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ABSTRACT  

 
 

Our objective in this review is to summarize evidence of the 
strong cardiac rhythmicity-enhancing power of melatonin in the 
Drosophila melanogaster model system and discuss the implications of 
these findings in the context of fundamental cardiac pacemaker 
function and potential clinical applications. Drosophila has proven 
itself as an exceptional research organism given the far-reaching 
genetic and molecular tools it offers. We consider details of the fly's 
myogenic, ion-channel-based pacemaker and summarize aspects of 
its neurohomonal control. Melatonin, in the context of cardiology, has 
predominately been associated with its antioxidant properties in the 
prevention of reperfusion damage after infarct, but we have strongly 
confirmed the few reports of its effect strengthening rhythmicity. We 
discuss our clear results showing that melatonin is capable of 
converting normal noisy heartbeat to an extremely regular oscillator. 
It rescues the very uneven beat of the hearts of flies bearing a serious 
mutation in a gene encoding one of its core pacemaker ion channels. 
Possible mechanisms for these effects are considered.  
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Introduction 
 
The common fruit fly, Drosophila 

melanogaster, was instrumental in delineating the 
fundamental science of genetics1. It has contributed 
to the understanding of a wide array of processes 
ranging from development to circadian rhythms1. 
Notably, with regard to the latter example, in 2017, 
the Nobel Prize for physiology or medicine was 
awarded to scientists Jeffrey Hall, Michael Rosbash, 
and Michael Young for their fly work on 24-h 
rhythmicity1. The full range of genetic and molecular 
manipulation tools has been key, and the fly genome 
has been fully sequenced2. Of the 1682 human 
disease genes currently known, 74% have homologs 
in Drosophila and nearly a third of these genes 
(~500) are as highly conserved as genes known to 
be functionally equivalent between flies and 
humans3. These Drosophila genes include homologs of 
genes causing a broad spectrum of human diseases 
ranging from neurological disorders and cancer to 
developmental defects, metabolic/storage 
disorders, cardiovascular disease, as well as genes 
required for function of the visual, auditory, and 
immune system4. 

Because of the simplicity in its structure and 
availability of these powerful tools, the Drosophila 
heart has emerged as a model system for unraveling 
the genetic and molecular mechanisms of cardiac 
development, function, and aging5,6. Findings in the 
fly are directly applicable to the human heart as a 
growing number of genes have been identified with 
homologous function in both organisms3.  Although 
heart structure in Drosophila is very different from 
that of vertebrates, many of the basic elements for 
cardiac specification and differentiation are 
conserved3. The findings even extend to helping to 
unravel the relationship between diet and cardiac 
disease, as it has even been found that a high-fat 
diet can lead to obesity and cardiac dysfunction in 
the fly, and the pathway involved has been 
unraveled7,8. 

  
The Fly Heart and its Pacemaker 

Hearts existed in animals before the split 
between insects and mammals. This is borne out by 
developmental evidence9 and despite radically 
different adult morphology, the homologies in 
physiology remain compelling10. The Drosophila 
heart, or dorsal vessel, is located medially and 
dorsally in the hemocoel and transports hemolymph 
through the larval and adult body cavity11,12,13. The 
anterior third of the dorsal vessel forms the aorta. 

The posterior segment, or heart proper, contains 
three pairs of openings called ostia to admit 
hemolymph12,13,14.  

The first systematic investigation of heart 
function in Drosophila began with Rizki in 197812. He 
reported that heartbeat is triphasic namely 
contraction (systole), relaxation (diastole), and a 
pause (diastasis). Rate is affected by temperature, 
and these result from alteration in the duration of 
diastasis12. Pacemakers of insects were once 
considered to be neurogenic15,16, but this has been 
shown not to be the case16. The most conclusive 
evidence of the myogenicity of the Drosophila heart 
comes from studies with tetrodotoxin, which interdicts 
sodium-dependent ion channel currents and has no 
effect on the heart17,18. Add to this the report that a 
temperature-sensitive mutation that encodes an 
important sodium channel, paralytictemperature sensitive 
(parats) also shows no effect on the heart at restrictive 
temperatures18.  

Work on the fly heart languished until a 
1992 report on the effects of Deuterium Oxide on 
heart rate and function19. After this, efforts began to 
elucidate the mechanisms of fly heart function 
beginning with the hypothesis that the pacemaker is 
myogenic and consists of a population of interacting 
ion channels and a combination of genetic and 
pharmacological approaches was the key18,20. As 
part of this general approach, it was taken as a 
given that across phyla, true pacemaker cells 1) must 
have spontaneous activity; 2) they must lack an 
inward rectifying K+ current; 3) must be insensitive to 
tetrodotoxin; and 4) must be sensitive to Ca2+ 
channel blockers21. The pacemaker must be 
connected to the myocardium with by an 
excitation/contraction (EC) coupling mechanism 
which elicits power contraction22. 

An essential part of fly heart research 
required the development of appropriate 
measurement and analytic techniques. In our lab, it 
was decided to concentrate on the early pupa, just 
as the transition from third stage larvae to the pupa 
begins. The animal is transparent at this point and 
the heart in the intact animal is easily isolated in the 
viewer of a microscope, eliminating the complicating 
movements of other organs18,19. The pupa becomes 
immobile at this point as well. Optical recording by 
phototransistor with illumination provided by a DC 
power source is straightforward and noninvasive. 
Individuals tested in this manner can be raised to 
adulthood and bred after phenotypic establishment 
even after injection of pharmacological agents, 
greatly enhancing genetic and molecular 
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approaches. Analytical techniques for this system 
were needed and we adapted several time series 
analyses to the task (review23). In our work a 30 s 
sample of the heartbeat signal was chosen as the 
standard. Simple plotting of the time series is done 
to visualize the beat and the segments are subjected 
to further numerical analysis. Next, autocorrelation is 
applied24 and to augment this, we measure the 
height of the third peak (with peak one at t=0) as 
the "Rhythmicity Index" (RI) as a useful statistic23,24,25. 
In addition, we use our adaptation of Maximum 
Entropy Spectral Analysis23,26,27 to provide spectra 
of the heart's rhythm. Software was developed to 
measure Inter Beat Intervals (IBI) based on successive 
peaks in optical density28. These techniques can be 
seen in the figures provided below. Injections of 
pharmacological agents were done throughout our 
work with a World Precision Instruments (WPI, 
Sarasota Florida) nanoliter injection system in 46 nL 
boluses20. 

Employing pharmacology, the L-Type Ca2+ 

channel blockers verapamil, and diltiazem29 were 
shown to slow heart rate17.  Tetraethylammonium 
(TEA) is a broad spectrum K+ channel blocker30 and 
also slows the heart17,20, hence establishing K+ 
channels as potential pacemaker components, but 
this only reveals the general picture, as it inhibits all 
known potassium currents30. Further genetic work was 
needed and initiated; three mutations were reported 
early on to slow heart rate and produce cardiac 
arrhythmia18,20: no action potential temperature sensitive 
(napts )31 is an allele of the gene maleless (mle)32. This 
gene interacts with at least one gene, parats,33 in an 
unknown manner34,35. Napts causes a reduction in 
heart rate and prevents the heart from reacting 
normally to changes in temperature18. Dopa 
decarboxylase temperature sensitive (Ddcts) blocks the 
synthesis of a number of monoamine 
neurotransmitters36,37. The final one was amnesiac 
(amn) a learning and memory mutant38,39. None of 
these were unequivocally revealing with regard to 
the structure of the underlying ion channel oscillator.  

A precisely directed genetic screen 
subsequently yielded three K+ channels as candidate 
pacemaker components20. The most effective 
mutation in this category affecting the heart is 
slowppoke (slo)40 which encodes the pore-forming 
subunit of the channel41. This mutation, when 
homozygous, almost eliminates heartbeat, and 
eliminates temperatures sensitivity20.  There are two 
known Ca++ activated K+ currents (CaKs), a fast one 
(ICF) and a slow one (ICS)42 and slo interferes with 
ICF40,41. In vertebrates, CaKs have been implicated in 

cardiac repolarization21. Injection of charybdotoxin 
(CTX) was shown to yield results in the fly similar to 
those produced by slo20.  slo plays a central role in 
the melatonin work summarized below. 

In summary, our lab has characterized four 
genes encoding ion channels as being necessary for 
normal heartbeat through analysis of mutant 
heartbeat and pharmacology20,43. We briefly 
summarize these and describe the resulting model 
system. Three of the channels allow the passage of 
K+ and the other carries a Ca2+ current43. Johnson et 
al.20,44 proposed a model for the Drosophila cardiac 
pacemaker based on these genetic and 
pharmacological findings: A delayed-rectifier 

potassium channel current (IKr) containing an α subunit 

encoded by ether à go-go (eag)45,46,47,48 carries a 
hyperpolarizing leak comparable to the known 
mammalian "funny current" (If)49 . The K+ efflux has 
the effect of depolarizing sino-atrial cells so that a 

voltage-gated calcium channel, the α1 subunit of 

which we believe to be encoded by cacophony 
(cac)50,51,52, opens to allow Ca2+ to enter the cell and 

is central to the cycle53.  -conotoxin (-CgTx) 
MVIIC, an antagonist of N- and P/Q-type calcium 
channels blocks this current54,55, and it is effective in 
disrupting Drosophila heartbeat56. This Ca2+ influx 
opens the CAK encoded by slo. It is blocked by 
CTX57. A fast voltage-gated potassium channel (KV, 
A-type) encoded by Shaker (Sh)58,59 and blocked by 
4-aminopyridine (4-AP)47,57,60 also opens. This efflux 
of K+ repolarizes the membrane21,60,61,62,63,64. The 
eag channel also activated by the Ca2+ 
depolarization, but in a delayed fashion and The K+ 
current, If, begins hyperpolarization and the cycle 
restarts. This model has been tested by mathematical 
modeling by Crook10 which shows the components 
hypothesized are capable of generating sustained 
oscillations. 

Understanding how the pacemaker is 
controlled by the organism is essential. Work on the 
synthesis, receptors and actions of small molecule 
transmitters in the fly is ongoing. For a few salient 
examples, pupal heart rate in the fly has been shown 
to be sensitive to serotonin, dopamine octopamine, 
norepinephrine and acetylcholine (in that order), 
which increase heart rate65.  The gene DOPA 
Decarboxylasetemperture sensitive (DDCts)36 is responsible 
for encoding a gene essential for production of 
dopamine, serotonin and likely norepinphrine63 
reduces heart rate44.  Drosophila peptides 
Dromyosuppressin, DPKQDFRMRFamde, and 
PDNFMRFamide are cardio inhibitory66. In this 
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context, it is notable that transmitter levels must 
themselves be regulated and this would be under the 
control of endocytosis67. We found that the mutations 
in the gene shibire (shi), shits and shits2 68 which 
encodes dynamin69,70, essential for endocytosis71 and 
which result in a temperature-dependant paralysis68 
also results in cardiac dysfunction66.  Full coverage 
of the wide range of cellular mechanisms is well 
beyond the range of this paper, however the most 
relevant areas relevant to the action of melatonin 
will be covered in detail below. An in-depth review 
is available in Bodmer et al.10.  

 
Melatonin 
 The relatively simple molecule melatonin was 
extracted from pineal glands in 195872. This 
hormone lightens the skin color of tadpoles, frogs, 
toads, and fish73,74. Melatonin exhibits a range of 
biological activities across species from bacteria to 
mammals75. Melatonin effects in vertebrates range 
across regulating circadian rhythms, acting as a 
neuromodulator, a hormone, a cytokine and a 
biological response modifier76,77. It also affects 
brain, immune, gastrointestinal, cardiovascular, 
renal, bone and endocrine functions, and acts as an 
oncostatic and anti-aging molecule78,79,80,81. Some of 
these activities are receptor-mediated, including via 
melatonin membrane receptors and nuclear 
receptors83,84,85,86,87. Melatonin may also act in a 
receptor-independent fashion88,89 including, critical 
to cardiology, interactions with reactive oxygen 
species (ROS) and those mediated by its bioactive 
metabolites90,91,92,93,94,95.  
 Melatonin is an indolamine synthesized from the 
amino acid L-Tryptophan and serotonin is a 
precursor96. Arylalkylamine N-acetyltransferases 
(AANATs) enzymes catalyze the rate limiting step in 
melatonin synthesis in the pineal gland in 
vertebrates96. More specifically, conversion of 
serotonin (5-hydroxytryptomine; 5-HT) to N-
acetylserotonin, a precursor of melatonin, is 
catalyzed by serotonin N-acetyltransferase 
(AANAT) in a reaction requiring acetyl coenzyme A 
(AcCoA)96. Two different AANATs (AANAT1 and 
AANAT2) have been identified and characterized in 
Drosophila melanogaster97,98,99. Hydroxy indole 
orthomethyl transferase, (HIOMT), which is needed 
for O-methylating N-acetylserotonin in the final step 
of the pathway, has not yet been discovered in 
Drosophila. It has been argued that melatonin is 
totally absent in the fly100. 

Melatonin is a powerful antioxidant101 and 
is commonly used to prevent reperfusion injury 

occurring when cardiac tissue, deprived of oxygen 
during infarction, is re-oxygenated; this is the actual 
cause of much of the damage associated with 
infarcts102. Another far lesser-known effect of 
melatonin is to lessen the arrhythmicity associated 
with infarcts, but it has been reported102,103,104,105. 
This is a central finding in the context of the fly work 
summarized here. As part of a general screening for 
cardioactive agents, we tested melatonin for effects 
on fly heart function28. The remainder of this paper 
will consider the results of this work and put it in 
general context. The reader is referred to the 
original paper for full details of materials, methods, 
tabulated and graphical results, and statistical 
analyses28.  

We addressed five issues in this work28: 1) 
Does melatonin have any effects on cardiac function 
in Drosophila, and if so, what are they? 2) Having 
found a profound effect on rhythmicity, is that effect 
related in any way to any change in heart rate? 3) 
Is the effect on rhythmicity related in any way to the 
antioxidant properties of the hormone? 4) Are the 
effects mediated by a receptor, and if so, what could 
that receptor be? 5) Can melatonin rescue 
rhythmicity in flies bearing mutations that produce 
core defects in the pacemaker system? 6) What are 
possible mechanisms for the change in rhythmicity? 

The undisturbed heartbeat of Wild-Type 
Drosophila is not a highly regular noise-free 
oscillation as has been previously shown18,19. Fig. 1a 
(reprinted with permission from Springer) is fairly 
typical of results we get in our pupal preparations 
and illustrates the moderate irregularity in beating. 
In the experiment depicted here, the heart was 
recorded optically, as described above, for 10 min 
at 25° C, then injected with 1 mM melatonin and 
recorded for a second 10-min interval.  30-s 
segments taken at the midpoint of these recordings 
were used in analysis. One such 30-s segment of a 
pre-injection recording is shown. Following through 
the suite of analyses to see normal wild-type 
heartbeat, Fig 1c shows an autocorrelation (see 
above) taken from the 30 s of data shown, from 
which we obtain our RI statistic described above, 
roughly 0.3 in this instance. Fig 1e displays the MESA 
spectrum, as described above, from the same 30s 
segment. There are multiple peaks, corresponding 
with the fairly irregular autocorrelation function. This 
is a result of the variation in the IBI shown in Fig 1g 
for the full 600s and again in Fig. 1i for the 30s that 
were analyzed as described, showing the 
irregularities in higher resolution. 
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Figure 1. a) Raw data optical recording: a 30-s segment starting at the midpoint of the raw data before 
melatonin injection; b) Raw data optical recording: a 30-s segment starting at the midpoint of the raw data 
after melatonin injection; c) Autocorrelation used to assess regularity of heart rhythmn before melatonin 
injection: d) Autocorrelation used to assess regularity of heart rhythmn after melatonin injection; e) Spectral 
analysis (MESA) for heart rate (frequency) of these segments starting at the midpoint before melatonin injection 
and after f); g)  Interbeat Interval (IBI) analysis of entire 10 minute recording before melatonin injection and 
after, h); IBI analysis of entire 10 minute recording after melatonin injection; i) IBI analysis at higher 
magnification; 30-s segment starting at the midpoint before melatonin injection; j) IBI analysis at higher 
magnification, a 30-s segment starting at the midpoint after melatonin injection.  
 

This amount of irregularity, found in all wild 
type animals, must be considered normal. One must 
presume that this is considered optimum and 
necessary as it is a result of natural selection. Human 
hearts also show this fundamental mildly chaotic 
beat, and extreme regularity is seen as a sign of 
pathology106. 

The right hand column of figures depicts the 
full suite of analyses for the same fly after injection 
of 1mM melatonin, as described above. Again, 
recording went on for 10 m and 30 s segments 
starting at the midpoint were used for analyses. The 
changes are unequivocal and striking. Simple 
inspection of Fig. 1b shows a change from a fairly 
noisy, moderately irregular signal to extreme 
regularity. This is borne out by the extraordinary 
change in the autocorrelogram in Fig. 1d. The MESA 
plot in Fig. 1f is similarly changed to what appears 
to be a line spectrum. The highly irregular plot of IBI 
in Fig. 1g shows the profound change when the 
melatonin is injected at the midpoint in Fig. 1h. IBI for 
the 30s segments that were used on the other 
analyses are depicted in high resolution in Figs. 1i 
(before) and 1j (after) injection. It can be concluded 
that melatonin increased cardiac rhythmicity 
unequivocally. The original paper tabulates and 
shows statistics to bear this out. 

One possible explanation for these results 
might be that heart rate is increased by melatonin. 
Just speeding up an oscillator could simply explain 
any apparent subjective change in regularity. 
Serotonin is known to accelerate FR in Drosophila44, 
so we used this reagent to test the hypothesis. 
Injection of serotonin predictably sped up the hearts 
in all our preparations, but RI was unaffected. 
Melatonin, conversely, did not speed up the heart 
and actually reduced FR slightly while substantially 
increasing RI28. 

Yet another hypothesis needing to be tested 
makes the assumption that the strong antioxidant 
effect of melatonin might play some role. To assess 
this, we tested ascorbic acid, also a powerful 

antioxidant101 for any action on RI and found none28.  
There has been other work on ROS effects on heart 
function in the fly. One line of work considered the 
possibility that ROS may act in a paracrine manner 
to stabilize the pacemaker in cardiomyocytes107. It 
was shown that ROS are exceptionally low in normal 
fly cardiomyocytes, but are found in moderate 
concentrations in the paracardial cells107. By various 
manipulations, these concentrations were altered, 
and when ROS were reduced, the effect was to 
lowering cardiac rhythmicity, arguably via a 
paracrine pathway107. The fact that the universal 
effect of melatonin is to increase rhythmicity 
substantially in our hands, this is further evidence that 
alterations of ROS are not the mode of operation of 
melatonin.  

There is a strong likelihood that the effect of 
melatonin on heart pacemaking is mediated via a 
receptor. To evaluate this possibility, we tested the 
effects of luzindole which is a known antagonist for 
MT1 and MT2 melatonin receptors in humans84. In this 
protocol, we employed a double injection technique 
using receptor agonists and antagonists. The time 
frame was 10 minutes of initial recording, followed 
by a second ten minutes of recording after injection 
of both agents just as before. To validate the 
technique, we also ran tests with serotonin, known to 
accelerate heart rate44 co-injected with a known 
serotonin antagonist, ketanserin65,108. In addition to 
melatonin, we also tested 2-[125I] iodomelatonin, 
which is a selective, high-affinity ligand commonly 
employed in characterizing melatonin receptor 
sites109.  

Injection of luzindole alone resulted in a 
significant drop in RI in CS and in other mutants 
tested in the genetic part of our approach; FR 
dropped slightly, but significantly in CS, but not in 
the other mutants28. This, by itself, argues for the 
existence of melatonin in the fly, or at least some 
similar cross-reacting compound. Luzindole pre-
injection resulted in a total block of melatonin action 
in CS wild-type flies, with an actual significant drop 
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in RI. Injection of the melatonin agonist 2-[125I] 
iodomelatonin showed an RI increase of 53% 28.  

Given the clear result that there is the 
involvement of a receptor-mediated process in the 
fly, the next question concerns the identity of that 
receptor. This was done via an RNAi knockout 
protocol110. We employed orphan receptor genes to 
do this28. This required a heart-specific driver, 
GMH5-Gal4, a fragment from the tinman gene111,112 
cloned into the P{GaWB} vector upstream of the 
Gal4 sequences, and multiple copies of the UAS-
Gal4 elements drove strong expression of the 
orphan receptors at the stage of our test 
animals28,113. We tested 5 orphans with particular 
interest in CG 4313, which has a close homology with 
known human MT receptors114. Indeed, we found that 
RNAi blockage of this receptor gene completely 
eliminated the effect of melatonin on RI, and a BLAST 
search (NCBI 2016) comparing CG4313 to the 
human genome picked out human melatonin receptor 
MT 1A with high significance. (See28 for further 
details and discussion of molecular and genetic 
details). It is worth considering that the 
cardioprotective role of melatonin in humans may 
actually be receptor-mediated. In the rat, 
cyclosporine-A-induced cardiotoxicity is reduced by 

melatonin and this protection is blocked by 
luzindole115. Also in the rat model, where melatonin 
is known to be protective against myocardial 
ischemia, luzindole blocks melatonin protection116,117. 
Luzindole also blocks melatonin's role in reducing 
blood pressure by binding to ML1 receptors in the 
anterior hypothalamic area118. 

Given the considerable power of studying 
mutants in fly work, we used this tool extensively in 
this program. Of particular interest was the 
possibility that melatonin can rescue wild-type 
rhythmicity in flies bearing mutations that reduce it in 
the heart. For full coverage, please see28. In covering 
the work leading to our current understanding of the 
structure of the fly pacemaker, concentrating on 
alterations in the core ion channels in the plasma 
membrane, discussed above, the mutation slo is the 
most disruptive20. Many flies bearing this mutation 
often have little discernable heartbeat at all20. 
Figure 2 (reprinted with permission from Springer) 
depicts the results of melatonin injection on the raw 
heartbeat signal in parallel with the wild-type results 
shown in Fig. 1a and b. Analysis shows that wild-type 
heart function is not only rescued, but the above 
normal levels of rhythmicity seen in wild-type are 
equaled28.  

 
 a) 
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b) 

 
Fig. 2 Heartbeat of a pupa bearing the heart ion channel mutation slowpoke (slo) before (a) and after (b) 

injection with 1000μM melatonin. (Reprinted with permission from Springer). 

 
The final matter to be considered is the 

mechanism by which melatonin acts to produce the 
observed results. Evidence presented above 
implicates a receptor mediated process. But the 
nature of what exactly results from this trigger is not 
clear.  

Among the results summarized above, the 
most difficult to incorporate into any hypothesis is 
how is it possible for a heart pacemaker that has a 
core component of its physical mechanism damaged 
by mutation to beat normally when treated with a 
pharmaceutical agent. This is clearly the case with 
flies bearing the slo mutation. A second observation 
that must be dealt with is the extraordinary rapidity 
of the change to a much greater than normal 
regularity, both in mutant animals and wild-type. 
Perusal of Fig. 1h, depicting IBI, shows that the 
switchover occurs seemingly from one beat to the 
next. This is typical of what we recorded, and 
subjectively it looks as though some sort of switch is 
being thrown. 

To lay the groundwork for this discussion, it 
is necessary to consider the constitutive irregularity 
of normal, wild-type heartbeat. As has been noted, 
insect hearts are not alone in this, as mammalian 
hearts are seen to have an irregular beat106. The 
nature of this has been under considerable study119. 
Of particular note is that certain cardiac 
pathologies, including congestive heart failure, 
display more regular beating106. Theorists have 
argued from two essential assumptions. First, that the 
normal irregularity is a result of 1/f "noise" in a 
determinate system; the other is that this is a result of 
the cardiac oscillator being fundamentally 
chaotic119,120. It is far beyond the scope of this paper 
to discuss this in any detail, but it is essential to bring 
it up in the light of the remarkable results we 
obtained with melatonin to emphasize that "normal 
heartbeat" is anything but regular. In perusing Fig 1, 
it is essential to reemphasize that the signal seen 
after melatonin injection is being produced by the 
same heart, and that the change takes place literally 
over the time scale of a single beat. Given the 
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considerable evidence we uncovered that this is 
receptor mediated, it is difficult not to conclude that 
some element in the oscillating system is responsible 
for introducing either the noise, or is responsible for 
chaos, and that this element is altered through the 
action of melatonin. Yet the rate remains unchanged, 
hence is difficult to think one of the core ion channel 
components of the oscillator is responsible. The results 
here can potentially shed light on the question of 
chaos vs. noise.  

With this last question firmly in mind, the next 
concern is how it is possible to explain the results 
shown in Fig. 2 for a fly bearing the slo mutation. As 
noted, we have evidence of the Ca2+ activated K+ 
channel it encodes being one such essential 
component of the pacemaker10,20,. These flies show 
noise/chaos-free oscillatory behavior identical to 
wild-type under the influence of melatonin. The 
analogy would be having a button on the dashboard 
that could make a vehicle with a broken crankshaft 
suddenly begin to run flawlessly. 

One intriguing possibility that penetrates to 
the very mechanism of pacemaking is that there is a 
possible "backup" system present. Over some time 
work has been ongoing investigating a second, 
distinct Ca2+ oscillator being an essential part of the 
cardiac pacemaker121,122,123,124. This has been 
dubbed the "Calcium Clock" and is in addition to the 
ensemble of ion channels on the on the cell membrane 
of pacemaker cells, termed the "M" oscillator in this 
context121,122,123,124. The underlying mechanism 
involves Local Calcium Release (LCR) from the 
sarcoplasmic reticulum by ryanodine receptors, 
followed by its reuptake by the 
Sarcoplasmic/Endoplasmic Reticulum Calcium 
ATPase (SERCA)121,122,123,124. This oscillator would 
interact with the M clock to form a cooperative 
system. There is considerable experimental evidence 
supporting this hypothesis123. Clinically, one of the 
most consistently observed abnormalities in patients 
with ventricular arrhythmias is the impaired ability to 

handle intracellular calcium due to changes in 
ryanodine receptor (RyR) and SERCA activity125.  

 Of particular significance to the current 
discussion of a "backup", it was shown that 
pacemaker cells can continue to oscillate even when 
the plasma membrane is voltage clamped121,124. 
Melatonin might be hypothesized to trigger the jump 
to the cytosolic system, or perhaps an altered 
cooperative relationship. This would explain the 
finding that even fly heart pacemaker cells in slo 
mutants that bear a missing or damaged core Ca2+-
gated K+ channel can beat with the same unnaturally 
regular rhythmicity as wild-type28.   

Ca-P60AKum170 is an EMS-induced heat 
sensitive mutation in the fly gene that encodes 
SERCA126. This Drosophila SERCA mutant shows a 
severe decrease in heart rhythmicity after being 

subjected to a 2.5 minute heat shock at 41 ̊ C 127,128. 
Of importance in this discussion we found that heat-
shocked flies bearing the above mutation in SERCA 
showed a return to near normal heart function after 
our melatonin injection procedure129. In addition it 
has been shown that a mutation in the fly ryanodine 
receptor also results in severe cardiac dysfunction in 
the fly130.  

 
Conclusion 

The results summarized here provide 
adequate justification for continued work on 
understanding the underlying physiological effect of 
melatonin on heart function not just in the fly, but in 
mammalian models. This work may reveal basic 
underlying principles of the physics of the oscillation 
in the pacemaker, likely shedding further light on the 
interactions of the membrane and cytoplasmic ion 
channels. As important, is the possible employment of 
melatonin as a pharmaceutical agent to reduce 
cardiac arrhythmicity resulting from a number of 
pathological conditions. In the latter instance, 
translational work is warranted. 
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