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Abstract 
The recent insight that the immune system is innervated has initiated a search 
for neural reflex circuits suitable for therapeutic targeting in human 
inflammatory diseases. The inflammatory reflex, signaling along the vagus 
system to maintain immune system homeostasis, is the best characterized such 
circuit. Proinflammatory molecules, extracellularly released during infectious 
or sterile injury, are sensed by afferent vagal nerves that transmit this 
information to the nucleus of tractus solitarius in the brainstem. The afferent 
signals generate efferent action potentials that travel from the brainstem via 
efferent vagal nerves to the spleen and other organs. This culminates in T cell 

release of acetylcholine, which interacts with α7 nicotinic acetylcholine 

receptors on immunocompetent cells to inhibit proinflammatory cytokine 
release. These mobile anti-inflammatory T lymphocytes thus operate both 
inside and outside compartments innervated by the vagus system.  
Therapeutic proof-of-concept anti-inflammatory studies following surgical 
implantation of electrical vagus nerve stimulators were first conducted in 
rheumatoid arthritis and Crohn´s disease. Long term use of these devices was 
uneventful, while the initial surgical procedure caused adverse effects in 
some patients. The auricular branch of the vagus nerve reaches superficial 
parts in the concha and tragus in both ears, enabling transcutaneous 
electrical auricular vagus nerve stimulation (taVNS) as a safer therapeutic 
alternative. Invasive VNS and taVNS activate similar parts of the central 
nervous system indicated by functional imaging methods. Pilot taVNS studies 
in patients with inflammatory diseases have so far been conducted to treat 
rheumatoid arthritis, osteoarthritis, lupus, pediatric inflammatory bowel 
diseases, and pediatric nephrotic syndromes. 
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Introduction 

Acute inflammation at adequate intensity is a 
beneficial healing process, while chronic 
inflammation reflects adaptive failure. Unresolved 
or excessive inflammation can be deleterious and 
generate severe tissue injury and cause chronic 
organ malfunctions including metabolic syndrome, 
obesity, and type 2 diabetes1-3. Therapeutic effects 
provided by existing biological and pharmaceutical 
agents are insufficient for many patients with 
inflammatory diseases4. Furthermore, these 
treatments often come with high costs and risks of 
serious adverse side-effects including increased 
susceptibility to infections5, 6. Growth retardation 
caused by long-term systemic corticosteroid 
treatment is one of many side-effects afflicting 
young patients severely. There is thus an unmet 
clinical need for alternative therapies that can 
ameliorate inflammatory conditions, in particular 
pain and fatigue. Novel insights into two research 
fields bring important information that when 
combined offer encouraging strategies to 
counteract dysregulated inflammation. One recent 
breakthrough concerns the revelation of the ability 
of the nervous system to regulate inflammation and 
that these neuronal pathways can be successfully 
therapeutically targeted7-9. The other important 
discovery concerns innovations in bioelectronic 
technology empowering therapeutic management 
of the endogenous nervous control of the immune 
system10-14. The aim of this review is to outline 
mechanisms enabling neuronally-mediated 
regulation of inflammation that provide therapeutic 
pediatric opportunities. The focus is on 
transcutaneous auricular vagus nerve stimulation 
(taVNS), acetylcholine, and high mobility group box 
1 protein (HMGB1) biology. 

The purpose of taVNS is to treat dysregulated 
inflammation and pain non-invasively by applying 
electrical current to the cutaneous zone innervated 
by the auricular branch of the vagus nerve (ABVN) 
in the left auricle. 

 

 

 

 

 

The cholinergic anti-inflammatory pathway 
inhibits inflammation 

Immune functions, including the generation of 
inflammation, were until lately presumed to be 
independent of neuronal control. The nervous system 
is hardwired, while cells in the immune system are 
mobile or at least have the potential to move. These 
facts were for long interpreted to mean that the 
immune and the nervous systems operate 
independently of each other. However, results 
derived from preclinical and clinical studies during 
the last two decades have gradually demonstrated 
that the immune system, like all other organs, is 
under nervous control3, 15-18. The inflammatory reflex 
is a brain-integrated physiological mechanism 
based on afferent and efferent vagus nerve 
circuitry that detects and controls inflammation16. 
The vagus nerve-mediated inflammatory reflex with 
its efferent arm the cholinergic anti-inflammatory 
pathway is so far the most extensively studied 
example of an immunoregulatory neural circuit 
(Fig.1)3. The vagus nerve is a mixed nerve composed 
of 80% afferent and 20% efferent fibers. The 
efferent fibers originate in two brainstem nuclei, the 
dorsal motor nucleus and the nucleus ambiguus. The 
afferent arm of the inflammatory reflex that 
projects to the nucleus of the tractus solitarius (NTS) 
in the brainstem is mediated by sensory vagal fibers 
that monitor both extracellular proinflammatory 
endogenous and exogenous molecules (Fig. 1)19. 
This information is neuronally conveyed to activate 
an opposing motor response in efferent vagus 
nerves which thru acetylcholine release counteract 
inflammation via inhibited cytokine release and a 
reduced accumulation of inflammatory cells at sites 
with ongoing inflammation20. Recent studies 
demonstrate that afferent vagus nerve signaling 
from the NTS also reaches forebrain regions 
including hippocampus, cortex, and identified basal 
forebrain cholinergic nuclei21-23. This interaction 
results in M1 muscarinic acetylcholine receptor 
(M1mAChR)-dependent forebrain cholinergic 
signaling that down-regulates inflammation via 
vagus nerve-mediated signaling23. The 
inflammatory reflex can thus also be activated via 
brain mAChR-mediated mechanisms by centrally 
acting M1 mAChR agonists and acetylcholinesterase 
inhibitors like galantamine23, 24. 

https://esmed.org/MRA/mra/view/2783
https://esmed.org/MRA/mra
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Fig 1. The inflammatory reflex and how transcutaneous auricular vagus nerve stimulation may activate the 
pathway. Afferent vagus nerve fibers residing in the nodose ganglion are stimulated in the periphery by damage-
associated molecular pattern molecules (DAMPs), including cytokines, and pathogen-associated molecular pattern 
molecules (PAMPs). The signals are transmitted to the nucleus of tractus solitarius (NTS). Reciprocal connections between 
the NTS and the dorsal motor nucleus (DMN) of the vagus mediate communication with and activation of efferent vagus 
fibers (motor vagus) from the DMN. The signal is propagated to the celiac ganglia, where the splenic nerve originates. 
Norepinephrine (NE) released from the splenic nerve interacts with beta2-adrenergic receptors (beta2-AR) on certain 
splenic T lymphocytes and causes the release of acetylcholine (ACh) from T cells containing choline acetyltransferase (T-
ChAT cells). ACh interacts with a7-subunit-nicotinic acetylcholine receptors (a7nAChR) on macrophages and inhibits 
proinflammatory cytokine production and inflammation. Transcutaneous electrical stimulation of the auricular branch of 
the vagus nerve (ABVN) in the left ear also signals to the NTS and thus activates efferent vagus signals to the splenic T-
ChAT cells. Abbreviations not explained in the text: ACTH= adrenocorticotropic hormone; VNS=vagus nerve stimulation. 

 
Acetylcholine impedes inflammation via alpha 7 

subunit nicotinic acetylcholine receptors (α7nAChR) 

expressed on both professional immunocompetent 
cells and additional cell types25, 26. Suppression of 
NF-kB nuclear translocation is one mechanism 

activated by acetylcholine-α7nAChR signaling that 

leads to reduced proinflammatory cytokine 
synthesis27, 28, but additional means will be outlined 
further on in this review. Acetylcholine is released in 
all vagally innervated organs including the celiac 
ganglion where it activates the catecholaminergic 
splenic nerve to release norepinephrine in the spleen 
to stimulate a subset of splenic T lymphocytes 

capable of acetylcholine synthesis (Fig.1)29, 30. These 
activated T cells may then leave the spleen and 
function like mobile neurons to release acetylcholine 
that will down-regulate inflammation also in body 
compartments that lack vagal innervation. 

 

Acetylcholine inhibits neuronal HMGB1-induced 
inflammation  

Homeostasis depends on reflexive neural circuits 
that are counteractive. The cholinergic anti-
inflammatory pathway inhibits inflammation, while 
separate neural circuits in contrast promote 
inflammation by releasing molecules such as 

https://esmed.org/MRA/mra/view/2783
https://esmed.org/MRA/mra
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histamine and neuropeptides31. High mobility group 
box 1 protein (HMGB1) has recently been 
discovered by us as a proinflammatory molecule 
actively released by stimulated sensory neurons 
(nociceptors) in a retrograde manner 
(antidromically)32, 33. HMGB1 was originally 
discovered as a nuclear protein present in all cells 
to provide a structural chromatin function34. The 
protein was later established by us also to act as a 
potent proinflammatory molecule when actively 
released extracellularly from stimulated innate 
immunity cells or passively discharged from necrotic 
or pyroptotic cells as a damage-associated 
molecular pattern molecule (DAMP)35, 36. 
Extracellular HMGB1 induces proinflammatory 
cytokine production, dendritic cell maturation, 
neutrophil and monocyte recruitment via receptor 
systems including TLR4, RAGE, and CXCR437-39. 
Extensive preclinical studies of models of sterile 
injury as well as infections have established that 
HMGB1 plays an important role in the pathogenesis 
of inflammation since preclinical treatments with 
HMGB1 antagonists are very successful40-42. Recent 
studies of mice with neuronal-specific HMGB1 gene 
ablation demonstrated that the animal expressed 
much milder inflammation and much less pain in 

several experimental inflammatory models33. 
HMGB1 is actively released during nociceptor 
depolarization and plays a key etiologic role in the 
initiation of neuroinflammation and pain. 

It is thus of great clinical interest that acetylcholine 

via α7nAChR signaling operates as a potent 

HMGB1 antagonist capable of downregulating 
HMGB1-induced inflammation via several 

mechanisms. α7nAChR-mediated signaling 

suppresses HMGB1 release by inhibiting NF-kB 
nuclear translocation as well as by deacetylating 
nuclear HMGB1 (Fig.2)27, 43, 44. Nuclear HMGB1 
must be hyperacetylated to be exported from the 
nucleus to the cytosol as a first step required for 
active extracellular release45. Acetylcholine-

α7nAChR activation upregulates the intranuclear 

function of the histone deacetylase system NAD+- 
SIRT1 that enzymatically detaches acetyl groups 
from multiple lysine residues in nuclear HMGB1 and 
thus prevents HMGB1 from being translocated to 
the cytosol44. SIRT activity declines with aging and 
causes defects in nuclear and mitochondrial functions 
resulting in many age-associated pathologies46. 
Stimulating SIRT1 activity may thus serve mutiple 
beneficial purposes. 

  

                         
Fig 2. Acetylcholine inhibits cellular HMGB1 release via a7nAChR signaling. Acetylcholine-α7nAChR interaction 

inhibits the nuclear translocation of NF-kB and upregulates nuclear SIRT1 function. These combined events suppress 
extracellular HMGB1 release and subsequent induction of inflammation and pain. Nuclear HMGB1 needs to be 
hyperacetylated to leave the nucleus in order to be extracellularly released and SIRT1, also known as NAD-dependent 
deacetylase sirtuin-1, deacetylates HMGB1 and thus prevents the HMGB1 export. HMGB1 is also dependent on NF-kB 

assistance for this translocation and SIRT1 inhibits NF-κB activity by deacetylating the RelA/p65 subunit47. 

 

https://esmed.org/MRA/mra/view/2783
https://esmed.org/MRA/mra
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Furthermore, extracellular neuronally-derived 
HMGB1 preferentially induces inflammation and 
pain via the TLR4/MyD88/NF-kB-pathway33, 48, 49, 
a route that is specifically inhibited after 

acetylcholine-α7nAChR stimulation50. Finally, 

a7nAchR-signaling also inhibits inflammasome 
activation by preventing release of mitochondrial 
DNA51. Increased extracellular ATP levels enable 
acetylcholine to translocate into the cytoplasm of 

innate immunity cells to bind and activate α7nAChR 

abundantly expressed on the surface of 
mitochondria. Inhibited inflammasome activities 

reduce the release of HMGB1, IL-1α, IL-1β, and IL-

18, bringing potent anti-inflammatory consequences 
52. In a simplified interpretation of the neuronal 
control of the immune system it can be summarized 
that inflammation can be either enhanced or 
inhibited. Neuronally released HMGB1 activates 
inflammation and pain, while the neurotransmitter 
acetylcholine mediates the opposite effects. 
Furthermore, acetylcholine inhibits HMGB1 release. 

 

Clinical experiences from implanted electrical 
nerve stimulators 

Historically there is a wide clinical experience of 
implanted electric stimulators that began in 1958 
with surgically inserted pacemakers to regulate the 
electrical conduction system of the heart53, followed 
by the creation of vagus nerve stimulators to control 
drug-resistant epilepsy54 and treatment-resistant 
depression55. In 2011 vagus nerve stimulators 
started to be implanted in patients to activate the 
cholinergic anti-inflammatory pathway to treat 
inflammatory diseases including rheumatoid arthritis 
and Crohn´s disease10, 11, 56. VNS implantation 
requires a surgical procedure that positions the lead 
wire at the cervical portion of the trunk of the left 
vagus nerve while the pulse generator is inserted 
subcutaneously in a pocket created in the upper 
chest. Stimulating parameters regarding duration 
and timing are quite different in the treatment of 
epilepsy and depression versus inflammatory 
diseases57, 58. Epilepsy treatment typically uses a 

stimulation on-time of 30− 90 seconds alternating 
with off-time of five minutes continuously round the 
clock, while the stimulation time for treatment of 
inflammatory diseases is generally limited to 
minutes rather than hours every 24 hrs. The most 
common side effects are related to the surgical 
intervention. Laryngo-tracheal dysfunction, which is 
related to the stimulation of the inferior recurrent 
laryngeal nerve, occurs in approximately two thirds 

of cohorts treated for epilepsy and is usually 
transient58. No age-dependent differences between 
patients regarding side-effects have been 
reported. 

The anti-inflammatory and disease-alleviating 
efficacy of VNS has been demonstrated in many 
animal models, including endotoxemia, sepsis, 
arthritis, and inflammatory bowel disease. In 
addition to VNS, pharmacological cholinergic 
modalities including a7nAChR agonists and 
acetylcholinesterase inhibitors have been shown to 
suppress aberrant inflammation and alleviate 
disease severity in preclinical models of a 
substantial number of diseases3, 24, 59.  

Encouraging results were reported in 2016 from the 
initial study of adult patients with rheumatoid 
arthritis treated with an implantable VNS device11. 
The capacity for TNF synthesis was reduced by VNS, 
which is relevant since overproduction of TNF is part 
of the pathogenesis in chronic arthritis. Several, but 
not all, patients improved significantly despite that 
some of them had failed multiple biological 
disease-modifying antirheumatic agents prior to 
enrolment in the VNS study. When the device was 
turned off for two weeks in the middle of the 
treatment period, the disease got worse and 
improved again after restart of the pulse generator. 
VNS with an implanted miniaturised neurostimulator 
in another study likewise reduced signs and 
symptoms of rheumatoid arthritis in patients with 
multidrug-refractory disease60.  

An additional proof-of-concept study supporting the 
strategy of stimulating the cholinergic anti-
inflammatory pathway in a clinical setting has been 
accomplished in patients with Crohn´s disease61. 
After 12 months of treatment with VNS, 5 out of 9 
treated patients with moderate Crohn´s disease 
reached clinical remission and 6 patients were in 
endoscopic remission. C-reactive protein and fecal 
calprotectin decreased in 6 and 5 patients, 
respectively. Seven patients restored their vagal 
tone and decreased their digestive pain score. 
Substantial pain relief has been a prominent 
achievement also reported in VNS treatment of 
arthritis10, 11. 

 

Transcutaneous auricular VNS (taVNS) for 
inflammation therapy 

A promising approach to circumvent the caveats of 
pharmacological or invasive stimulation in humans is 
taVNS, applied mainly to the cymba conchae or, in 
some studies to the tragus of the left external ear. 

https://esmed.org/MRA/mra/view/2783
https://esmed.org/MRA/mra
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An increasing number of studies have shown that 
several therapeutic effects induced by invasive 
VNS, can be reproduced by noninvasive auricular-
nerve stimulation. A sensory branch of the vagus 

nerve innervates the cymba conchae exclusively, 
and parts of the antihelix, the cava conchae, and 
the tragus of human auricles (Fig.3)13, 62. 

 

 

                                
Fig 3. Auricular anatomy and remarks on the distribution of the auricular branch of the vagus nerve (ABVN). The 
nerve fibers in the auricle, including the ABVN, are located in the dermis and the perichondrium in the 1-2 mm space 
between the auricular cartilage and the skin63. The cymba conchae innervation is to 100% dominated by the ABVN. 
Additional auricular areas partly innervated by ABVN include the antihelix (73%), cavum conchae (45%), tragus (45%), 
crus of helix (20%), and crura of antihelix (9%)62. These numbers are based on studies of auricular nerve distribution in 
seven cadavers.  

 
The auricular branch of the vagus nerve projects 
sensory input to the brain stem nucleus tractus 
solitarius (NTS) which receives approximately 95% 
of all vagal afferents64, 65. The NTS projects to 
numerous areas in forebrain, amygdala, 
hippocampal, limbic, and brainstem structures 
including the nucleus ambiguus, the locus coeruleus, 
and the dorsal motor nucleus, which promotes motor 
outflow of the vagus nerve66. Functional magnetic 
resonance imaging (fMRI) studies in humans confirm 
that the central projections of the auricular branch 
of the vagus nerve are consistent with the vagal 
projections activated after invasive VNS and can be 
accessed non-invasively via the external ear13, 67. 

 

Lessons learnt from taVNS treatment in animal 
disease models 

The efficacy of taVNS treatment to inhibit 
inflammation was first demonstrated in endotoxemic 
rats68. This therapeutic intervention suppressed LPS-
induced proinflammatory cytokine production via 
a7nAChR-mediated activation of the cholinergic 
anti-inflammatory pathway. The results were later 
recapitulated in a mouse model of endotoxemia, 

where it was clearly demonstrated that selecting 
optimal pulse frequency parameters for the taVNS 
is crucial to optimize the beneficial therapeutic 
results69. Furthermore, VNS has also been 
demonstrated to attenuate organ dysfunction in 
porcine progressive sepsis70. The importance of 
acetylcholine-releasing T lymphocytes for the 
function of the inflammatory reflex was further 
highlighted in a separate study of VNS-treated 
endotoxemic nude mice. Nude mice, that are devoid 
of functional T cells, did not reduce LPS-induced 
proinflammatory cytokine release after VNS 
intervention29. Furthermore, treatment with taVNS 
has demonstrated beneficial inhibitory results also in 
disease models of non-infectious conditions such as 
depressive-like behavior in rats71, 72, diabetic 
neuropathy73, seizures74, several anti-diabetic 
effects75, and in cerebral ischemia–reperfusion 
injury76. 

The somewhat remarkable result that VNS 
performed for only a few minutes once a day 
generates a significant inhibition of 
proinflammatory functions in macrophages for more 
than 24 hrs was addressed by Tarnawski et al using 

https://esmed.org/MRA/mra/view/2783
https://esmed.org/MRA/mra
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a7nAChR-specific agonists or VNS in in vitro 
experiments and in in vivo studies of animal models 
of inflammation77. Their results indicate that action 
potentials in the inflammatory reflex trigger an 
inhibitory change in macrophage behavior that 
depends on a7nAChR, adenyl cyclase and 
subsequent phosphorylation of the cAMP response 
element binding protein (CREB), a transcription 
factor involved in memory formation. This pathway 
has been demonstrated to inhibit NF-kB-induced 
transcription of proinflammatory cytokines78. 
Memory is thus a feature of both adaptive and 
innate immunity. 

 

Clinical results from taVNS treatment studies in 
inflammatory diseases 

The auricular vagus nerve stimulation performed in 
at home environment is generally accomplished 
using a small battery-powered hand-held 
stimulating device which generates pulsed electrical 
currents which are delivered via skin electrodes in 
the auricle. Users can adjust the pulse amplitude 

(mA), frequency (Hz), width or duration (μs) and 

pattern of the currents. The initial, and so far, most 
extensive experience from clinical taVNS-based 
therapy comes from treatment of patients with 
epilepsy79-81 and depression82, 83. The original 
reason for starting taVNS treatment in depression 
was that many patients with epilepsy experienced 
mood improvement during taVNS therapy. Since the 
mechanisms for beneficial therapeutic taVNS results 
seen in many patients with these diseases are not 
fully elucidated, this clinical area is not further 
covered in the present review focusing on 
universally accepted signs and symptoms of 
inflammation. One important piece of information 
from the studies in epilepsy and depression is that 
the treatment is safe. Transcutaneous auricular VNS 
treatment for drug-resistant epilepsy carried out in 
10 separate trials with 350 patients has resulted in 
only minor adverse effects with skin irritation 
related to electrode placement in the ear. 

The pioneering taVNS intervention, reported in 
2019, to treat a systemic inflammatory disease was 
accomplished with a vibrotactile device stimulating 
the left cymba conchae of patients with rheumatoid 
arthritis84. The adherence of the skin to the 
perichondrium in the concha region makes it 
especially susceptible to the cartilage movements 
including vibrations and therefore mechanical forces 
moving the cartilage may also stimulate the 
auricular nerves63. The vibration treatment 

attenuated systemic inflammatory signs and 
symptoms including pain in the patients. 
Furthermore, the vibrotactile stimulation also 

inhibited peripheral blood production of TNF, IL-1β, 

and IL-6 in healthy subjects. A 12-week open-label, 
proof-of-concept pilot study of electrical taVNS 
treatment in moderately to severely active 
rheumatoid arthritis generated significant reductions 
in the disease severity85. Out of 30 RA patients, 11 
attained low disease activity and 7 achieved 
remission. 15 of the patients continued the treatment 
with a daily stimulation time up to 30 min for 
another 9 months with sustained or further improved 
disease course. No serious adverse events were 
reported during the study extension phase86. 
Another taVNS pilot study performed for 4 weeks 
in patients with erosive hand osteoarthritis 
demonstrated considerable analgesic outcomes and 
objective effects on joint inflammation87. The number 
of swollen joints decreased in 15 of the studied 18 
patients. A recent, randomised, double-blind, sham-
controlled pilot taVNS trial in patients with active 
systemic lupus erythematosus (SLE) resulted in 
significantly reduced pain, fatigue, and 
inflammatory joint scores88. This is a very 
encouraging outcome since both pain and fatigue 
are common symptoms severely reducing the quality 
of life in active SLE. 

The pediatric experience of taVNS treatment in 
inflammatory diseases is so far restricted to two 
studies. Transcutaneous auricular VNS performed 
for 5 min twice daily at home during 4 months in 22 
teenage patients with mild/moderate inflammatory 
bowel disease (12 patients with ulcerative colitis 
and 10 with Crohn´s disease) reduced fecal 
calprotectin and improved symptoms significantly89. 
Eleven of the 17 patients with pathological baseline 
fecal calprotectin scores experienced a reduction of 
more than 50% by week 16. There were no safety 
concerns. An open-label, pilot study of taVNS for 
five minutes daily for 26 weeks in children with 
nephrotic syndromes also demonstrated promising 
results90. Three out of 3 children with frequently 
relapsing nephrotic syndrome remained relapse-
free during the study period. Two patients continued 
the treatment and remained in remission for 15 and 
21 months, respectively. Three out of 4 children with 
steroid-resistant nephrotic syndrome demonstrated 
moderately reduced proteinuria. A clinical trial 
investigating the effects of taVNS in juvenile 
inflammatory arthritis is ongoing (ClinicalTrials.gov 
Identifier: NCT01924780). 

 

https://esmed.org/MRA/mra/view/2783
https://esmed.org/MRA/mra
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Presently approved indications for taVNS 
treatment and description of taVNS devices 

VNS via a surgically implanted device is currently 
FDA-approved for the treatment of epilepsy, 
refractory depression, and chronic obesity. Clinical 
studies are presently ongoing to evaluate the 
effects provided by implanted VNS devices in 
multiple chronic inflammatory diseases. The 
GammaCore® transcutaneous cervical VNS device 
has been approved by the FDA for acute treatment 
of migraine and acute or prophylactic treatment of 
cluster headaches. 

There is presently only a very restricted number of 
companies distributing devices for taVNS studies 
(reviewed in 91). One device for transcutaneous 
auricular VNS named NEMOS (distributed by tVNS 
Technologies GmbH, Germany) has been granted 
the CE mark for the treatment of resistant epilepsy. 
Other taVNS devices, NET-1000 and NET-2000, 
developed by Auri-Stim, have been approved by 
the FDA for the treatment of depression, anxiety 
and insomnia. A typical taVNS device is comprised 
of two main components: the stimulation unit, which 
houses the battery and pulse generator 
(approximately the size of a mobile phone), and a 
dedicated pair of ear electrodes, which are 
connected to the stimulator via a cable. 

 

Does VNS- or taVNS-based therapy offer 
exceptional prospects for pain relief in chronic 
inflammation? 

I am particularly impressed by observations I have 
made while meeting patients with rheumatoid 
arthritis and Crohn´s disease regarding the 
beneficial effects seen on pain alleviation mediated 
by vagus stimulation. These soft data are supported 
by published results witnessed during VNS- as well 
as taVNS-therapy in chronic inflammation11, 88. 
When Koopman et al treated rheumatoid arthritis 
patients (n=17) with an implanted vagus nerve 
stimulator the pain score declined after 6 weeks of 
treatment from a mean value of 71 to 34 mm 
measured on a visual analogue scale (VAS) ranging 
from 0-100 mm with 100 mm representing maximal 

pain (Table S2)11. At the same time mean serum C-
reactive protein levels, reflecting inflammation, 
declined only quite modestly from 17 to 13 mg/L. 
Likewise, in a sham-controlled taVNS treatment of 
active SLE (n=18 patients) Aranow and colleagues 
observed correspondingly favorable outcome 
regarding pain relief 88. Acetylcholine discharged 
after vagus stimulation inhibiting nociceptor-
released HMGB1 might conceivably mediate the 
analgesic effects.  

 

Concluding remarks 

The aim to harness the body´s own protective neural 
circuits to treat disease is a very appealing 
strategy. Controlled clinical studies are what is 
urgently required. There is a need to design and 
produce commercially available devices enabling 
controlled electrical auricular stimulation since these 
are presently a scarce commodity. Other important 
tasks will be to define the most favorable 
anatomical positions for the ear electrodes and to 
optimize the specific stimulation parameters for 
treatment regarding pulse frequency, pulse width, 
waveform, amplitude, timing, and duration. The 
success of this work will depend on well-organized, 
multidisciplinary, collaborative research efforts. 
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