048
Linear-by-Linear	3.715	1	.054		
Association					
N of Valid Cases	263				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 7.08.

b. Computed only for a 2x2 table

Table 23a. CK-MB Crosstabulation

	1011			
		CK-MB		
		Normal	Pathologi	
		range	cal values	Total
in hospitalisation	Count	78	10	88
	% withi in	88.6%	11.4%	100.0%
	hospitalisation			
	% within CK-MB	35.8% ^a	34.5% ^b	35.6%
	% of Total	31.6%	4.0%	35.6%
non-hospitalisation	Count	140	19	159
	% within non-	88.1%	11.9%	100.0%
	hospitalisation			
	% within CK-MB	64.2% ^c	65.5% ^d	64.4%
	% of Total	56.7%	7.7%	64.4%
Total	Count	218	29	247

a. % within CK-MB stands for the percentage of patients with normal CK-MB who were hospitalized

b. % within CK-MB stands for the percentage of patients with abnormal CK-MB who were hospitalized

c. % within CK-MB stands for the percentage of patients with normal CK-MB who were not hospitalized

d. % within CK-MB stands for the percentage of patients with abnormal CK-MB who were not hospitalized

Table 23b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the CK-MB. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	.019 ^a	1	.891		
Continuity Correction ^b	.000	1	1.000		
Likelihood Ratio	.019	1	.891		
Fisher's Exact Test				1.000	.534
Linear-by-Linear	.019	1	.891		
Association					
N of Valid Cases	247				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 10.33.

b. Computed only for a 2x2 table

Table 24a. GGT Crosstabulation

		GGT		
		Normal	Pathologi	
		range	cal values	Total
in hospitalisation	Count	83	18	101
	% within in	82.2%	17.8%	100.0%
	hospitalisation			
	% withinGGT	34.0% ^a	75.0% ^b	37.7%
	% of Total	31.0%	6.7%	37.7%
non- hospitalisation	Count	161	6	167
	% within non-	96.4%	3.6%	100.0%
	hospitalisation			
	% within GGT	66.0% ^c	25.0% ^d	62.3%
	% of Total	60.1%	2.2%	62.3%
Total	Count	244	24	268

a. % within GGT stands for the percentage of patients with normal GGT who were hospitalized

b. % within GGT stands for the percentage of patients with abnormal GGT who were hospitalized

c. % within GGT stands for the percentage of patients with normal GGT who were not hospitalized

d. % within GGT stands for the percentage of patients with abnormal GGT who were not hospitalized

Table 24b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the GGT. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	15.629 ^a	1	.000		
Continuity Correction ^b	13.932	1	.000		
Likelihood Ratio	15.234	1	.000		
Fisher's Exact Test				.000	.000
Linear-by-Linear	15.570	1	.000		
Association					
N of Valid Cases	268				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 9.04.

b. Computed only for a 2x2 table

Table 25a. CRP Crosstabulation

			RCRP		
			Normal	Pathologi	
			values	cal values	Total
I	n hospitalisation	Count	8	94	102
		% within i	n 7.8%	92.2%	100.0%
		hospitalisation			
		% within CRP	8.1% ^a	57.0% ^b	38.6%
		% of Total	3.0%	35.6%	38.6%
n	on-hospitalisation	Count	91	71	162
		% within non	- 56.2%	43.8%	100.0%
		hospitalisation			
		% within CRP	91.9% ^c	43.0% ^d	61.4%
		% of Total	34.5%	26.9%	61.4%
Total		Count	99	165	264

a. % within CRP stands for the percentage of patients with normal CRP who were hospitalized

b. % within CRP stands for the percentage of patients with abnormal CRP who were hospitalized

c. % within CRP stands for the percentage of patients with normal CRP who were not hospitalized

d. % within CRP stands for the percentage of patients with abnormal CRP who were not hospitalized

Table 25b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the CRP. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	62.378 ^a	1	.000		
Continuity Correction ^b	60.333	1	.000		
Likelihood Ratio	71.117	1	.000		
Fisher's Exact Test				.000	.000
Linear-by-Linear	62.141	1	.000		
Association					
N of Valid Cases	264				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 38.25.

b. Computed only for a 2x2 table

Table 26a. ALP Crosstabulation

			ALP		
			Normal	Pathologi	
			range	cal values	Total
	in hospitalisation	Count	98	1	99
		% within in	99.0%	1.0%	100.0%
		hospitalisation			
		% within ALP	37.4% ^a	33.3% ^b	37.4%
		% of Total	37.0%	0.4%	37.4%
	non-hospitalisation	Count	164	2	166
		% within non-	98.8%	1.2%	100.0%
		hospitalisation			
		% within ALP	62.6% ^c	66.7% ^d	62.6%
		% of Total	61.9%	0.8%	62.6%
Total		Count	262	3	265

a. % within ALP stands for the percentage of patients with normal ALP who were hospitalized

b. % within ALP stands for the percentage of patients with abnormal ALP who were hospitalized

c. % within ALP stands for the percentage of patients with normal ALP who were not hospitalized

d. % within ALP stands for the percentage of patients with abnormal ALP who were not hospitalized

Table 26b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the ALP. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	.021ª	1	.885		
Continuity Correction ^b	.000	1	1.000		
Likelihood Ratio	.021	1	.884		
Fisher's Exact Test				1.000	.686
Linear-by-Linear	.021	1	.885		
Association					
N of Valid Cases	265				

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.12.

b. Computed only for a 2x2 table

Table 27a. potassium Crosstabulation

		potassium			
			Normal	Pathologi	
			values	cal values	Total
in hos	pitalisation	Count	83	16	99
		% within	in 83.8%	16.2%	100.0%
		hospitalisation			
		% within potassium	n 35.8% ^a	48.5% ^b	37.4%
		% of Total	31.3%	6.0%	37.4%
non-h	ospitalisation	Count	149	17	166
		% within no	on- 89.8%	10.2%	100.0%
		hospitalisation			
		% within potassium	m 64.2% ^c	51.5% ^d	62.6%
		% of Total	56.2%	6.4%	62.6%
Total		Count	232	33	265

a. % within potassium stands for the percentage of patients with normal potassium who were hospitalized

b. % within potassium stands for the percentage of patients with abnormal potassium who were hospitalized

c. % within potassium stands for the percentage of patients with normal potassium who were not hospitalized

d. % within potassium stands for the percentage of patients with abnormal potassium who were not hospitalized

Table 27b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the potassium. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	1.994 ^a	1	.158		
Continuity Correction ^b	1.488	1	.223		
Likelihood Ratio	1.943	1	.163		
Fisher's Exact Test				.180	.112
Linear-by-Linear	1.986	1	.159		
Association					
N of Valid Cases	265				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 12.33.

b. Computed only for a 2x2 table

Table 28a. sodium Crosstabulation

		sodium		
		Normal	Pathologi	
		values	cal values	Total
non-hospitalisation	Count	63	39	102
	% within in	61.8%	38.2%	100.0%
	hospitalisation			
	% within sodium	30.7% ^a	60.9% ^b	37.9%
	% of Total	23.4%	14.5%	37.9%
non-hospitalisation	Count	142	25	167
	% within non-	85.0%	15.0%	100.0%
	hospitalisation			
	% within sodium	69.3% ^c	39.1% ^d	62.1%
	% of Total	52.8%	9.3%	62.1%
Total	Count	205	64	269

a. % within sodium stands for the percentage of patients with normal sodium who were hospitalized

b. % within sodium stands for the percentage of patients with abnormal sodium who were hospitalized

c. % within sodium stands for the percentage of patients with normal sodium who were not hospitalized

d. % within sodium stands for the percentage of patients with abnormal sodium who were not hospitalized

Table 28b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the sodium. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	18.904 ^a	1	.000		
Continuity Correction ^b	17.642	1	.000		
Likelihood Ratio	18.471	1	.000		
Fisher's Exact Test				.000	.000
Linear-by-Linear	18.834	1	.000		
Association					
N of Valid Cases	269				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 24.27.

b. Computed only for a 2x2 table

Table 29a. calcium Crosstabulation

			calcium		
			Normal	Pathologi	
			values	cal values	Total
in h	ospitalisation	Count	65	34	99
		% within in	65.7%	34.3%	100.0%
		hospitalisation			
		% within calcium	30.5% ^a	68.0% ^b	37.6%
		% of Total	24.7%	12.9%	37.6%
non	hospitalisation	Count	148	16	164
		% within non-	90.2%	9.8%	100.0%
		hospitalisation			
		% within calcium	69.5% ^c	32.0% ^d	62.4%
		% of Total	56.3%	6.1%	62.4%
Total		Count	213	50	263

a. % within calcium stands for the percentage of patients with normal calcium who were hospitalized

b. % within calcium stands for the percentage of patients with abnormal calcium who were hospitalized

c. % within calcium stands for the percentage of patients with normal calcium who were not hospitalized

d. % within calcium stands for the percentage of patients with abnormal calcium who were not hospitalized

Table 29b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the calcium. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	24.239 ^a	1	.000		
Continuity Correction ^b	22.668	1	.000		
Likelihood Ratio	23.611	1	.000		
Fisher's Exact Test				.000	.000
Linear-by-Linear	24.146	1	.000		
Association					
N of Valid Cases	263				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 18.82.

b. Computed only for a 2x2 table

Table 30a. Troponin Crosstabulation

		Troponin		
		Normal	Pathologi	
		range	cal values	Total
in hospitalisation	Count	64	15	79
	% within in	81.0%	19.0%	100.0%
	hospitalisation			
	% within Troponin	34.2% ^a	75.0% ^b	38.2%
	% of Total	30.9%	7.2%	38.2%
non-hospitalisation	Count	123	5	128
	% within non-	96.1%	3.9%	100.0%
	hospitalisation			
	% within Troponin	65.8% ^c	25.0% ^d	61.8%
	% of Total	59.4%	2.4%	61.8%
Total	Count	187	20	207

a. % within Troponin stands for the percentage of patients with normal Troponin who were hospitalized

b. % within Troponin stands for the percentage of patients with abnormal Troponin who were hospitalized

c. % within Troponin stands for the percentage of patients with normal Troponin who were not hospitalized

d. % within Troponin stands for the percentage of patients with abnormal Troponin who were not hospitalized

Table 30b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the troponin. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	12.729 ^a	1	.000		
Continuity Correction ^b	11.060	1	.001		
Likelihood Ratio	12.459	1	.000		
Fisher's Exact Test				.001	.001
Linear-by-Linear	12.668	1	.000		
Association					
N of Valid Cases	207				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 7.63.

b. Computed only for a 2x2 table

Table 31a. ferritin Crosstabulation

			ferritin		
			Normal	Pathologi	
			range	cal values	Total
j	in hospitalisation	Count	29	39	68
		% within in	42.6%	57.4%	100.0%
		hospitalisation			
		% within ferritin	25.7% ^a	56.5% ^b	37.4%
		% of Total	15.9%	21.4%	37.4%
]	non-hospitalisation	Count	84	30	114
		% within non-	73.7%	26.3%	100.0%
		hospitalisation			
		% within ferritin	74.3% ^c	43.5% ^d	62.6%
		% of Total	46.2%	16.5%	62.6%
Total		Count	113	69	182

a. % within ferritin stands for the percentage of patients with normal ferritin who were hospitalized

b. % within ferritin stands for the percentage of patients with abnormal ferritin who were hospitalized

c. % within ferritin stands for the percentage of patients with normal ferritin who were not hospitalized

d. % within ferritin stands for the percentage of patients with abnormal ferritin who were not hospitalized

Table 31b. Comparison of the hospitalized or non-hospitalized patients in relation to the normal or abnormal values of the ferritin. Chi-Square Tests

			Asymptotic		
			Significance	Exact Sig. (2-	Exact Sig. (1-
	Value	df	(2-sided)	sided)	sided)
Pearson Chi-Square	17.431 ^a	1	.000		
Continuity Correction ^b	16.137	1	.000		
Likelihood Ratio	17.366	1	.000		
Fisher's Exact Test				.000	.000
Linear-by-Linear	17.335	1	.000		
Association					
N of Valid Cases	182				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 25.78.

b. Computed only for a 2x2 table

Table 32. Independent Samples Test. Recovery or death in correlation with age

	Levene	's Test	for								
	Equalit	y of Varian	ces	t-test for	: Equa	lity of N	/ leans				
									95%	Confidenc	e
						Sig.	Mean		Interval	of th	e
						(2-	Differenc	Std. Error	Difference		
	F		Sig.	t	df	tailed)	e	Difference	Lower	Upper	
A	Equal	14.439	.00	-4.671	122	.000	-	3.34475	-22.24595	-9.00341	
GE	variances		0				15.62468				
	assumed										

Equal	-6.392	90.9 .000	-	2.44459	-20.48057	-10.76880
variances not		98	15.62468			
assumed						

 Table 33. Chi-Square Tests. There is no statistically significant relationship between the outcome (recovery or death) and gender

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1- sided)
Pearson Chi-Square	1.291 ^a	1	.256		
Continuity Correction ^b	.853	1	.356		
Likelihood Ratio	1.288	1	.256		
Fisher's Exact Test				.292	.178
Linear-by-Linear	1.281	1	.258		
Association					
N of Valid Cases	124				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 13.33. b. Computed only for a 2x2 table

Table34.	Correlations:	age	and	days	of	hospitalisation.	There	was	no
statisticall	y significant dif	feren	ce				D		- 6

				Days of
			AGE	hospitalisation
Spearman's rho	AGE	Correlation	1.000	.076
-		Coefficient		
		Sig. (2-tailed)		.465
		N	124	95
	Days of	Correlation	.076	1.000
	hospitalisation	Coefficient		
		Sig. (2-tailed)	.465	
		Ν	95	95

Table 35. Correlations: gender and days of hospitalisation. There was no statistically significant difference. Independent Samples Test

	Leve	ne's							
	Test	for							
	Equa	lity							
	of								
	Varia	nce							
	S		t-test	for Equ	ality o	of Means			
								95%	
					Sig.		Std.	Confide	ence
					(2-	Mean	Error	Interval	of the
		Sig			tailed	Differenc	Differenc	Differei	nce
	F		t	df)	e	e	Lower	Upper
Days of Equal	1.16	.28	-	93	.318	-1.30481	1.30008	-	1.2769
hospitalisati variano	ce 1	4	1.00					3.8865	0
on s			4					2	
assume	e								
d									
Equal			-	81.93	.326	-1.30481	1.32180	-	1.3247
variano	ce		.987	1				3.9343	0
	ot							2	
assume									
d									

Table 36. Correlations: age and days from hospitalisation todeath. There was no statistically significant difference.

hospitalisat	
nospitalisat	ion
AGE to death	
AGE Pearson Correlation 1277	
Sig. (2-tailed) .154	
N 124 28	
Daysfrom Pearson Correlation2771	
hospitalisation to Sig. (2-tailed) .154	
death N 28 28	

Table 37. Correlations: gender and days from hospitalisation to death. There was no statistically significant difference. Independent Samples Test

		Leven	e's							
		Test	for							
		Equali	ty							
		of	5							
		Varian	ices	t-test	for Eq	uality	of Means			
									95%	
						Sig.		Std.	Confide	ence
							Mean	Error	Interval	of the
			Sig			tailed	Differen	Differen	Differen	nce
		F		t	df)	ce	ce	Lower	Upper
Days from	Equal	10.04	.00	1.75	26	.091	33.11795	18.86541	-	71.8963
hospitalisati	varianc	6	4	5					5.6604	6
on to death	es								6	
	assume									
	d									
	Equal			1.65	14.34	.120	33.11795	20.01837	-	75.9560
	varianc				6					4
	es not								4	
	assume									
	d									

 Table 38. Correlations: days of hospitalisation and days of hospitalisation till death for the hospitalized patients. There was no statistically significant difference

		Deres (ill de eth	Days of
		Days till death	Hospitalisation
Days of hospitalisation ti	ll Pearson Correlation	1	.069
death	Sig. (2-tailed)		.749
	N	28	24
Days of hospitalisation	Pearson Correlation	.069	1
	Sig. (2-tailed)	.749	
	N	24	95

Table 39. Correlations: days of hospitalisation and outcome. There was nostatistically significant difference. Independent Samples Test

Levene's	
Test for	
Equality	
of	
Variance	
S	t-test for Equality of Means

									95% Confide Interval Differer	of the
			Sig				Mean Differenc	Std. Error Differenc		
		F		t	df)	e	e	Lower	Upper
Days of	Equal	7.08	.00	-	93	.145	-2.17899	1.48287	-	.76570
hospitalisati	variance	5	9	1.46					5.1236	
on	S			9					8	
	assume									
	d									
	Equal			-	31.86	.215	-2.17899	1.72196	-	1.3291
	variance			1.26	4				5.6870	1
	s not			5					9	
	assume									
	d									

Table 40. Average values for statistically significant measurements							
	HOSPITALIZED	NON-	Hospitalized				
	patients who	HOSPITALIZED	patients who died	versus non-			
	recovered	patients		hospitalized			
				patients			
WBC	6.76	5.77	10.23	p<0.016			
(K/mm^3)							
NEUT%	71.68	61.71	80.18	p<0.001			
LYMPH%	21.19	25.28	11.45	p<0.001			
PLT	200.36	207.20	232.45	p<0.041			
(K/mm^3)							
glucose	146.26	111.96	161.70	p<0.001			
(mg/dl)							
urea (mg/dl)	50.48	31.44	80.45	p<0.001			
creatinine	0.98	0.85	1.42	p<0.001			
(mg/dl)							
SGOT	34.61	27.11	42.9	p<0.024			
(IU/L)							
LDH(U/L)	274.53	201.83	380.90	p<0.001			
CK(IU/L)	202.95	128.95	127.8	p<0.053			
GGT(IU/L)	47.1	30.51	54.35	p<0.001			

RCRP (mg/dl)	6.93	2.15	13.97	p<0.001
sodium (mmol/l)	136.02	137.84	136.84	p<0.001
calcium (mg/dl)	8.75	9.24	8.63	p<0.001
high sensitivity Troponin I (pg/ml)	12.67	4.52	92.04	p<0.001
ferritin (ng/ml)	505.99	258.29	739.07	p<0.001

5. Discussion

Coronaviruses are enveloped positivesense single-stranded large RNA viruses that infect both humans and animals. The name is attributed to the characteristic spike proteins of the virus sticking out like a crown (corona).^{5, 6}

Of the known four main subgroups of coronaviruses family (alpha, beta, gamma and delta), SARS-CoV-2 belongs to beta subgroup.⁶ The virus was firstly isolated and reported by genomic screening in December 2019 in the city of Wuhan in Hubei province, China, from patients with severe pneumonia related to the sea-food market of Huanan.¹

Transmission is mainly airborne, via respiratory droplets. Orofecal transmission cannot be excluded as the virus has been also isolated in feces.⁷

COVID-19 disease is manifested with a plethora of symptoms such as fever, cough, shortness of breath, fatigue, pharyngalgia, myalgias, headache, diarrhea, loss of taste (ageusia), or odor (anosmia).¹ The disease varies from mild respiratory tract infection to severe pneumonia, acute respiratory distress syndrome (ARDS), and death.⁷ Breathlessness usually appears till the seventh day from onset of symptoms. Acute respiratory distress (ARDS) appears within 8-12 from onset of symptoms and

the need for admission in Intensive Care Unit (ICU) 10-12 days from onset of symptoms.^{8,9}

The virus, struggling to survive and adapt, is subject to mutations. Some of the variants that occur are characterized as of significant interest and concern.¹⁰ Data in the present study were collected retrospectively and represent the patients who seeked medical assistance during the first semester of 2021, where the third wave of the disease in Greece was at large. Laboratory results of these patients included in this study represent the first values of the afore described blood and serum tests. No concomitant diseases of the patients were recorded, as the present study aimed to find correlations among initial laboratory tests and disease severity regardless of the patients' medical history. Regarding WBC count and neutrophils percentage, studies with different methodologies appear in literature. A study between proved and suspected but proved COVID-19. negative patients for concluded that COVID-19 patients were more likely to have normal or decreased WBC and neutrophil counts than the control patients.¹¹

Two main leading causes to death are respiratory failure from acute respiratory distress syndrome (ARDS) and secondary

haemophagocytic lymphohistiocytosis (sHLH).^{12, 13} Hypercytokinaemia is the main feature of sHLH and leads to multiorgan failure.^{12, 13} Cytokine storm and hyperinflammatory state has been has related to neutrophil count above 10000/mm³. This also sets the alarm for bacterial superinfection.¹²⁻¹⁵ Another study associates for the first time the WBC count on admission and death rate. The higher WBC count on admission is related with higher possibility of death.¹⁶ In our study, there was detected statistically significant difference of initial WBC count related to whether the patient would end up hospitalized or not. All patients who died WBC average had count above 10000/mm³. Regarding the percentage of neutrophils, 68.7% of hospitalized patients had abnormal values. The patients who died had an average percentage of neutrophils above 80,18%. Therefore, initial abnormal WBC count can give clues about the patient's outcome. Patients' values above 10000/mm3 should ring an alarm.

SARS-CoV-2 affects T lymphocytes and as a result leads to immune system impairment.⁶ T cells seem to have an ambiguous role in COVID-19 infection. In mice they seem to take part in both virus clearance and immunopathology.¹⁷ In humans the disease severity has been correlated with the frequency of a subset of CD4+T cells with T-helper orientation that secrete granulocyte-monocytes colonystimulating factor (GM- CSF), interleukin 6 (IL-6) and interferon gamma (IFN- γ) in high levels. The cascade of inflammation (hyperinflammatory state) that follows is the result of the subsequent increased expression of IL-6 by monocytes.¹⁸ Decrease count and percentage of lymphocytes have been reported in patients with severe cases than those with mild cases of COVID-19.11 A systematic review

and meta-analysis found that lymphopenia is a major factor for severe COVID-19 and is also a prognostic factor for poor outcome.^{15, 19} The cutoff value for patient admittance in the ICU is $< 0.6 \times 10^9$ /L lymphocytes.¹⁵ Lymphocytes express the angiotensin-converting enzyme receptor-2 (ACER-2). As a result, the virus binds to lymphocytes and causes cell lysis. In addition, during the cytokine storm syndrome, the released inflammatory mediators cause lymphocyte apoptosis and atrophy of lymphoid tissue. The result is lymphocytopenia.¹⁵ In our study. pathological rates of lymphocytes were observed in 51.5% of hospitalized patients. A statistically significant relationship comparing hospitalized patients to nonhospitalized patients was observed. All patients who died in our study had initial percentage of lymphocytes less than 20% (average 11.41%). Therefore, the authors of the present study believe that initial abnormal lymphocyte values can prejudge the patient's outcome, regardless of other underline conditions.

Monocyte count has been reported to be elevated in COVID-19 patents who suffer from hypertension.¹⁵ Monocytes also seem to be increased in number in the bronchoalveolar fluid in severe COVID-19.^{20, 21} In our study there was no statistically significant difference observed regarding monocyte percentage. Hypertension or other underlying conditions were not recorded. Initial measurement of monocyte percentage does not seem to reflect on patient outcome.

There are studies reporting that platelet count of COVID-19 group patients with severe pneumonia was significantly higher than patients with other causes of severe pneumonia. Other studies reported that elevated white blood cell count combined with decreased platelet and lymphocyte counts were markers of severe COVID-

19.^{15, 22} At time of diagnosis, elevated platelet count is linked to worse prognosis.²³ Our study is in accordance with those reports. Hospitalized patients seemed to have abnormal platelet counts (either elevated or below normal values) in a percentage of 22.0%, whereas 65.8% of non-hospitalized patients had normal platelet count. It was found that there is a statistically significant relationship in the comparison of hospitalized to nonhospitalized patients. Specifically, the patients who were hospitalized had a higher percentage of abnormal values and a correspondingly lower percentage of normal values than those who were nonhospitalized. In this setting, seems that initial values of platelet count could be mains to prejudge patients' outcome.

Regarding hematocrit, hemoglobin, total RBC count, and MCHC there are studies that find no correlation between mild and severe disease.^{15, 24} On the other hand, other studies correlate COVID-19 severity with hemoglobin level.^{25, 26} There are many reasons for low hemoglobin rates in COVID-19 patients. Direct infection of precursor cells by the virus, inflammation of mature erythrocytes, and alterations in iron metabolism are some of them.²⁷ In addition, cytokine storm syndrome causes autoimmune hemolytic anemia.²⁷ The mechanism seems to be cross reaction between spike protein of SARSCoV-2 and the protein ankyrin-1 of erythrocytes that causes indirect injury via molecular mimicry. As a result, erythrocytes' biology is affected in COVID-19 patients.²⁸ Low mean corpuscular volume and mean corpuscular hemoglobin have been related to severe COVID-19 disease in other studies.²⁴ In our study, initial laboratory tests revealed no statistically significant difference observed regarding RBC count, hemoglobin, hematocrit, MCV, MCH, or MCHC. A possible explanation is that those parameters are affected as the disease marches.

Regarding renal function, there are studies that connect elevated serum creatinine to severe COVID-19.^{22, 29} Patients who suffer from acute respiratory syndrome have acute kidnev injury as frequent complication.³⁰ The mechanism is that the angiotensin-converting enzyme 2 receptor is expressed in epithelial cells of kidneys.³¹ Even slight renal dysfunction at the early stage of hospital admission is related to poor prognosis.³⁰ In our study, urea values were higher in 69.8% of hospitalized patients. All hospitalized patients who recovered had an average urea value 50.48 mg/dl. Patents who died had average urea levels of 80.45 mg/dl. Non-hospitalized patients had average urea between normal range. There was observed statistically significant relationship between hospitalized patients and non-hospitalized patients in relation to the normal or abnormal values of urea. Creatinine levels were abnormal in 86.7% of hospitalized patients. Patients who died had average creatinine of 1.42 mg/dl. It was found that а statistically significant there is relationship, that is, the patients who were hospitalized had a higher percentage of abnormal values and a correspondingly lower percentage of normal values than were non-hospitalized. those who Estimation of renal function is considered to the authors of the present study of major in COVID-19 importance patients' outcome.

Regarding liver function and COVID-19, there is direct liver injury. Bile duct cells are a target of SARS-CoV-2 virus as they express the receptor of angiotensinconverting enzyme 2, the way of entry of the virus into the cells. As a result, bile duct cells are subject to injury both due to local and systemic inflammation. Liver synthetic function is impaired. Some

studies have reported elevated SGOT, SGPT, LDH, and decreased albumin levels in patients with severe COVID-19 to support liver impairment.^{6, 11} The results of our study regarding SGOT and LDH are in accordance with these findings. Howbeit in our study no statistically significant difference occurred regarding SGPT. To our knowledge, no statistically significant difference has been reported in literature for COVID-19 and ALP.^{6, 11} This is consistent with the results of our study. The albumin levels has been role of controversial as a predictor factor of the disease outcome. However, there seems to be a gradual decrease in serum albumin levels as the disease progresses to critical illness in hospitalized patients. This can be explained due to impairment in liver synthetic function.^{6, 11, 32} In our study albumin levels were not statistically significant between hospitalized and nonhospitalized patients. This observation perhaps is due to the early collection of data regarding the hospitalized patients' course.

C-reactive protein is a well-known biochemical marker of acute inflammation that is produced primarily in the liver. It has been reported that levels of CRP are significantly higher in patients with severe CODID-19.^{6, 15} C-reactive protein levels have been described as independent prognostic factor regarding patients' concomitant diseases and COVID-19 outcome.¹⁵ These findings are in accordance with our results. In our study, CRP values were statistically significant elevated comparing hospitalized to nonhospitalized patients. As a result, we suggest that elevated CRP values in initial laboratory finding can be used as a predictor to patients' outcome.

There are studies that report that elevated CK was associated with increased mortality and severity in patients with COVID-19, a result that is not affected by age, gender, hypertension, and diabetes.³³⁻ ³⁴ Myalgias is a common initial symptom of patients.³³ Correlates of skeletal muscle pain and serum CK levels in literature are controversial. There are studies that support that muscle pain and CK levels above >200 U/L are related to severe cases.³³ In other studies on the other hand, higher prevalence of myalgias isrelated to milder cases.³³ In our study, it was found that there is marginally statistically significant relationship in this comparison (p=0.053). Specifically, the patients who were hospitalized had a higher percentage of abnormal values and a correspondingly lower percentage of normal values than those who were non-hospitalized. In the light of this finding, we suggest that elevated CK levels should be taken under consideration regarding the patients' outcome.

COVID-19 causes myocardial injury and as a result, troponin-I elevation is significantly associated with fatal patient outcome. Myocarditis is the direct effect of cardiac injury. The mechanism of injury is direct damage to heart pericytes that highly express ACE2. Myocardial injury is also deteriorated by microangiopathy, and thrombotic coagulopathy caused by the disease.³⁵ Normal troponin-I levels in the first 24 hours of admission have been connected to favorable survival at the time of discharge.35 In our study, 70.5% of hospitalized patients had abnormal values and all patients who died had elevated values. Judging by the results of our study, measurement of high sensitivity Troponin I in the Emergency Department in all suspected or confirmed COVID-19 patients may help predict myocardial participation and patients' outcome.

Elevated values of ferritin in COVID-19 patients reveals constant macrophage activation and is a marker of disease

activity and patient outcome.^{36, 37} High ferritin values are related to the so called secondary haemophagocytic lymphohistiocytosis (sHLH), the second cause of death after ARDS in patients with severe COVID-19.³⁶ This seems to be related to the ability of the virus to bind Toll Like Receptors and to activate inflammasome through IL-1 β , but the mechanism needs further elucidation.³⁶ In our study, 56.5% of hospitalized patients had elevated ferritin values, whereas 74.3% of non-hospitalized patients had normal values. Ferritin average values (739.07 ng/ml) were extremely high in patients who died. Our data are consistent the afore mentioned with studies. Therefore, elevated ferritin levels at the time the patient seeks medical assistance for the first time of onset of symptoms is a reliable marker of the disease severity and outcome.

Significant changes in plasma osmolality are safeguarded by water and sodium balance.³⁸ Half of COVID-19 hospitalized patients suffer from hyponatremia.³⁸ Serum sodium concentration and IL-6 levels in severe disease are inversely correlated.³⁸ As a result, hyponatremia in hospitalized patients with COVID-19 has been associated with a higher risk of severe illness, length of hospitalisation, and mortality.³⁸ In the present study 60.9% of hospitalized patients had abnormal sodium values, whereas 69.3% of non-hospitalized patients had normal values. Statistically significant deference in sodium levels was observed between hospitalized and nonhospitalized patients. Sodium abnormal values at an early stage seems to be a useful and safe prognostic tool to disease severity. Calcium is known to directly interact with the fusion peptides of enveloped viruses like SARS-CoV-2 and promotes virus replication.³⁹ Serum calcium levels has been described of major importance

biomarker for disease severity from onset of symptoms.^{39, 40} Anomalies in serum calcium levels has been referred to be closely related to multiple organ injuries augmentation of inflammatory and cytokines as the disease progresses.⁴⁰ In our study, 68% of patients with abnormal calcium were hospitalized, whereas 69% of non-hospitalized patients had normal calcium values. There was statistically significant difference between the two patient groups. Our data are consistent with the above-mentioned studies. Therefore, abnormal calcium levels as initial laboratory finding should be considered important prognostic factor of disease severity.

SARS-CoV-2 has been described in literature to cause hypokalemia via two major mechanisms. The first mechanism concerns the renin-angiotensin-aldosterone system axis. Seems that the virus through the angiotensin-converting enzyme 2 accelerates the activity of the axis, leading to overproduction of aldosterone and thus hypokalemia. The second mechanism involves furin, which has a key role in cleaving SARS-CoV-2 spike protein. The virus binds furin. As a result, epithelial sodium channels -which have principal role in regulating the volume of airway liquids- downregulate surface their activity. As a result, potassium ions are withheld, and hypokalemia is observed.⁴¹⁻ ⁴² In our study it was found that there is no statistically significant relationship in initial potassium levels comparing hospitalized to non-hospitalized patients. Perhaps hypokalemia is observed later as the disease marches.

Regarding possible correlates between demographic features and days for recovery or hospitalisation our study produced the following data: No statistically significant relationship between recovery-death of the hospitalized

patients and gender were found. Age and gender regarding days of hospitalisation were not statistically significant. Age and gender regarding days of hospitalisation to death for the hospitalized patients was not statistically significant. Regarding days of hospitalisation and days of hospitalisation till death for the hospitalized patients no statistically significant difference was found. There was no statistically significant difference found between days of hospitalisation and outcome. According to Centers for Disease Control and Prevention, 74.3 % of patients who died from COVID-19 were over 65 years old.⁴³ In our study mean age of the deceased patients was 78.8 years (standard deviation 9.07). In literature the median duration of hospitalisation for patients who recovered depends on the population under testing⁴⁴. In a study conducted in Belgium the length of stay for hospitalized patients who recovered depended on age. In the same study males seem to need longer time to recover as compared to females.⁴⁴ Our results showed no statistically significant difference between age and gender towards days of hospitalisation.

Data from Centers for Disease Control and Prevention show that patients older than 85 years have a rate of death 340 times higher compared to adult patients less than 29 years old.⁴⁵ In our study was observed a statistically significant difference in the mean age of hospitalized patients who recovered and those who ended up. Mean age of the deceased patients was 78.8 years (standard deviation 9.07). Our findings suggest that age seems to be a key factor for survival for hospitalized patients regardless of underlying medical conditions.

6. Conclusion

Common initial laboratory findings of COVID-19 patients who seek for the firsttime medical assistant regardless of comorbidities and day from onset of symptoms can give clues to the patient outcome. Age is also important for patients' survival. Especially in a Primary Health Care Setting, parameters like WBC neutrophil and lymphocyte count. percentage, platelet count, glucose, urea, creatinine, SGOT, CK, LDH, GGT, sodium, calcium, high sensitivity Troponin I, and ferritin levels, could be helpful to predict disease severity.

7. Limitations of the study

Though the sample size may seem small regarding the number of tested parameters, the authors consider it representative to draw safe conclusions, as it enrolls all symptomatic adult patients.

Ethical Approval

The present study has taken approval from the Ethical and Scientific Board of both Hospital branches and exempt the need for consent.

Conflict of Interest Statement The authors declare that they have no competing interests.

Availability of data and material: The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Acknowledgments-Funding: None

References

- Sofi MS, Hamid A, Bhat SU. SARS-CoV-2: A critical review of its history, pathogenesis, transmission, diagnosis and treatment. *Biosaf Health*. 2020;2(4):217-225. doi: 10.1016/j.bsheal.2020.11.002.
- COVID-19 pandemic Greece A3M Global Monitoring. Available from: https://globalmonitoring.com/gm/page/events/epide mic-0001942.ugWbZWZFtsIc.html?lang= en. Last accessed February 3rd, 2022.
- European Centre for Disease Prevention and Control. Available from: <u>https://vaccinetracker.ecdc.europa.eu/</u> <u>public/extensions/COVID-19/vaccine-</u> <u>tracker.html#uptake-tab</u>. Last accessed February 3rd, 2022.
- da Rosa Mesquita R, Francelino Silva Junior LC, Santos Santana FM, Farias de Oliveira T, Campos Alcântara R, Monteiro Arnozo G, Rodrigues da Silva Filho E, Galdino Dos Santos AG, Oliveira da Cunha EJ, Salgueiro de Aquino SH, Freire de Souza CD. Clinical manifestations of COVID-19 in the general population: systematic review. *Wien Klin Wochenschr*. 2021;133(7-8):377-382. doi: 10.1007/s00508-020-01760-4.
- Basics of COVID-19. Centers for Disease Control and Prevention. Available from: https://www.cdc.gov/coronavirus/201 9-ncov/your-health/about-covid-19/basics-covid-19.html. Last assessed January 24, 2022
- 6. Zhang Y, Zheng L, Liu L, Zhao M, Xiao J, Zhao Q. Liver impairment in COVID-19 patients: A retrospective analysis of 115 cases from a single center in Wuhan city, China. *Liver Int*.

2020;40(9):2095-2103. doi: 10.1111/liv.14455.

 Grygiel-Górniak B, Oduah MT. COVID-19: What Should the General Practitioner Know? *Clin Interv Aging*.2021;16:43-56 https://doi.org/10.2147/CIA.S268607.

Huang C, Wang Y, Li X, Ren L, Zhao

J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet*. 2020;395:497–506. <u>https://doi.org/10.1016/S0140-</u>

<u>6736(20)30183-5</u>.

- Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. *JAMA*. 2020;323:1061–1069, <u>https://doi.org/10.1001/jama.2020.158</u> 5.
- 10. SARS-CoV-2 Variant Classifications and Definitions – CDC. Available from: https://www.cdc.gov/coronavirus/201 9-ncov/variants/variantclassifications.html. Last access, January 9, 2022.
- 11. Chen X, Yang Y, Huang M, Liu L, Zhang X, Xu J, Geng S, Han B, Xiao J, Wan Y. Differences between COVID-19 and suspected then confirmed SARS-CoV-2-negative pneumonia: A retrospective study from a single center. *J Med Virol*. 2020;92(9):1572-1579. doi: 10.1002/jmv.25810. Epub 2020 Jun 12. PMID: 32237148.
- 12. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet* 2020;395(10223):507-13.

https://doi.org/10.1016/S0140-6736(20)30211-7.

- 13. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Mansonet JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. *Lancet* 2020;395(10229):1033-4. https://doi.org/10.1016/ S0140-6736(20)30628-0.
- 14. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W, Tian DS. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. *Clin Infect Dis.* 2020;71(15):762-768. doi: 10.1093/cid/ciaa248. PMID: 32161940; PMCID: PMC7108125.
- 15. Al-Nimer MS, Merza TA, Mohammed YMY, Mohammed A. Blood Cells Indices are Determinants of the COVID-19 Outcome: A Cross-Sectional Study from Kurdistan Region-Iraq. *Electron J Gen Med*. 2021;18(5):em304.

https://doi.org/10.29333/ejgm/11013

- 16. Zhu B, Feng X, Jiang C, Mi S, Yang L, Zhao Z, Zhang Y, Zhang L. Correlation between white blood cell count at admission and mortality in COVID-19 patients: a retrospective study. *BMC Infect Dis.* 2021 Jun 14;21(1):574. doi: 10.1186/s12879-021-06277-3. PMID: 34126954; PMCID: PMC8202964.
- 17. Wong LR, Perlman S. Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses are we our own worst enemy? *Nat Rev Immunol.* 2022;22(1):47-56. doi: 10.1038/s41577-021-00656-2.
- 18. Zhou Y, Fu B, Zheng X, et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. *Natl Sci Rev.* 2020;7(6):998-1002. doi:10.1093/nsr/nwaa041.

- 19. Zhao Q, Meng M, Kumar R, et al. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis. *Int J Infect Dis.* 2020;96:131-135. doi:10.1016/j.ijid.2020.04.086
- Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. *Nat Rev Immunol.* 2020;20(6):355-362. https://doi.org/ 10.1038/s41577-020-0331-4.
- 21. Loperena R, Van Beusecum JP, Itani HA, et al. Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide. *Cardiovasc Res* 2018;114(11): 1547-63. https://doi.org/10.1093/cvr/cvy112
- Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a metaanalysis. *Clin Chem Lab Med.* 2020 Jun 25;58(7):1021-1028. doi: 10.1515/cclm-2020-0369.
- 23. Qu R, Ling Y, Zhang YH, et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. *J Med Virol.* 2020;92(9):1533-41. https://doi.org/10.1002/jmv.25767.
- 24. Layla KN, Yeasmin S, Azad AB, Chowdhury MU, Sultana N, Muhammad Shazedur Rahman AFS, Rahman MM, Rafa RL. Red blood cell profile in patients with mild, moderate and severe COVID-19. *IMC J Med Sci* [Internet]. 2021 Aug. 25 [cited 2022 Feb. 4];15(2):26-31. Available from: https://www.banglajol.info/index.php/ IMCJMS/article/view/55811

- 25. Yuan X, Huang W, Ye B, Chen C, Huang R, Wu F, et al. Changes of hematological and immunological parameters in COVID-19 patients. *Intern J Hematol*. 2020; 112(4): 553-559.
- 26. Wang C, Deng R, Gou L, Fu Z, Zhang X, Shao F, et al. Preliminary study to identify severe from moderate cases of COVID-19 using combined hematology parameters. *Ann Transl Med.* 2020; 8(9): 593.
- Taneri PE, Gómez-Ochoa SA, Llanaj E, Raguindin PF, Rojas LZ, Roa-Díaz ZM, et al. Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. *Eur J Epidemiol*. 2020; 35(8): 763-773.
- 28. Angileri F, Légaré S, Marino Gammazza A, Conway de Macario E, Macario AJ, Cappello F. Is molecular mimicry the culprit in the autoimmune haemolytic anaemia affecting patients with COVID-19? *Br J Haematol*. 2020; 190(2): 92-93.
- 29. Wynants L, Van Calster B, Collins G S, Riley R D, Heinze G, Schuit E et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. *BMJ* 2020; 369:m1328 doi:10.1136/bmj.m1328
- 30. Komaru Y, Doi K. Does a slight change in serum creatinine matter in coronavirus disease 2019 (COVID-19) patients? *Kidney Res Clin Pract*. 2021;40(2):177-179. doi: 10.23876/j.krcp.21.108.
- Post A, Dullaart RPF, Bakker SJL. Sodium status and kidney involvement during COVID-19 infection. *Virus Res.* 2020; 286:198034. doi: 10.1016/j.virusres.2020.198034.
- 32. Aziz M, Fatima R, Lee-Smith W, Assaly R. The association of low serum albumin level with severe COVID-19:

a systematic review and meta-analysis. *Crit Care*. 2020;24(1):255. doi: 10.1186/s13054-020-02995-3.

- 33. Akbar MR, Pranata R, Wibowo A, Lim MA, Sihite TA, Martha JW. The prognostic value of elevated creatine kinase to predict poor outcome in patients with COVID-19 A systematic review and meta-analysis. *Diabetes Metab Syndr*. 2021;15(2):529-534. doi:10.1016/j.dsx.2021.02.012.
- 34. De Rosa A, Verrengia EP, Merlo I, et al. Muscle manifestations and CK levels in COVID infection: results of a large cohort of patients inside a Pandemic COVID-19 Area. Acta Myol. 2021;40(1):1-7. Published 2021 Mar 31. doi:10.36185/2532-1900-040.
- 35. Al Abbasi B, Torres P, Ramos-Tuarez F, Dewaswala N, Abdallah A, Chen K, et al. Cardiac Troponin-I and COVID-19: A Prognostic Tool for In-Hospital Mortality. *Cardiol Res.* 2020 Dec;11(6):398-404. doi: 10.14740/cr1159.
- 36. Dimopoulos G, Sakelliou A, Flevari A, Tzannis K, Giamarellos - Bourboulis J. Ferritin levels in critically ill patients with COVID-19: A marker of outcome? *Pneumon*. 2021;34(2):5. doi:10.18332/pne/135958.
- 37. M Hussein A, Taha ZB, Gailan Malek A, Akram Rasul K, Hazim Kasim D, Jalal Ahmed R, Badraden Mohamed U. D-Dimer and Serum ferritin as an Independent Risk Factor for Severity in COVID-19 Patients. *Mater Today Proc.* 2021 Apr 13. doi: 10.1016/j.matpr.2021.04.009.
- 38. Hu W, Lv X, Li C, Xu Y, Qi Y, Zhang Z, Li M, Cai F, Liu D, Yue J, Ye M, Chen Q, Shi K. Disorders of sodium balance and its clinical implications in COVID-19 patients: a multicenter retrospective study. *Intern Emerg Med.*

2021 Jun;16(4):853-862. doi: 10.1007/s11739-020-02515-9.

- 39. Osman W, Al Fahdi F, Al Salmi I, Al Khalili H, Gokhale A, Khamis F. Serum Calcium and Vitamin D levels: Correlation with severity of COVID-19 in hospitalized patients in Royal Hospital, Oman. *Int J Infect Dis.* 2021; 107:153-163. doi: 10.1016/j.ijid.2021.04.050.
- 40. Zhou X, Chen D, Wang L, et al. Low serum calcium: a new, important indicator of COVID-19 patients from mild/moderate to severe/critical [published online ahead of print, 2020 Nov 30]. *Biosci Rep.* 2020;40(12):BSR20202690. doi:10.1042/BSR20202690.
- 41. Noori M, Nejadghaderi SA, Sullman MJM, Carson-Chahhoud K, Ardalan M. Kolahi AA. Safiri S. How SARS-CoV-2 might affect potassium balance via impairing epithelial sodium channels? Mol Biol Rep. 2021 Sep;48(9):6655-6661. doi: 10.1007/s11033-021-06642-0. Epub 2021 Aug 15. PMID: 34392451; PMCID: PMC8364628.
- 42. Bruns JB, Carattino MD, Sheng S, Maarouf AB, Weisz OA, Pilewski JM,

Hughey RP, Kleyman TR. Epithelial Na+ channels are fully activated by furin- and prostasin-dependent release of an inhibitory peptide from the gamma-subunit. *J Biol Chem.* 2007 Mar 2;282(9):6153-60. doi: 10.1074/jbc.M610636200. Epub 2007 Jan 1. PMID: 17199078.

- 43. Centers for Disease Control and Prevention, available from: <u>https://www.cdc.gov/nchs/covid19/mo</u> <u>rtality-overview.htm</u>. Last accessed February 5th, 2022.
- 44. Faes C, Abrams S, Van Beckhoven D, et al. Time between Symptom Onset, Hospitalisation and Recovery or Death: Statistical Analysis of Belgian COVID-19 Patients. *Int J Environ Res Public Health*. 2020;17(20):7560. Published 2020 Oct 17. doi:10.3390/ijerph17207560.
- 45. Centers for Disease Control and Prevention. Available from: <u>https://www.cdc.gov/coronavirus/201</u> <u>9-ncov/covid-data/investigationsdiscovery/hospitalization-death-byage.html</u>. Last accessed February 2nd, 2022.