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ABSTRACT 
A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ap- 
peared in the Chinese region of Wuhan at the end of 2019. Since then, the 

virus spread to other countries, including most of Europe and USA. This work 
provides an overview on deterministic and stochastic models that have 
previously been proposed by us to study the transmission dy- namics of the 
Coronavirus Disease 2019 (COVID-19) in Europe and USA. Briefly, we 
describe realistic deterministic and stochastic models for the evolution of the 
COVID-19 pandemic, subject to the lockdown and quar- antine measures, 
which take into account the time-delay for recovery or death processes. 
Realistic dynamic equations for the entire process are derived by adopting 
the so-called kinetic-type reactions approach. The lockdown and the 
quarantine measures are modelled by some kind of in- hibitor reactions 
where susceptible and infected individuals can be trapped into inactive 
states. The dynamics for the recovered people is obtained by accounting 
people who are only traced back to hospitalised infected people. To model 
the role of the Hospitals we take inspiration from the Michaelis-Menten’s 
enzyme-substrate reaction model (the so-called MM reaction) where the 
enzyme is associated to the available hospital beds, the substrate to the 
infected people, and the product to the recovered peo- ple, respectively. In 
other words, everything happens as if the hospitals beds act as a catalyser 
in the hospital recovery process. The statistical properties of the models, in 
particular the relevant correlation functions and the probability density 
functions, have duly been evaluated. We val- idate our theoretical 
predictions with a large series of experimental data for Italy, Germany, 
France, Belgium and United States, and we also compare data for Italy and 
Belgium with the theoretical predictions of the logistic model. We have found 
that our predictions are in good agreement with the real world since the onset 
of COVID 19, contrary to the logistics model that only applies in the first days 
of the pandemic. In the final part of the work, we can find the (theoretical) 
relationships that should be satisfied to obtain the disappearance of the virus 
(corresponding to a value of the effective reproduction number of the 
infection lower than 1). 
Keywords: Mathematical model; COVID-19; Pneumonia; Dynamics of 
populations. 
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INTRODUCTION 

Coronavirus disease 2019 (COVID-19) is caused by a new Coronavirus (SARS- 

CoV-2) that has spread rapidly around the world. Most infected people have 

no symptoms or suffer from mild, flu-like symptoms, but some become 

seriously ill and can die. In recent weeks coronavirus has had too many 

opportunities to spread again. After successfully tamping down the first surge 

of infection and death, Europe will most likely be in another coronavirus wave 

when we shall move in the autumn and winter seasons 1,8. In particular, we 

expect to be subject to the most recent and contagious sub-variants of 

Omicron. It only took about a month for BA.2.12.1, an Omicron sub-variant, to 

cause most of the new COVID-19 cases in the U.S. since scientists first spotted 

it in the country. But even newer iterations of the Omicron variant are spreading 

rapidly through the USA and are poised to outcompete past versions of the 

virus, reinfect mil- lions of Americans, and extend the country’s current 

COVID-19 surge. BA.4 and BA.5 now account for more than 21% of new cases 

in the U.S., according to USA Centres for Disease Control and Prevention (CDC) 

estimates as of 11 June, 20229. These two new sub-variants evolved from the 

Omicron lineage to become even more contagious and can bypass immunity 

from a past infection or vaccination. This  

means people can be reinfected even if they had Omicron earlier this year 9. 

The newer sub-variants can also bypass monoclonal antibody treatments, 

which use lab-made immune system proteins developed from ear- lier strains 

of SARS-CoV2. So, even though several vaccines for COVID-19 are actually been 

produced other ways of slowing its spread have to continue to be explored. 

One way of controlling the disease are the lockdown and the quaran- tine 

measures. The lockdown measures are emergency measures or conditions 

imposed by governmental authorities, as during the outbreak of an epidemic 

disease, that intervene in situations where the risk of transmitting the virus is 

greatest. Under these measures, people are required to stay in their homes 

and to limit travel movements and opportunities for individuals to come into 

contact with each other such as dining out or attending large gatherings. The 

lockdown measures are more effective when combined with other measures 

such as the quarantine. Quarantine means separating healthy people from 

other healthy people, who may have the virus after being in close contact with 

an infected person, or because they have returned from an area with high 

infection rates. Similar recommendations include isolation (like quarantine, 

but for people who tested positive for COVID-19) and physical distancing 

(people without symptoms keep a distance from each other). Several 

governments have then decided that stricter lockdown and quarantine 

measures are needed to bring down the number of infections. In this work we 

shall propose interventions which are as targeted as possible. Unfortunately, 
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the greater the number of infections, the more sweeping the measures have to 

be. Tightening the measures will impact on our society and the economy but 

this step is needed for getting the coronavirus under control. 

Up to now, while facing the same problem, albeit with different methods, the 

models proposed in the literature are all united by a single common thread: the 

overall objectives of these works is to obtain the dynamics describing realistic 

situations of spread of SARS-CoV2 infection by means of macroscopic descrip- 

tions. It should immediately be said that that we can consider this task as 

achieved if we are able to  

1. model the distribution of hospitals in a country; 

2. model the distribution of the poles of attraction of susceptible people (e.g., 

shopping centres, workplaces, etc.); 

3. identify a mechanism that allows to establish when a pole of attraction 

becomes saturated with infected people by proposing alternative poles of 

attraction; 

4. modelling the Lockdown and the Quarantine measures adopted by the 

Government of the Country; 

5. determine the nature of the intrinsic (i.e., spontaneous) fluctuations to which 

a macroscopic system is subjected, determining the correlation func- tion by 

statistical mechanics. 

To our knowledge, the state-of-the-art of the current alternative techniques 

are unable to resolve the issues listed above. As evident from a comparison 

between the theoretical results and experimental data, although these 

models give a trend of the features exhibited by the time-series data, it hardly 

represents the actual trends. For instance, as the effect of latent time has not 

been considered, growth in active cases of infections, as predicted by the SIRD 

model, remains very steep. Further, as quarantine effects have not been 

considered, the decay predicted by the SIRD model is much slower than reality. 

The predicted value of total number of deaths is also much higher than actual. 

Hence, the SIRD model needs proper modifications to corroborate all the three 

data sets - infected, recovered, and dead - simultaneously. Lockdown and 

quarantine measures and the role of the time-delay play a significant role in the 

way the infection spreads over time. Hence, we need to incorporate these 

factors into the model. When several factors are involved simultaneously in a 

process, how should we proceed then? A suggestion comes to us from how 

physicists approached the study of the science of Nonlinear Phenomena and 

Complex Systems: 

• First of all, we must realise that it is unrealistic to think to be able to de- scribe 

a complex phenomenon, in a complete and exhaustive way, by set- ting up directly 

macroscopic models, that in addition are over-simplified, without any microscopic 

underpinning; 

• Secondly, we must accept the idea that it is not possible to take into 

consideration, with a single model, all the factors involved in a complex 
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phenomenon; 

• Finally, as physicists currently do to study the dynamics of thermody- namic 

systems far from equilibrium, the macroscopic model that describes the dynamics 

of the system must be derived from fundamental processes i.e., by a microscopic 

description. 

In our works we introduce a kinetic-type reactions (KTR) approach 8,10,11,12, 

calibrated on the COVID-19 outbreak data in Belgium, Italy, France, Germany 

and USA. Here, by analogy, we are authorised to introduce the following micro- 

scopic postulates: 

1. The microscopic detailed balance principle is respected. The overall COVID- 19 

spreading process may be decomposed into elementary processes (con- tacts 

among individuals, or steps, or elementary reactions ). It states that at equilibrium, 

each elementary process is in equilibrium with its reverse process. It should be 

noted that this principle has important repercussions at the macroscopic level such 

as, for example, the validity of the reciprocity relations of the coefficients that 

appear in the macroscopic model. 

2. The law of mass action is satisfied. The rate at which an elementary step 

proceeds is directly proportional to the product of the concentrations of the 

reactants (in our case the ”populations”). It explains and predicts behaviours of 

populations in dynamic equilibrium. Specifically, it implies that for a system in 

equilibrium, the ratio between the ”reacting” popu- lations density and the 

produced populations density is constant. 

3. The Th. De Donder principle is satisfied 13,14. The Th. De Donder prin- ciple 

establishes that a chemical reaction, however complex, can always be reduced to a 

finite series of elementary chemical steps. In this principle lies all the real power of 

the KTR approach. It is easily checked that several current models applied to a 

different data set violate the Th. De Donder principle. 

It is worth recalling that, as can be easily understood, the three above axioms 

provide strict constraints to the coefficients appearing in the macroscopic 

model which, contrarily to the models described in the works illustrated 

above, can no longer be chosen arbitrarily. We shall see that the KTR approach 

is very promising and flexible. Indeed, the KRT approach 

• models each actor by a dedicated “chemical species” that can only be created 

or destroyed as the result of one, or several, elementary steps, 

• allows to determine the dynamics of the system starting from this set of 

elementary steps; 

• thanks to its flexibility, allows to analyse complex situations where several 

variables are involved, such as R, Q, Rh, Ih etc; 

To the best of our knowledge, this approach, at fundamental level, has never 

been proposed in the literature. The manuscript is organised as follows. In 

Section 1 we derive the law of growth for a Malthusian population. This law 

foresees that, in absence of lockdown measures, in the initial phase of the 

pandemic the number of infected people increases exponentially. In Section 

2, we study the deterministic (SIS)L-model i.e., the dynamics of the 
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compartments Susceptible   Infectious   Susceptible in presence of the lockdown 

measures. We shall see that as soon as the lockdown measures are stopped, the 

spread of the Coronavirus begins to grow back vig- orously if a certain ”safety 

threshold” is not reached. The trends of the curves related to the SARS-CoV2 

infection are investigated in Subsection 2.2. Section 3 shows the comparison 

between the theoretical predictions of the (SIS)L-model with experimental 

data for Italy, Belgium, USA, and France. The stochastic version of the SIS-

model subjected to the lockdown measures is introduced and analysed in 

Section 4. In particular, we determine the solutions of the stochastic 

differential equations governing the dynamics of the infected people for Italy, 

USA and France and the behaviour of the relevant correlation func- tions for 

Italy. The role of the Hospitals is initially investigated in Section 5 by a very 

simple model referred to as the (SISIh)L-model. In Section 6 we develop a 

more realistic model to study the spreading of the SARS-CoV-2 that takes into 

account the role of the Hospitals as well as the lockdown and quarantine 

measures. This model is obtained by a kinetic-type reactions (KTR) approach. 

More specifically, in the KTR model, the lockdown and quarantine measures are 

modelled by a very simple door function (see Subsection 6.3). The dynamics of 

the hospitalised individuals (i.e., the infectious, recovered, and deceased 

people) can be found in Subsection 6.5. The corresponding evolution 

equations are ob- tained by considering the Michaelis-Menten’s enzyme-

substrate reaction model (the so-called MM reaction). The equations 

governing the dynamics of the full process and the related basic reproduction 

number are reported in Section 6.8 and Section 6.9, respectively. Finally, 

Section 6.10 shows the good agreement between the theoretical predictions 

with real data for Belgium, France and Ger- many. The (theoretic) relations that 

must be satisfied for achieving the total disappearance of the SARS-CoV2 

Infection are shown in Section 7. The perspec- tives of this work, in particular the 

applicability of our kinetic type approach for treating the dynamics of the 

emerging BA.4 and BA.5 sub-variants of Omicron can be found in Section 8. 

Concluding remarks are reported in Section 9. 
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Figure 1: Schematic dynamics of respiratory virus in the absence of the lockdown
measures In this graphics, for illustrative purpose only, we set R0 = 3. However,
for SARS-CoV-2, the value of R0 is 2 even at the beginning of the outbreak in
China and Italy. After a period of time µ1, an infected individual can infect
R0 other individuals. In turn, after a period µ2, each of these newly infected
individuals can infect other R0 people, and so on. After n steps the elapsed
time is t =

∑n
i=1 µi.

1 Modelling the onset of the SARS-CoV2 Pan-
demic

We start by introducing the definition of the basic reproduction number of an
infection R0, defined as the number of infected people derived from a first case in
a population where all the others are susceptible. So, it is not possible to modify
R0, in any case, but it is possible to get a different effective R1. This parameter
is strictly linked to the replication time of a virus, indicated with µi, defined as
the time interval after which the number of infected people has increased by R0

times. Fig. 1 schematically represents the diffusion dynamics of the virus. By

1More rigorously, in epidemiology, the basic reproduction number of an infection, R0, is the
expected number of cases directly generated by one case in a population where all individuals
are susceptible to infection in absence of any deliberate intervention in disease transmission
(see, for example,15).
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indicating with I the number of infected people, after n steps we get2:

N = Rn0 (1)

Of course, after n steps, the elapsed time is t =
∑n
i=1 µi and, if there are M

outbreaks of infectious viruses, Eq. (60) can be cast into the form3

I = MR
t/µ
0 (2)

with µ ≡ 1/n
∑n
i=1 µi. Note that the two parameters R0 and µ are not inde-

pendent (see, for example,17,18,19)4. It is more convenient to work in the Euler
base e rather than in base R0; in the Euler base Eq. (61) provides the law of
growth for a Malthusian population16.

I = M exp(t/τ) where τ =
µ

log(R0)
(3)

In literature, τ is referred to as the characteristic time of the exponential trend.
So, in the absence of containment measures the number of infected people follows
the exponential law (3). Let us now analyse Eq. (3) more in depth. We have
three possible scenarios:

1. R0 > 1 (as is the current world’s situation). For Italy, for example, before
the adoption of (severe) containment measures, the value of τ was about
τ ∼ 3.8 days (and µ ∼ 2.6 days). In this case the number of the infected
people increases exponentially.

2. R0 = 1 If the infection-capacity of the virus is of the type one-to-one
(i.e., a person infected by SARS-CoV-2 can in turn infects only another
person), we get the stationary situation corresponding to I = 1. This
situation is referred to as the latent situation i.e., the virus is still present
but does not spread. In this limit case, the SARS-CoV-2 is substantially
ineffective. Scenarios (1) and (2) are illustrated in Fig. 2.

3. 0 < R0 < 1. We may also imagine that the capacity of infection of
SARS-CoV-2 is less than 1. This means that the virus is no longer able
to be spread (e.g., thanks to protective measures, or to the production
of vaccines and anti-virals, or because people who overcame the disease
became immune. In this case, the value of τ is negative and the number
of infected people decreases ever time. That is, the infection eventually
disappears. The rate of decrease of the number of infected people depends
on the value of τ . This scenario is depicted in Fig. 3.

2In this Section we shall follow the definitions and the expressions reported in standard
books such as, for example,16.

3Actually, Eq. (2) applies only if the M outbreaks of the virus are exactly at the same

conditions. In general, the correct expression reads N =
∑M
i=1R

t/µ̃i
0 , with µ̃i indicating the

replication time of the virus for the i-th outbreak.
4In ref.17, the doubling time is used to calculate R0, by means of the equation R0 =

1 + (γ + ρ)log(2)/µ where γ is the duration of the incubation period, ρ is the duration of the
symptomatic period, and µ is the doubling time (see17). In this respect, we would also like
to mention another excellent work recently produced by G. Steinbrecher19.
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Figure 2: Situation before the lock-
down measures. Number of infected
people corresponding to the exponen-
tial law. The red line represents the
case R0 > 1, such as the situation
before the adoption of lockdown mea-
sures. The black line corresponds to
the case R0 = 1, the latent situation
in which the virus is substantially in-
effective.
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1.0

N

Days

R < 1 0

Figure 3: Number of infected peo-
ple corresponding to the exponential
law. The red line represents the case
R0 < 1. In this situation the number
of infected people decreases exponen-
tially and the virus disappears after a
few weeks.

1.1 Comparison with the Real Data for COVID-19 before
the Lockdown Measures

It is understood that the main objective of the lockdown measures established by
most European governments and health organisations is to reduce the ability
of a virus to spread. From a mathematical point of view, we would like to
have R0 = 1 (or, better, R0 < 1), in Eq. (3) instead of R0 > 1. In practical
terms, this means reducing the frequency of all involuntary contacts with a large
number of people, reducing unnecessary movements to avoid encounters, and to
prolong the closure of schools. Although these measures cannot prevent the
spread of the infection in the long term, they can reduce the number of new
infections daily. This has the benefit of leaving room for seriously-ill patients by
avoiding to overload the healthcare system. We can easily realise what are the
consequences if the lockdown measures are not set up. To make a comparison
between the theoretical predictions and the experimental data in absence of
lockdown measures, we have to consider the correct reference period. More
specifically, we saw that the number of positive cases grows in the course of
time by following the law (3). Hence, at the reference time t0, the number of
people infected by the virus is

N0 = M exp(t0/τ) (4)
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After a period of time, say t, Eq. (3) reads

N = M exp(t/τ) (5)

Hence,
N = N0 exp((t− t0)/τ) (6)

Eq. (6) is the equation that we use for comparing the mathematical predictions
with experimental data during the initial phase where the spread of SARS-
CoV-2, causing the COVID-19, follows the exponential law, and (t− t0) is our
reference period. For the case of COVID-19 we get (see, for example,16)

• All infectious outbreaks are exactly at the same conditions. So, Eq. (2)
applies;

• R0 = 2;

• All the µi are equal with each other: µi = const = µ (see also16,17).

In this case, µ is referred to as the doubling time. So, the doubling time is the
amount of time it takes for a given quantity to double in size or value at a con-
stant growth rate18. If we do not apply the locking measures, the evolution in the
course of time of the number of infected people is best approximated by an expo-
nential curve with R = 2, even though we have to stress that R0 is only associ-
ated with the beginning of the epidemic and, with certain approximations, with
the early stages, but not beyond. Fig. 4 and Fig. 5 respectively show the com-
parison between the theoretical predictions and the experimental data for Italy
and Belgium before the lockdown measures. We get τ ' 3.8 days and µ ' 2.6
days for Italy, and τ ' 5.2 days and µ ' 3.7 days for Belgium. We conclude this
Introduction by mentioning that there are several methods currently proposed
in Literature to derive by mathematical models, the value of R0. For example,
in ref.19, we can find a short numerical code, written in R-programming lan-
guage for statistical computing and graphics, able to compute the estimated R0

values for the following 17 infectious diseases: Chickenpox (varicella) (Transmis-
sion: Aerosol), Common cold (Transmission: Respiratory Droplets), COVID-
19 (Transmission: Respiratory Droplets), Diphtheria (Transmission: Saliva),
Ebola - 2014 Ebola outbreak (Transmission:: Body fluids, HIV/AIDS (Trans-
mission: Body fluids), Influenza - 1918 pandemic strain (Transmission:: Respi-
ratory Droplets), Influenza - 2009 pandemic strain (Transmission: Respiratory
Droplets, Influenza - seasonal strains (Transmission: Respiratory Droplets),
Measles (Transmission: Aerosol), MERS (Transmission: Respiratory Droplets),
Mumps (Transmission: Respiratory Droplets), Pertussis (Transmission: Respi-
ratory Droplets), Polio (Transmission: Fecal oral route), Rubella (Transmission:
Respiratory Droplets), SARS (Transmission: Respiratory Droplets), Smallpox
(Transmission: Respiratory Droplets). However, this task is particularly prob-
lematic if there are intermediate vectors between hosts, such as malaria.
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From 01/02/2020 to 11/03/2020

Italian situation before the  
lockdown measures  

Days

Lockdown measures: 
 11/03/2020

Exponential phase
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Figure 4: Number of infected peo-
ple in Italy on the 10th of March
2020 (before the adoption of lock-
down measures). The blue line cor-
responds to the theoretical predic-
tions and the black dots correspond
to experimental data. The values
of the parameters τIT and µIT are
τIT ' 3.8 days and µIT ' 2.6 days,
respectively.
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From 29/02/2020 to 29/03/2020

Belgian situation  
before the  

lockdown measures  

Days
Lockdown measures: 

 16/03/2020

Exponential phaseN

Figure 5: Exponential phase in Bel-
gium. The lockdown measure have
been adopted on the 16the of March
2020 (however, initially not so strict
as in Italy).The red line corresponds
to the theoretical predictions and
the black dots correspond to exper-
imental data. The values of the pa-
rameters τBE and µBE are τBE '
5.3 days and µBE ' 3.7 days, re-
spectively.

2 A Simple Model in Presence of the Lockdown
Measures - The (SIS)L-Model

2.1 A Simple Deterministic (SIS)L-Model

The current work starts from the following hypothesis commonly supported
by the most accredited virologists: the SARS-CoV-2 behaves like other viruses
which cause respiratory diseases (see, for instance,20). The common cold and
influenza, do not confer any long-lasting immunity. Such infections do not
give immunity upon recovery from infection, and individuals become susceptible
again. Hence, according to the above-cited hypothesis we propose the following
simplest compartmental model:

S + I
µ−→ 2I (7)

In our model the SARS-CoV-2 infection does not leave any immunity, thus
individuals return back into the S compartment. Hence, infectious people, after
recovery, return back to the compartmental S. This added detail can be shown

10



by including an R class in the middle of the model10

S + I
µ−→ 2I (8)

I
γ−→ R

γ1−→ S

In this work, scheme (8) has to be interpreted as follows. The entire process
is described by adopting a kinetic-type reactions approach where the lockdown
measures are modelled by some kind of inhibitor reactions where susceptible
individuals can be trapped into inactive states. In addition, the substrate is
associated to the infected people and the product to the recovered people, respec-
tively. From scheme (8), we get O.D.E.s for S, R, and I:

dS

dt
= −σ S

NTot.
I + γ1R (9)

dI

dt
= σ

S

NTot.
I − γI

dR

dt
= γI − γ1R

with NTot. denoting the total population and σ ≡ µNTot.. By assuming that
the dynamics of R is much faster that those of S and I, we may set dR/dt ' 0
and system (9) reduces to5

dS

dt
' −σ S

NTot.
I + γI (10)

dI

dt
= σ

S

NTot.
I − γI

which corresponds to the model

S + I
µ−→ 2I (11)

I
γ−→ S

In literature, the model (11) is referred to as the SIS-model (see, for exam-
ple,21). From Eq. (10) we get the conservation relation

dS

dt
+
dI

dt
= 0 or S + I = NTot. (12)

Hence, the dynamics of infectious is governed by the logistic model

dI

dt
= (σ − γ)I

(
1− σ

NTot.(σ − γ)
I

)
(13)

5This assumption is not strictly necessary, but we adopt it just to show that it is possible to
obtain relevant results in an analytical way, without having to solve the equations numerically.
We may easily convince ourselves that it is not difficult to perform (numerically) the same
calculations below relaxing this hypothesis.
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or

dI

dt
= α̃I

(
1− I

K

)
with (14)

α̃ ≡ σ
(

1− γ

σ

)
; K ≡ NTot.

(
1− γ

σ

)
where α̃ and K denote the linear growing rate of the COVID-19 and the carrying
capacity, respectively.
The lockdown measures are mainly based on the isolation of the susceptible
individuals, eventually with the removal of infected people by hospitalisation.
In our model, the effect of the lockdown measures are taken into account by
introducing in the SIS-model the lockdown-induced decrease rate c(t)

S + I
µ−→ 2I (15)

I
γ+c(t)−−−−→ S

where

c(tL) = 0 for t = tL (16)

c(t) > 0 for t > tL

in which tL denotes the time when the lockdown measures are applied. The
meaning of ”kinetic reactions” (15) is the following. Clearly, the lockdown mea-
sures act on the susceptible people but they are unable to affect the ”chemical
capacity” (i.e. to decrease the infection capacity) of the Coronavirus (therefore
the value of the ”kinetic reaction” µ must remain constant). However, the final
effect of the lockdown measures is to increase the number of susceptible people
”at the expense” of the infected people (since S+ I = const.). According to the
model, this can be done only by increasing the value of the ”kinetic constant”
γ6. The corresponding deterministic differential equations for the COVID-19
model in presence of the lockdown measures reads then:

dS

dt
= −σ S

NTot.
I + γI + c(t)I (17)

dI

dt
= σ

S

NTot.
I − γI − c(t)I

Scheme (15) may be referred to as the (SIS)L-model where L stands for Lockdown.
The general expression for the lockdown-contribution, c(t), may be obtained as
follow.
1) At t = tL, c(tL) = 0. This corresponds to the requirement that the lockdown
measures start at time t = tL;

6Anyhow, by writing the corresponding O.D.E.s, it is easy checked that, if we assume that
the effect of the lockdown is to decrease the value of the ”kinetic constant” µ, we would get
the no-sense result that the carrying capacity of the infected people increases in time.
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2) c(t) must always be a positive function. Notice that this requirement must
be verified for all t > tL and for all kind of scenarios. This imposes several
restrictions on the coefficients;
3) c(t) must be a function able to bend, downwardly, the trend of the curve of
infected people. Even this requirement must be verified for all t > tL and for
all kind of scenarios.
Afer that, we may proceed as usual: we look for a class of functions satisfying
the three requirements above under the form of polynomials (or fractions of
polynomials) by bearing in mind that the degrees of the polynomials must chosen
such that they are able to bend downwardly the curve of the infected people.
This requirement must be satisfied by each term of the series.
4) Ultimately, we have to prove that the obtained series constitutes a complete
base of functions7. This will be subject of a future work.
Finally, the general expression for the lockdown-contribution, c(t), may be cast
into the form10

c(t̂) =

∞∑
i,j=0

βij
(
t̂i+1 − t̂−j

)
with t̂ ≥ 1 (18)

with t̂ denoting the normalised time t̂ ≡ t/tL and βij are real numbers, subject
to the condition c(t̂) > 0 for t̂ > 1, respectively. Note that expression (18)
satisfies the three requirements above. We are looking for a lockdown expression
that takes into account only the most relevant terms. So, the first two terms of
expression (18) are

c(t̂) ' β00(t̂− 1) + β01

(
t̂2 − 1

t̂

)
with t̂ ≥ 1 (19)

In refs 7,8,22) we can find huge works of fittings with the experimental data
carried out for several Countries and for different SARS-type pathologies. The
results of the fittings have shown that the most relevant contribution is expressed
by the term (t2−t2L/t) while the term (t−tL) provides an irrelevant contribution
in comparison with the previous one8. Finally, we get

c(t̂) ' β
(
t̂2 − 1

t̂

)
with β > 0 and t̂ ≥ 1 (20)

with β ≡ β01 = const. denoting the intensity of the lockdown measures. Eq. (20)
is the expression for the lockdown measures that will be considered in this
work. Notice that Eq. (20) generalises the lockdown term introduced in ref.8.
By taking into account Eq. (14), the deterministic differential equation for the

7Here, we shall not discuss on the completeness of the basis functions {t̂i+1− t̂−j}i,j=0,1,....
8Of course, there are situations where the term (t − tL) turns out to be significant e.g.,

in chemotherapy that is started with a log-kill effect. In this case c(t) is the therapy-induced
death rate, which is modelled by the term (t − tC) since it is imposed, and finely calibrated,
from the outside
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infectious people, in presence of the lockdown measures, reads

dI

dt̂
= αI

(
1− I

K

)
− β

(
t̂2 − 1

t̂

)
I (21)

with α ≡ α̃tL. The exact solution of Eq. (21)can be brought into the form10

I =
I0t̂

β exp((1− α/β)2/σ) exp(−(t̂− α/β)2/σ)

1 + (I0α/K) exp((1− α/β)2/σ)
∫ t̂

1
xβ exp(−(x− α/β)2/σ)dx

(22)

with I0 denoting the value of the total cases at the time when the lockdown
measures are applied, i.e. It̂=1 = I0. Notice that for large values of the carrying
capacity, Eq. (22) tends to the expression

I ' I0t̂β exp((1− α/β)2/σ) exp(−(t̂− α/β)2/σ) (23)

Fig. 6. shows two solutions of the model (21) for Italy, during the first wave of
infection by SARS-CoV-2. The red dotted line refers to the solution without the
lockdown measures and the dark dotted line to the solution when the lockdown
measures were applied.

1.5 2.0 2.5 3.0 3.5 4.0 4.50

100000

200000

300000

400000

t/tL

Saturation behavior 
without the lockdown measures

Saturation behavior 
with the lockdown measures

NIT

Figure 6: Solution of Eq. (21) for Italy, first wave of infection by SARS-
CoV2. The black and the red dotted lines refer to the solutions of Eq. (21) with
and without the application of the lockdown measures, respectively. The values
of the parameters are I0=5000, K = 150000, α = 1.5, and β = 0.1, respectively.

2.2 Analysis of SARS-CoV2 Infection Curves

The aim of this Section is to report a summary of the main characteristics ob-
served by analysing the trends of the curves for the (total) infectious capacity
of SARS-CoV2. To achieve this goal, it is necessary to consider all categories
affected by the virus, i.e., currently infected individuals, people who were previ-
ously infected and subsequently recovered, and people who died of SARS-CoV2
infection. Let N denote the sum of the individuals belonging to the aforemen-
tioned compartments. We can find8 a preliminary study of the dynamics of N .
Here, we report the main conclusions and the comparison between theoretical
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Figure 7: Italian transient period
(from the 10th of March 2020 to the
24th of March 2020). During this
period, the doubling time µ oscil-
lates over time. µ0 indicates the
(constant) doubling time during the
exponential period (for Italy µ0 '
2.6 days).
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Figure 8: Belgian transient period
(from the 17th of March 2020 to
the 29th of March 2020). During
this period, the doubling time µ
oscillates over time. µ0 indicates
the (constant) doubling time during
the exponential period (for Belgium
µ0 ' 3.7 days).

predictions and experimental data. For Italy and Belgium one observes two dis-
tinct phases related to the dynamics of the COVID-19, which we may classify as
period before the adoption of the lockdown measures and period corresponding to
a few days after the adoption of the lockdown measures. The question therefore
arises whether these two periods are separated by a well-defined transition. We
will see that this is the case. Indeed, we can identify three different periods,
which may be classified as follows:

1. The exponential period. As seen in Section 1, before the adoption of lock-
down measures, the exponential trend is the intrinsic behaviour of the grow
rate of the COVID-19. In this period the doubling time µ is a constant
parameter versus time.

2. The transient period. The transient period starts after immediately hav-
ing applied the severe lockdown measures. Fig. 7 and Fig. 8 show the
behaviour of the parameter µ versus time for Italy and Belgium, respec-
tively.

3. The bell-shaped period (or the post-transient period). In the bell-shaped
period parameter µ is a (typical) function of time. Several theoretical
models can be used to investigate the post-transient period (e.g., by using
the logistic model (see, the logistic model23) or Gompertz’s law24).

In this Section, we shall compare the experimental data with two theoretic
solutions: the solution of the differential equation for the compartment N 8 and
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the logistic function25. Notice that the number of free parameters of these two
models are exactly the same. More specifically,

a) The logistic model possesses two free parameters : the carrying capacity K
and the time t0L when the lockdown measures were applied. Notice that
the grow rate is not free since it is linked to the doubling time µ;

b) Also our model possesses two free parameter: the carrying capacity KN and
t0, the time value of the sigmoid’s point.

Figures (9) and (10) compare the predictions of our model (blue lines) and
the logistic model (red lines) with experimental data for Italy and Belgium,
respectively. We recall the expression of the logistic function:

NL =
K

1 + exp(−α(t− t0L)
(24)

Experimental data for Italy have been found in26 and for Belgium in27 and28,
respectively. They are updated to the 15th of May 2020. The values of the
parameters τ , KN , and t0 for the solution and the parameters τ , t0L and K for
the logistic function are shown in the figure captions8. As we can see, for both
Countries our predictions are in excellent agreement with the real world since
the onset of COVID 19, contrary to the the logistics model that only applies in
the first days of the pandemic. These curves tend to reach the plateau at the
time tMax given by

tMaxIT ' 80 days and tMaxBE ' 60 days (25)

corresponding to tMaxIT ' 21 April 2020 and tMaxBE ' 2 May 2020 for Italy
and Belgium, respectively.

3 Comparison between the Theoretical Predic-
tions of Eq. (21) and Real Data for USA and
France

Refs29,32, report the links to the official sites of the number of infected indi-
viduals in US and France, respectively. As the data show, France is currently
subjected to the second wave of Coronavirus while the USA data may induce
to think that they are in a full second (or third) wave. However, looking at the
behaviour of the infectious curve we may also argue that, in agreement with33,
USA as a whole is not in a second (or third) wave because the first wave never
really stopped. The virus is simply spreading into new populations or resurgent
in places that let down their guard too soon. So, we are interested in analysing
both of these scenarios. Fig. 11 shows the comparison between the theoretical
predictions (blue line) and real data (black dots) for USA. This prediction has
been obtained by assuming that US population is currently subjected to the
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Figure 9: Situation in Italy on 15 May 2020—before, and 65 days after, the
adoption of lockdown measures. The black dots correspond to experimental
data. The red dotted line corresponds to the situation in Italy before the adop-
tion of the lockdown measures. The blue and the red solid lines correspond to
the theoretical predictions for Italy according to the solution of the differential
equation for the compartment N 8 and the logistic model, respectively. Solution
of the differential equation for the compartment N fits well all the experimen-
tal data from the initial days (i.e., from the 1st of February 2020)8, while the
logistic model applies only to the first days. The values of the parameters of so-
lution in Sonnino et al.8 and the logistic function are: τIT ' 3.8 days (µIT = 2.6
days), KIT

N ' 355250, and t0IT ' 72.5 days for the solution in Sonnino et al.8,
and τIT ' 3.8 days (µIT = 2.6 days), KIT = 225000, t0LIT = 53 days for the
Logistic function.

third wave of Coronavirus, respectively. Fig. 12. and Fig. 13. show the compar-
ison between the theoretical predictions (blue line) and real data (black dots)
for France. The values of the parameters for both cases, USA and France, are
reported in the figure captions.

4 The Stochastic (SIS)L-Model

The Stochastic version of Eq. (21) reads

dI

dt̂
= αI

(
1− I

K

)
− β

(
t̂2 − 1

t̂

)
I + ξ(t̂) (26)

with ξ(t̂) denoting a white noise

< ξ(t̂) >= 0 (27)

< ξ(t̂)ξ(t̂′) >= ηδ(t̂− t̂′)

and
√
η is the intensity of the noise. δ denotes the Dirac delta function (distri-

bution). It is shown10 that under a very general assumption, we may consider
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Figure 10: Situation in Belgium on 15 May 2020—before, and 60 days after, the
adoption of lockdown measures. The black dots correspond to real data. The
blue dotted line corresponds to the situation in Belgium before the adoption of
the lockdown measures. The blue and the red solid lines correspond to the the-
oretical predictions for Belgium according to the solution of in8 and the logistic
model, respectively. solution of the differential equation for the compartment
N shown in8 fits well all the experimental data from the initial days (i.e., from
the 29th of February 2020), while the logistic model applies only to the first
data. The values of the parameters of the differential equation for the compart-
ment N shown in Sonnino et al.8 and the logistic function are: τBE ' 5.3 days
(µBE = 3.7 days), KBE

N ' 42626, and t0BE ' 53.4 days for solution in Sonnino
et al.8, and τBE ' 5.3 days (µBE = 3.7 days), KBE = 111000, t0LBE = 39.5
days for the Logistic function, respectively. The zone I corresponds to the
period before the adoption of the lockdown measures.

that the system is governed by the Grand Ensemble statistical mechanics. So,
according to this statistics, the relative fluctuations of the number of the infec-

tious people behaves as K
−1/2
Country

34, with KCountry denoting the capacity of the
Country’s population. This implies that the intensity of the noise in Eq. (27) is
of the order of

η ∼ tLK−1/2
Country (28)

with tL denoting the time when the lockdown measures have been applied. We
may object that this reasoning is based on equilibrium conditions. However, we
would like to point out that the aim of this Section is only to provide a (rough)
estimate of the order of magnitude of the noise. Let us now consider the system
at the reference state IRS , which is the solution of the deterministic equation

dIRS

dt̂
= αIRS

(
1− IRS

K

)
− β

(
t̂2 − 1

t̂

)
IRS (29)

subject to a perturbation of small amplitude δI, i.e.

I(t̂) = IRS(t̂) + δI(t̂) (30)
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Figure 11: Comparison between the theoretical predictions (blue lines) and real
data (black dots) for USA by assuming that US is in the third wave of Coron-
avirus. The three series of values of the parameters, corresponding to the three
waves, are, respectively: (α̃ = 0.043 day−1, β = 0.45 day−2) ; (α̃ = 0.021 day−1,
β = 0.008 day−2), and (α̃ = 0.01 day−1, β = 0.02 day−2). K = 25000000 and
tL = 54 days.
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Figure 12: Comparison between the theoretical predictions (blue line) and real
data (black dots) for France during the first wave of Coronavirus. The values
of the parameters are; α̃ = 0.145 day−1, β = 0.5 day−2, K = 110000, and
tL = 53 days, respectively.

Our aim is to compute the relevant statistical correlation functions of this pro-
cesses i.e. < δI(t̂)ξ(t̂) > and < δI(t̂)δI(t̂′) >. We can find10 the expression for
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Figure 13: Comparison between the theoretical predictions (blue line) and real
data (black dots) for France during the second wave of Coronavirus. The values
of the parameters are; α̃ = 0.035 day−1, β = 0.5 day−2, K = 5000000, and
tL = 278 days, respectively.

the second moment and the correlation function for δI:

<
(
δI(t̂

)
)2 >=

(
t̂2β exp(2α(t̂− 1)− β(t̂2 − 1)− 4αG(t̂)/K

)(
<(δI(1))

2
>

+ η

∫ t̂

1

x−2β exp(−2α(x− 1) + β(x2 − 1) + 4αG(x)/K)dx
)

(31)

< δI(1)δI(t̂) >= t̂β exp(α(t̂−1)−β/2(t̂2−1)−2αG(t̂)/K)< (δI(1))2 > (32)

Fig. 14 shows the simulation of 200 trajectories of Eq. (26) for Italy using the
Order-2 Stochastic Runge-Kutta integration method. The thick black curve is
the numerical solution of the deterministic equation (21). The noise intensity
is η = 0.05 and the values of other parameters are reported in the caption of
Fig. 14. Figs. (15) and (16) show the correlation functions < (δI(t̂))2 > and
< δI(1)δ(t̂) > for Italy, first wave of infection by SARS-CoV-2. The values of
the parameters are reported in the figure captions.
Fig. 17. and Fig. 18. illustrate the comparison between the theoretical predic-
tions (blue lines) and real data (black dots) for France concerning the first and
the second waves of SARS-CoV-2, respectively. The intensity of the noise has
been estimated by using Eq. (28). As we can see, the predictions of our model
are in a fairly good agreement with real data. Fig. 19. refers to the stochastic
differential equation for USA. In this case the intensity of the noise corresponds
to the value estimated by Eq. (28) (we have η̃ = 0.0002). Here, we get a fairly
good agreement with real data.

5 Modelling the Role of the Hospitals

As can be seen, according to the SIS-model, after the lockdown measures the
number of infectious people starts to increase again. Hospitals and health in-
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Figure 14: Solution of the stochastic equation for Italy. Solutions of
Eqs (26) and (27) for Italy - first wave of infection by SARS-CoV-2 - with
η = 0.05 and for 200 realisations. The values of the other parameters are
I0=5000, K = 150000, α = 1.5, and β = 0.1, respectively. The black thick
curve is the numerical solution of the deterministic equation (21).
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Figure 15: Correlation Function < (δI(t̂))2 > for Italy, first wave of in-
fection by SARS-CoV-2. This correlation function corresponds to Eq. (31).
The values of the parameters are I0=5000, K = 150000, α = 1.5, and β = 0.1,
respectively.

stitutions play a crucial role in hindering the spread of the Coronavirus. In
this Section, we propose a model which accounts for people who are only traced
back to hospitalised infectious individuals. In our approach, the dynamics of the
Health Institutes is obtained by taking inspiration from the Michaelis- Menten’s
enzyme-substrate reaction model (the so-called MM reaction35,37) where the en-
zyme is associated to the available hospital beds, the substrate to the infected
people, and the product to the recovered people, respectively. In other words,
everything happens as if the hospitals beds act as a catalyser in the hospital
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Figure 17: Solutions (200 realisations) of the stochastic differential
equation for France - First wave. The values of the parameters are those
reported in Fig. 12. η̃ = 0.002, which has been estimated according to Eq. (28).
The black curve is the solution of the deterministic equation.

recovery process8 and11. We propose the following model:

S + I
σ−→ 2I (33)

I
γ+c(t)−−−−→ S

I + b
k1−→ Ih

kr−→ rh + b

Ih
kd−→ dh + b

rh
γ1−→ S

where the hypothesis that an individual acquires immunity, after having con-
tracted the Coronavirus and being recovered, is not adopted. In scheme (56),
b denotes the number of available hospital beds, Ih the number of infected peo-
ple blocking an hospital bed, rh the number of recovered people previously hos-
pitalised, and dh the number of people deceased in the hospital, respectively.
According to scheme (20), people, once recovered, are subjected to the same
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Figure 18: Solutions (200 realisations) of the stochastic differential
equation for France - Second wave. The values of the parameters are those
reported in Fig. 13. η̃ = 0.001, which has been estimated according to Eq. (28).
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Figure 19: Solutions (200 realisations) of the stochastic differential
equation for USA. The values of the parameters are those reported in Fig. 11.
The intensity of the noise is η̃ = 0.0002, which has been obtained by using
Eq. (28). The black curve is the solution of the deterministic equation.

existing lockdown measures as any other people. We refer the simple model,
based on scheme 20 to as the (SISIh)L-model.
Concerning the recovered people, we would like to make clear the following. R
stands for the total number of the recovered people (i.e., the number of recovered
people previously hospitalised, plus the number of the asymptomatic people,
plus the infected people who have been recovered without being previously hos-
pitalised). However, the natural question is: how can we count R and compare
this variable with real data ?. The current statistics, produced by the Ministries
of Health of various Countries, concern the people released from hospitals. Apart
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from Luxembourg (where almost the entire population has been subjected to
the COVID-19 test), no other Countries are in a condition to provide statistics
regarding the total people recovered by COVID-19. Hence, it is our opinion that
the equation for R, is not useful since it is practically impossible to compare the
theoretical predictions for R with real data. We then proceed by adopting ap-
proximations and by establishing the differential equations where the solution
may realistically be subjected to experimental verification. More specifically,
firstly, we assume that R is given by three contributions:

R = rh + rA + rI (34)

with rh, rA, and rI denoting the total number of the recovered people previously
hospitalised, the total number of asymptomatic people, and the total number of
people immune to SARS-CoV-2, respectively. Secondly, we assume that the two
contributions rA and rI are negligible, i.e., we set rA ≈ 0 and rI ≈ 0 9. Finally,
due to lack of reliable statistics, we are forced to limit ourselves to consider the
(very) simplified case

R ' rh (35)

Of course, we have

Ih + b = Ch = const. where Ch = Total hospital′s capacity (36)

The dynamical equations for the entire process are then:

d

dt̂
S = −σ S

NTot.
I + γI + γ1rh + β

(
t̂2 − 1

t̂

)
(I + rh) (37)

d

dt̂
I = σ

S

NTot.
I − γI − k1I(Ch − Ih)− β

(
t̂2 − 1

t̂

)
I

d

dt̂
Ih = k1I(Ch − Ih)− krIh − kdIh

d

dt̂
rh = krIh − γ1rh

d

dt̂
dh = kdIh

where, at this stage, for simplicity, the average recovery time delay and the
average death time delay have been neglected10. In this case I stands for the
infectious individuals not hospitalised. From system (37) we get the following
conservation law

S + I + Ih + rh + dh = NTot. = const. (38)

9We consider that the SARS-CoV-12 has just appeared for the first time. So, we do
not consider the asymptomatic people who are immune to the virus without any medical
treatment.
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5.1 The Deterministic (SISIh)L-model

To simplify as much as possible the set of O.D.E.s (37), we adopt several hy-
potheses that will not compromise the validity of our model. First, we assume
that that S+I+Ih ' NTot. = const. Secondly, let γ ' γ1. Finally, we take into
account the current Belgian hospital-protocol: ”Only the seriously sick people
are hospitalised, the remaining infectious individuals have to be sent home and
they must be subjected to quarantine measures”. Hence, I � Ih and the total
number of recovered people, R, is much larger than the total number of recov-
ered people, previously hospitalised (i.e. R � rh). Under these assumptions,
the model simplifies to

S + I
σ−→ 2I (39)

I
γ+c(t)−−−−→ S

I + b
k1−→ Ih (40)

with Ih + b = Ch. Hence, under these assumptions, after hospitalisation, indi-
viduals will be removed from the disease, either due to immunisation (e.g. due
to vaccination or special health care received) or due to death. The governing
O.D.E.s, associated to the model (39), read

d

dt̂
S ' −σ S

NTot.
I + γI + β

(
t̂2 − 1

t̂

)
I (41)

d

dt̂
I = σ

S

NTot.
I − γI − k1I(Ch − Ih)− β

(
t̂2 − 1

t̂

)
I

d

dt̂
Ih ' k1I(Ch − Ih)

The recovered people rh and the deceased people dh may be obtained by solving,
respectively, the following O.D.E.s

d

dt̂
rh ' krIh ;

d

dt̂
dh = kdIh (42)

From system (41), we obtain

d

dt̂
I = α1I

(
1− I

K1

)
− ρIIh − β

(
t̂2 − 1

t̂

)
I (43)

d

dt̂
Ih = k1ChI − k1IIh with

α1 = σ

(
1− γ

σ
− k1

σ
Ch

)
; K1 = NTot.

(
1− γ

σ
− k1

σ
Ch

)
; ρ =

σ

NTot.
−k1
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In absence of the lockdown measures (β = 0), we have the following scenarios:
∀I0 > 0

i) if Ch < ChCrit. ≡
σ

k1

(
1− γ

σ

)
the equilibrium with I = K1 is stable (44)

ii) if Ch > ChCrit. ≡
σ

k1

(
1− γ

σ

)
the equilibrium with I = 0 is stable

In words:
• for the case i), there will be a proper epidemic outbreak with an increase of
the number of the infectious people;
• for the case ii), independently of the initial size of the susceptible population,
the disease can never cause a proper epidemic outbreak.
This result highlights the crucial role of the Hospitals and the Health Care
Institutes:
If the threshold of the hospital capacities exceeds a lower limit, the spread of the
Coronavirus tends to decrease over time, and the stable solution corresponds to
zero infectious individuals.
Fig. 20. and 21. illustrate the Italian situation. Notice that, with the values of
parameters reported in the corresponding figure captions, ChCrit. = 18434.
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Figure 20: Infectious people and Infectious hospitalised people vs time
- Ch > CHCrit.. In this case, there is an epidemic outbreak with an increase of
the number of the infectious people. The values of the parameters are: β = 0,
k1 = 0.00001, ρ = 0.0001, K1 = 150000, γ = 0.0001, σ = 2.7651, and Ch =
5100.

Similar analysis leading to Eq. (44), allowing the calculation of the critical
threshold for France and US hospital capacities, may also be performed. By
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Figure 21: Infectious people and Infectious hospitalised people vs time
- Ch > CHCrit.. Independently of the initial size of the susceptible population,
the disease can never cause a proper epidemic outbreak. The values of the pa-
rameters are: β = 0, k1 = 0.00001, ρ = 0.0001, K1 = 150000, γ = 0.0001,
σ = 2.7651, and Ch = 18436.

summarising, the (SISIh)L-model shows first the crucial role of hospital capac-
ity, second highlights its limits. For instance, for the Italian situation, to obtain
a relevant dampening effect of the COVID-19 infection, the capacity of hospitals
in Italy would have to increase by about 4 times its current value (which is enor-
mous). Hence the need to combine and coordinate the two actions at the same
time: to increase the hospitals’ capacity as much as possible and to distribute
effective vaccines. The current analysis is mainly addressed to Countries that
do not have the possibility to buy and distribute vaccines on a mass level (such
as, for example, some African Countries). In this case, the role of the hospitals
becomes crucial and basically it represents the only real remedy to stop the
spread of the pandemic.

5.2 The Stochastic (SISIh)L Model

If the dynamics is subjected to white noise, the related stochastic equations read

d

dt̂
I = α1I

(
1− I

K1

)
− ρIIh − β

(
t̂2 − 1

t̂

)
I + ξ1(t̂) (45)

d

dt̂
Ih = k1ChI − k1IIh + ξ2(t̂)
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where

< ξi(t) >= 0 (i = 1, 2) (46)

< ξi(t)ξj(t
′) >= ηijδijδ(t− t′) with η12 = η21

with δij denoting Kronecker’s delta. The statistical properties of this processes,
i.e. < δI(t̂)δI(t̂) >, < δI(t̂)δIh(t̂) > and < δIh(t̂)δIh(t̂) >, may be obtained,
firstly, by determining the reference state. This state satisfies the following
O.D.E.s10

d

dt̂
IRS = α1IRS

(
1− IRS

K1

)
− ρIRSIhRS − β

(
t̂2 − 1

t̂

)
IRS (47)

d

dt̂
IhRS = k1ChIRS − k1IRSIhRS

Let us choose, for example, IhRS = Ch, then10

IRS(t̂) =
I0RS exp((1− α2/β)2/σ)t̂β exp(−(t̂− α2/β)2/σ)

1 + (I0RSα2/K2) exp((1− α2/β)2/σ)
∫ t̂

1
xβ exp(−(x− α2/β)2/σ)dx

α2 ≡ σ
(

1− γ

σ
− Ch
NTot.

)
; K2 = NTot.

(
1− γ

σ
− Ch
NTot.

)
(48)

We have10

d

dt̂
δI =

(
α1 − ρCh − 2

α1

K1
IRS − β

(
t̂2 − 1

t̂

))
δI − ρIRSδIh + ζ1(t̂)

d

dt̂
δIh = −k1IRS(t)δIh + ζ2(t̂) (49)

For Italy, the value of Ch (the total Italian hospitals’ capacity) may be obtained
by making reference to the data published in38. More specifically, in 2017,
when there were 518 public hospitals and 482 accredited private ones, in Italy
there were 151646 beds for ordinary hospitalisation in public hospitals (2.5 per
1000 inhabitants) and 40458 in private ones (0.7 per 1000 inhabitants), for
a total of over 192 thousand beds (3.2 per 1000 inhabitants). The number
of public and private beds destined for intensive care was 5.090 (a number
very close to the 5100 cited by the newspapers these days), about 8.42 per
100000 inhabitants38. Fig. 22. shows the correlation function < δIh(t)δIh(t) >.
As se can see, this is a typical correlation function at equilibrium for system
subjected to random fluctuations. This is not surprising as our reference state
correspond to the maximum capacity of the hospitals (i.e. IhRS = Ch) so,
fluctuations at equilibrium are the only possible ones. The three correlation
functions < δI(t)δI(t) >, < δIh(t)δIh(t) >, and < δI(t)δIh(t) > are shown in
Fig. 2310.
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Figure 22: Correlation function < (δIh(t))2 > for Italy, first wave of
infection by SARS-CoV-2. Having chosen our reference state IhRS = Ch,
we get a typical correlation function for random fluctuations at equilibrium.
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Figure 23: Correlation functions < δI(t)δI(t) >, < δIh(t)δIh(t) >, and
< δI(t)δIh(t) >.

6 Modelling the Spreading of the SARS-CoV-
2 in Presence of the Lockdown and Quaran-
tine Measures through the Kinetic-Type Re-
actions

We are now in a position to propose a more realistic model governing the dy-
namics of the infectious, recovered, and deceased people when population is
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subject to lockdown and quarantine measures imposed by governments. We
shall see that the combined effect of the restrictions measures with the action
of the Hospitals and Health Institutes is able to contain and even dampen the
spread of the SARS-CoV-2 epidemic. The dynamics of the entire process will
be obtained by taking into account the theoretical results summarised in the
previous Sections and in particular7,8,10) and by adopting a kinetic-type re-
actions approach11,12. As we did in Section 9, also here, the dynamics of the
Health Institutes is obtained by taking inspiration from the Michaelis- Menten’s
enzyme-substrate reaction model (the so-called MM reaction 35,37). We recall
that in this framework, the enzyme is associated to the available hospital beds,
the substrate to the infected people, and the product to the recovered people,
respectively. In other words, everything happens as if the hospitals beds act as
a catalyser in the hospital recovery process10,12. In addition, the time-delay for
recovery or death processes will duly be taken into account. More specifically,
in this, more sophisticated, model the entire dynamics is governed by eleven
compartments which, for easy reference, we list below:
S = Number of susceptible people. This number concerns individuals not yet
infected with the disease at time t, but they are susceptible to the disease of the
population;
SL = Number of susceptible people subject to the lockdown measures;
Ih = Number of hospitalised infected people;
IQ = Number of people in quarantine. This number concerns individuals who
may have the virus after being in close contact with an infected person;
I = Number of people who have been infected and are able of spreading the
disease to those in the susceptible category (in this compartment, Ih and IQ are
not accounted);
rh = Cumulative recovered people previously hospitalised;
R = Cumulative number of recovered people (by excluding people previously
hospitalised) meaning specifically individuals having survived the disease and
now immune. Those in this category are not able to be infected again or to
transmit the infection to others;
dh = Cumulative number of people previously hospitalised dead for COVID-19;
D = Cumulative number of dead people (by excluding the compartment dh),
for COVID-19;
L = Number of inhibitor sites mimicking lockdown measures:
Q = Number of inhibitor sites mimicking quarantine measures.
In addition, N , defined in Eq. (67), denotes the number of total cases.
We shall proceed as follows. In Section 6.1 we derive the deterministic Ordi-
nary Differential Equations (ODSs) governing the dynamics of the infectious,
recovered, and deceased people. The lockdown and quarantine measures are
modelled in Subsection 6.3. The dynamics of the hospitalised individuals (i.e.,
the infectious, recovered, and deceased people) can be found in Subsection 6.5.
As previously mentioned, the corresponding ODEs are obtained by consider-
ing the MM reaction model. The equations governing the dynamics of the full
process and the related basic reproduction number are reported in Section 6.8
and Section 6.9, respectively. It is worth mentioning that in it is shown12
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that, in absence of the restrictive measures and neglecting the role of the Hos-
pitals and the delay in the reactions steps, our model reduces to the classical
Susceptible-Infectious-Recovered-Deceased-Model (SIRD-model39). Finally, Sec-
tion 6.10 shows the good agreement between the theoretical predictions with
real data for Belgium, France and Germany.

6.1 Model for COVID-19 in Presence of the Lockdown
and Quarantine Measures

As said, the population is assigned to compartments with labels S, I, R D etc.
The dynamics of these compartments is generally governed by deterministic
ODEs, even though stochastic differential equations should be used to describe
more realistic situations11,12. In this Section, we shall derive the determinis-
tic ordinary differential equations obeyed by compartments. This task will be
carried out by taking into account the theoretical results recently appeared in
literature7,8,10 without neglecting the delay in the reactions steps.

6.2 Modelling the Susceptible People

If a susceptible person encounters an infected person, the susceptible person will
be infected as well. So, the scheme simply reads

S + I
µ−→ 2I (50)

6.2.1 Modelling the Lockdown and Quarantine Measures

The lockdown measures are mainly based on the isolation of the susceptible
people, (eventually with the removal of infected people by hospitalisation), but
above all on the removal of susceptible people.

6.3 Modelling the Lockdown and Quarantine Measures
with Chemical Interpretation

It is assumed the lockdown and quarantine measures are modelled by some
kind of inhibitor reaction where the susceptible people and the infected can
be trapped into inactive states SL and IQ, respectively. Indicating with L and
Q the Inhibitor sites mimicking the lockdown and the quarantine measures
respectively, we get

S + L ⇐⇒ [kLMax − kL]kLSL (51)

I
kQ−−→ IQ =⇒ kQR, tQRR

In the scheme (51), symbol =⇒ stands for a delayed reaction just like enzyme
degradation processes for instance. Here, Lmax = SL + L hence, if L ' LMax,
an almost perfect lockdown measures would totally inhibit virus propagation
by inhibiting all the susceptible people S and the infected people I. A not so

31



perfect lockdown measures would leave a fraction of I free to spread the virus.
The number of inhibitor sites maybe a fraction of the number of the infected
people. Fig. 24. shows the behaviour of the lockdown efficiency parameter
adopted in our model. For simplicity, we have chosen a parameter which is
constant kLMax 6= 0 inside the time-interval t1 ≤ t ≤ t2 and vanishes outside
it. The inverse Lockdown efficiency parameter is k−1

L = kLMax − kL, which is
equal to kLMax outside the door and vanishes inside the the interval t1 ≤ t ≤ t2.
Finally, from Schemes (26) and (51), we get the O.D.E.s for S, L, Q, and IQ:

kL

t

kLMax

t0 t1 t2
Figure 24: Lockdown Efficiency Parameter. For simplicity, in our model
the lockdown efficiency parameter kL is a door-step function. This function is
constant, KLMax 6= 0,within the range t1 ≤ t ≤ t2 and zero outside it.

Ṡ = −µSI − kLS(LMax − SL) + (1− kL)(LMax − L) (52)

ṠL = kLSL− k−1
L SL

İQ = kQI − χIQ(t−tR)

with the dot above the variables denoting the time derivative.

6.4 O.D.E. for the Total Recovered People

At the first approximation, the O.D.E. for the total recovered people R (i.e. the
total individuals having survived the disease) is trivially obtained by considering
the following kinetic scheme:

I =⇒ χ, tRR (53)

IQ =⇒ kQR, tQRR
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That is, the rate of Rt is approximatively proportional to the number of the
infected people I at time t i.e.10.

Ṙ = χI(t−tR) + χR(t−tR) (54)

where we have introduced the time-delay tR (the number of the recovered people
at time time t is proportional to the infected people at time t− tR). However, it
is useful to clarify the following. In Eqs (53), R stands for the total number of the
recovered people (i.e. the number of the recovered people previously hospitalised,
plus the number of the asymptomatic people, plus the infected people who have
been recovered without being previously hospitalised). The natural question is:
how can we count R and compare this variable with the real data ?. The current
statistics, produced by the Ministries of Health of various Countries, concern
the people released from the hospitals. Apart from Luxembourg (where the
entire population has been subject to the COVID-19-test), no other Countries
are in a condition to provide statistics regarding the total people recovered by
COVID-19. Hence, it is our opinion that the equation for R, is not useful since
it is practically impossible to compare R with the experimental data. We then
proceed by adopting approximations and to establish the differential equation
whose solution can realistically be subject to experimental verification. More
specifically:
Firstly, we assume that R is given by three contributions:

R = rh + rA + rI (55)

with rh, rA, and rI denoting the total number of the recovered people previously
hospitalised, the total number of asymptomatic people, and the total number of
people immune to SARS-CoV-2, respectively.
Secondly, we assume that the two contributions rA and rI are negligible i.e. we
set rA ≈ 0 and rI ≈ 0 11.

6.5 O.D.E. for the Recovered People in the Hospitals

Now, let us determine the dynamics for the recovered people in the hospitals.
So, we account people who are only traced back to hospitalised infected people.
We propose the following model12:

I + bh
k1−→ Ih =⇒ kr, trrh + bh (56)

Ih =⇒ kd, tddh + bh

10Notice that the first reaction in the scheme Eq. (53) is the dynamic equation for the total
recovered people adopted in the SIRD-model39.

11We consider that the SARS-CoV-12 has just appeared for the first time. So, we do
not consider the asymptomatic people who are immune to the virus without any medical
treatment.

12Our model is inspired by Michaelis-Menten’s enzyme-substrate reaction. Of course, the
reverse MM reaction has no sense in our case and, consequently, the kinetic constant is equal
to zero.
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with bh denoting the number of available hospital beds, I the number of infected
people, Ih the number of infected people blocking an hospital bed, rh the number
of recovered people previously hospitalised, and dh the number of people deceased
in the hospital. Of course,

Ih + bh = Ch = const. where Ch = Total hospital′s capacity (57)

The dynamic equations for the processes are then:

İh = k1I(Ch − Ih)− krIh(t−tr) − kdIh(t−td) (58)

ṙh = krIh(t−tr)

ḋh = kdIh(t−td)

where tr and td are the average recovery time delay and the average death time
delay, respectively, and we have taken into account Eq. (57) i.e., bh = Ch − Ih.
In general tr 6= td 6= 0. Of course, the variation of r(t) over a period ∆t is:

∆rht = rht − rh(t−∆t) (59)

6.6 O.D.E. for People Tested Positive to COVID-19

The number of the infected people may be modelled by the following kinetic
scheme

S + I
µ−→ 2I (60)

I =⇒ χ, tRR

I =⇒ α, tDD

I + b→ k1Ih

I → kQIQ

The scheme (60) stems from the following considerations

a) If a susceptible person encounters an infected person, the susceptible person
will be infected ;

b) The infected people can either survive and, therefore, be recovered after an
average time-delay tR, or die after an average time-delay tD;

c) The schemes (51) and (56), respectively, have been taken into account.

The differential equation for the infected people is reads then

İ = µSI − kQIQ− k1I(Ch − Ih)− χI(t−tR) − αI(t−tD) (61)
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6.7 O.D.E. for Deaths

In this model, we assume that the rate of death is proportional to the in-
fected people, according to the scheme (60). By also taking into account the
scheme (51), we get

I =⇒ α, tDD (62)

and the corresponding O.D.E. for deaths reads

Ḋ = αI(t−tD) (63)

6.8 Set of O.D.E.s for the Spread of SARS-CoV-2 when
the Lockdown and the Quarantine Measures are Adopted

By collecting the above O.D.E.s, we get the full system of differential equations
governing the dynamics of the number of the infected people, the total number
of the recovered people previously hospitalised and the total number of deceased
peopled, when the lockdown and the quarantine measures are adopted

Ṡ = −µSI − kLS(LMax − SL) + k−1
L SL with k−1

L = kMax − kL (64)

ṠL = −kLS(LMax − SL) + k−1
L SL

İ = µSI − kQI − k1I(Ch − Ih)− χI(t−tR) − αI(t−tD)

İh = k1I(Ch − Ih)− krIh(t−tr) − kdIh(t−td)

İQ = kQIt − χIQ(t−tR)

ṙh = krIh(t−tr)

Ṙ = χI(t−tR) + χIQ(t−tR)

ḋh = kdIh(t−td)

Ḋ = αI(t−tD)

From Eqs (64) we get

S + SL + I + IQ + Ih +R+ rh +D + dh = const. (65)

or, by taking into account that S+SL = STot., R+rh = RTot., D+dh = DTot.,
and I + IQ + Ih = ITot. we get

STot. + ITot. +RTot. +DTot. = const. (66)

The number of total cases N is defined as

N = ITot. + rh +DTot. (67)
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6.9 The Basic Reproduction Number

We note that, in absence of the lockdown and the quarantine measures, the
dynamics of the infectious class depends on the following ratio:

R0 =
µ

χ+ α

S

NTot.
(68)

with NTot. denoting the Total Population. R0 is the basic reproduction number.
This parameter provides the expected number of new infections from a single
infection in a population by assuming that all subjects are susceptible2,3. The
epidemic only starts if R0 is greater than 1, otherwise the spread of the disease
stops right from the start.

6.10 Application of the Model and Appearance of the Sec-
ond Wave of SARS-CoV-2 Infection

Let us now apply our model to the case of a small Country, Belgium, and to
other two big Countries, France and Germany. Real data are provided by the
various National Health agencies (Belgium-Sciensano40; France-Santé Publique
France41; Germany -Robert Koch Institut. Country data from Worldbank.org42)
and compiled, among others, by European Centre for Disease Prevention and
Control (ECDC). It should be noted that this measures does not generally pro-
vide the true new cases rate but reflect the overall trend since most of the
infected will not be tested43. It should also be specified that real data pro-
vided by ECDC refer to the new cases per day, which we denote by ∆Inew(t).
By definition, ∆Inew(t) corresponds to the new infected people generated from

step I + S
µ−→ 2I solely during 1 day, and not to the compartment I. Hence,

the ECDC data have to be confronted vs the theoretical predictions provided
by the solutions for S(t) and SL(t) of our model, according to the relation
∆Inew(t) = −∆S(t) − ∆SL(t). The values of the parameters used to perform
these comparisons are shown in Table 1. Initial µ and k1 values have been esti-
mated (fitted) from the measurements using the short period at the start of the
pandemic using simple exponential solution valid during that period. I(60) is
the initial value of infected from March 1, 2020 (day 60) obtains from the respec-
tive measurements. Hospital capacity is evaluated from the different Countries
published capacity. Lockdown starting dates and duration are retrieved from
each country Covid policies44. Other parameters have been estimated by best
fit of new cases during the first wave. We draw attention to the fact that the
constants µ, Lm, k1, C, and I(60) have been normalised with respect to the
surface of the Country. As it can be seen, the values of the re-normalised con-
stants are the same values, at least in terms of orders of magnitude, irrespective
of the magnitude of the Country in question (Belgium, France, and Germany).
However, we are aware that the interpretation may vary from one Country to
another. Finally, numerical solutions to the time delayed ordinary differential
equations have been obtained by making use of the MATLAB dde23 module
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Table 1: List of the Parameters

Parameters Belgium France Germany
Density [km−2] 377 119 240
Surface [km2] 30530 547557 348560
µ [d−1km2] 0.00072 0.002 0.00093
µ after L1 0.000288 0.00087 0.000387
χ [d−1] 0.062 0.062 0.0608
α [d−1] 0.05 χ 0.05 χ 0.02 χ
kL [d−1] 0.07 0.06 0.06
kQ [d−1] 0.02 0.01 0.01
Lm [km−2] 377.0 119 240
k1 [d−1km2] 0.01 0.01 0.01
kd + kr [d−1] 0.2 0.2 0.21
kd
kr

0.5 0.5 0.1

tr [d] 7 7 7
td [d] 7 7 7
tR [d] 8 8 8
tD [d] 8 8 8
C [km−2] 0.0655 0.0091 0.023
I(60) [km−2] 0.0023 0.0018 0.0014
Start L1 [d] 77 71 76
End L1 [d] 124 131 125
Start L2 [d] 306 303 306
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with a constant time delay. Discontinuities have been avoid for the historical
values and a Runge-Kutta implicit scheme is used45.
During the first lockdown, Countries have taken various actions to limit Coron-
avirus spreading (social distancing, wearing masks, reducing high density hotspots
etc.). In order to include these measures in a simple way, we assumed that the
net effect is to reduce the actual infection kinetic rate µ by some constant factor.
This is given in the table as µ after L1. Note that the transition occurs instan-
taneously in our model; this leads to the sharp drop in the total infected at that
time shown in the figures. Other parameters are tuned to account for the actual
variability of ∆Inew (but not its absolute value) and official number of deaths
(DTot.(t) = D(t) + dh(t)). The delay for recovery and death processes has been
estimated from the measurements of hospitalisation recovery in a Country. For
instance, Fig. 25 shows the estimation of the recovery time-delay for Belgium:
it corresponds to the time-interval between the peak of the new admission and
the peak of the recovered people from hospitals. A similar procedure has been
adopted for estimating the recovery and death time-delays also for France and
Germany.
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Figure 25: Estimation of the time-delay. The time-delays have been estimated by
considering the time-interval between the peak of the new admission and the peak
of the recovered people from hospitals. This figure corresponds to the Belgian
case.

• Belgian Case.
Figs (26) refer to the Belgian case. In particular, Fig (26) shows the solutions of
our model for the infectious (I), total recovered (R) and total deceased (D) peo-
ple. Fig. (27) illustrates the theoretical solutions for hospitalised infectious (Ih),
the total recovered (rh) and total deceased (dh) people previously hospitalised.

Figs (28) and (29) shows the comparison between the theoretical predictions
for ∆Inew(t) and deaths and real data for Belgium (according to the database
Sciensano). Notice in Fig. 28 the prediction of the second wave of infection by
SARS-CoV-2
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Figure 26: Theoretical solutions for infectious (I), cumulative number of recov-
ered people (R) and deaths (D) for Belgium.
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Figure 27: Theoretical solutions for hospitalised infectious (Ih), total recovered
(rh) and total deceased (dh) people, previously hospitalised, for Belgium.

• French Case.
Figs (30) and (31) shows the comparison between the theoretical predictions
for ∆Inew(t) and deaths and real data for Belgium (according to the database
Santé Publique France). Notice in Fig. 30 the prediction of the second wave of
infection by SARS-CoV-2
• German Case.
Figs (32) and (33) shows the comparison between the theoretical predictions
for ∆Inew(t) and deaths and real data for Belgium (according to the database
(Robert Koch Institut). Country data from Worldbank.org). Notice in Fig. 32
the prediction of the second wave of infection by SARS-CoV-2
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Figure 28: Comparison between the theoretical prediction for ∆INew with real
data provided by the data base Sciensano, for Belgium.
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Figure 29: Comparison between the theoretical solution of our model for Deaths
with real data provided by the database Sciensano, for Belgium.

7 Modelling Descending Phase in Case of Dis-
appearance of SARS-CoV2 Infection

In Section 1 we have modelled the descending phase on the basis of the law for
the growth of a Malthusian population16 (see Eq. (3). This phase is charac-
terised by the fact that the basic reproduction number R0 in less than 1. The
full disappearance of the virus can be associated with the fact that the total
number of cases N (see Eq. (67) tends to reach a plateau13. The objective of this
Section is to determine the trend of the curve of positive people during the de-
scending phase by assuming that the total number of cases reached a maximum
value, corresponding to a plateau. This task is accomplished by taking into
account the appropriate equations for the recovered people and the deceased
people for COVID-19 provided by System (64). Since we have assumed that N
reached its maximum value, during the descent phase the number of infectious
people over time must satisfy a conservation equation. This allows determining

13Notice that, in this case, N is not constant since we do not assume that N coincides with
the total population of a country Npop.. Hence Npop. −N may vary, with Npop. = const.
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Figure 30: Comparison between the theoretical prediction for ∆INew with real
data provided by the data base Santé Publique France, for France.
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Figure 31: Comparison between the theoretical solution of our model for Deaths
with real data provided by the database Santé Publique France, for France.

the time-evolution for the positive people.

7.0.1 Dynamics of the recovered people and the deceased individuals

Clearly, the number of the recovered people, previously hospitalised, at the step
n (i.e. rn), is linked to the total number of the recovered people previously
hospitalised at the step n (denoted by hn) by the relation

rn = hn − hn−1 or ht =

n=t/∆t∑
n=1

rn (with ∆t ' 1 day) (69)

where we have set h0 = 0. Eqs (64) provide the dynamic equations for rn, Rn
and dt:

ṙh = krIh(t−tr) (70)

Ṙn = χI(t−tR) + χIQ(t−tR)

ḋh = kdIh(t−td)
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Figure 32: Comparison between the theoretical prediction for ∆INew with real
data provided by the data base (Robert Koch Institut. Country data from World-
bank.org, for Germany.
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Figure 33: Comparison between the theoretical solution of our model for Deaths
with real data provided by the database (Robert Koch Institut. Country data
from Worldbank.org, for Germany.

7.1 Equation for the Positive People

Of course, during the descent phase, the number of active people It satisfies a
simple law of conservation: If we are in the situation where there are no longer
new cases of people tested positive for COVID-19 and if we assume that the
active people cannot leave their country of origin (or else, if they do, they will
be rejected by the host Country), then the number of infected people cannot but
decrease either because some people are deceased or because others have been
recovered. In mathematical terms

It = I0 − (ht − h0)− (dt − d0) = NMax − ht − dt (71)

with h0, d0 and I0 denoting the values of ht, dt and It when the infected people
are evaluated at the time t = tMax i.e., the time that maximises the number of
the total cases (for the definition of ht see the forthcoming Eq. (72)). It should
be noted that the conservation law (71) applies only when there are no longer
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new cases of people tested positive to COVID-1914. Here, by the descending
phase we mean the phase where Eq. (71) applies.

7.2 Equations for the Descending Phase

To summarise, the equations that must be satisfied for the total regression of
the SARS-CoV2 infection read8:

ṙh = krIh(t−tr) (72)

Ṙn = χI(t−tR) + χIQ(t−tR)

ḋh = kdIh(t−td)

It = NMax − ht − dt with n∞ = 0

ht =

n=t/∆t∑
n=1

rn where ∆t ' 1 day

Notice that the first three equations of system (72) are also valid during the
ascending-phase. Of course, in this case, the initial conditions are rt=0 = 0,
dt=0 = 0 and It=0 = 0.

7.3 Typical Trends for the Descending Phase for Italy and
Belgium if N Reaches a Plateau

In this subsection, we report the numerical solutions of Eqs (72) for Italy and
Belgium. Fig. 34 and Fig. 35 concern the Italian situation. They show the
numerical solution of Eqs (72) for the number of recovered people and deaths,
respectively. Fig. (36), illustrates the descendant-phase for Italy if N reaches a
plateau.
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Figure 34: Italy situation. Theoretical predictions (blue line) against the exper-
imental data (black circles) for the recovered people.

14So, Eq. (71) does not apply necessarily as soon as the number nt (the number of people
tested positive for COVID-19) starts to decrease. Indeed, it may happen that nt decreases
because, for example, the number of new cases of people tested positive is less than the number
of the people who have recovered in the meantime. Conservation law (71) applies only from
the moment where the number of new cases of people tested positive is strictly equal to zero.
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Figure 35: Italy situation. Theoretical predictions (blue line) against the exper-
imental data (black circles) for the deceased people.
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Figure 36: The descending phase for Italy. If N reaches a plateau, after two
months the lockdown measures may heavily be lightened and we can return to
normal work.

Figs (37) and (38) refer to the Belgian situation. The figures illustrate the
numerical solutions of Eqs (72) for the number of recovered people and deaths,
respectively. Fig. (39) shows the descendant-phase for Belgium if N reaches a
plateau.
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Figure 37: Belgian situation. Theoretical predictions (blue line) against the
experimental data (black circles) for the recovered people.

In Fig. 36 and 39 refer to the Italian and Belgian cases during the first wave of
SARS-CoV2 infection, respectively. In these figures a red arrow appears which
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Figure 38: Belgian situation. Theoretical predictions (blue line) against the
experimental data (black circles) for the deceased people.
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Figure 39: The descending phase for Belgium. If N reaches a plateau, after one
month the lockdown measures may heavily be lightened and we may return to
normal work.

indicates the moment when the total compartment N was close to reaching
the plateau. However, the restrictive measures have been loosened considerably
allowing, unfortunately, the virus to reinvigorate itself again giving rise to the so-
called ”second wave” of SARS-CoV2 infection. Basically, from a mathematical
point of view, the total regression of the virus is obtained if the following two
conditions are simultaneously satisfied:

• The compartment N reached the plateau;

• Restrictive measures are maintained with severity until the value of the
effective reproduction number, Rt

15, is less than 1.

Of course, it is very difficult, if not harmful, to impose severe restrictive con-
ditions for a long time due to the negative, if not catastrophic, impact at the
social and economic level. So, we have to learn to coexist with the virus by
remaining, however, vigilant and respecting hygiene rules, even when its rate of
presence is low.

15The effective reproduction number Rt is defined as the mean number of secondary cases
generated by a typical primary case at time t in a population, calculated for the whole period
over a 5-day moving average.
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8 Perspectives

It is worth noting the degree of the flexibility of our model. For example, let us
suppose that we need to set up a model able to distinguish old population (over
65 year old) from the young one (with age not exceeding 35 years), by assuming
that the older population is twice as likely to get infected by Coronavirus with
respect to the younger one. In this case, it is just sufficient to replace the scheme

I + S
µ−→ 2I with the scheme

I + SY
µy−−→ 2I (73)

I + 2SO
µo−→ 3I

S = SY + SO

with SY and So denoting the susceptible young people and the susceptible old
people, respectively. Another example could be the following. Let us suppose
that we need to distinguish two class of infected individuals:
1) infected people (denoted by I1) able to transmit the Coronavirus to suscep-
tible according to the (standard) scheme I1 + S → 2I;
2) Infected people (denoted by I2) having the capacity to transmit the virus, say,
7 times higher with respect to the category 1). In this case, the corresponding
scheme reads:

I1 + S
µ1−→ 2I (74)

I2 + 7S
µ2−→ 8I

I = I1 + I2

It is then easy to write the ordinary differential equations associated to schemes
(73) and (74). The above example draws attention to the great flexibility offered
by the Kinetic-type approach. For example, in the introduction we mentioned
the new sub-variants of Omicron, BA.4 and BA.5. It is commonly accepted that
BA.4, BA.5, and BA.2.12.1 are more contagious than past versions of Omicron,
which is allowing them to spread even faster9. The kinetic scheme (74) can be
easily readjusted to treat the evolution of variants B.4 and B.5 once the degree of
contagion n of these two sub-variants is known, establishing the kinetic reaction

I + S
µ−→ nI (75)

Let us now consider another aspect of the model. In the Subsection (6.3), we
have introduced scheme (51) that models the lockdown measures. As mentioned,
such measures are imposed by national governments to all susceptible popula-
tion. However, we can also take into consideration the hypothesis that these
measures are not rigorously respected by the population and this for various
reasons: neglect of the problem, depression due to prolonged isolation, lack of
confidence in the measures adopted by the Government, desire to attend parties
with friends and relatives, refusal to wear masks in crowded environments, etc.
These actions invalidate the effectiveness of lockdown measures significantly.
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Scheme (51) still adapts to describe these kind of situations with the trick of
replacing Fig. 24 with another one that models the emotional behaviour of sus-
ceptible people (or with an analytic expression that may be obtained by using
the mathematical basis introduced in8,10,11,12. The O.D.E.s read

Ṡ = −µSI − kES(EMax − SE) + (1− kE)(EMax − E) (76)

ṠE = kESE − k−1
E SE

where E stands for Emotional.
This paper, together with Sonnino et al.11, are the first contributions to the
overall objectives aiming to obtain the correct space-time stochastic differential
equations able to describe realistic situations of spread of SARS-CoV2 infection
in large countries. As mentioned in the Introduction, our task will be accom-
plished if are able to

1. model the distribution of hospitals in a country;

2. model the distribution of the poles of attraction of susceptible people (e.g.,
shopping centres workplaces, etc.);

3. identify a mechanism that allows to establish when a pole of attraction
becomes ”saturated” with infected people by proposing alternative poles
of attraction;

4. model correctly the Lockdown and the Quarantine measures adopted by
the Government of the Country;

5. determine the nature of the intrinsic (ie spontaneous) fluctuations to which
a macroscopic system is subjected, determining the correlation function
by statistical mechanics.

At first glance, such a work program would appear to be too ambitious and as
said, to our knowledge, the state-of-the-art of the current alternative techniques
are unable to resolve the issues listed above. The approach, ”kinetic-type reac-
tions” (KTR) proposed by us is very promising and allows to achieve this goal
in a relatively simple way. With the axioms enunciated in the Introduction, the
”kinetic-type reactions” approach

• models each actor by a dedicated “chemical species” that can only be
created or destroyed as the result of one, or several, elementary steps,

• allows to determine the dynamics of the system starting from this set of
elementary steps;

• and due to its flexibility, allows to analyse complex situations where several
variables are involved, such as R, Q, Rh, Ih etc;
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9 Conclusions

We showed that our models are able to produce predictions not only on the first
but also on the successive waves of SARS-CoV2 infections, Omicron and its sub-
variants. The theoretical predictions are in agreement with the official number
of cases with minimal parameter fitting. We discussed the strengths and limi-
tations of the proposed models regarding the long-term predictions and, above
all, the duration of how long the lockdown and the quarantine measures should
be taken in force in order to limit as much as possible the intensities of subse-
quent SARS-CoV-2 infection waves. This task has been carried out by taking
into account the theoretical results recently appeared in literature7,8,10,11,12 and
without neglecting the delay in the reactions steps. Our models (the (SISIh)L-
model and the kinetic-type reactions model) emphasise, and demonstrate, the
crucial role played by the Hospitals. More specifically, we showed that the
Health Care Institutions directly enter into the dynamics of the infectious indi-
viduals by influencing the outcome of the outbreak significantly, limiting, and
even dampening, the spread of the Coronavirus. We applied our results in two
(very) different situations: the spreading of the Coronavirus in a small European
Country (Belgium) and in big Countries (Italy, France, Germany and USA). We
have also incorporated real data into a stochastic model. The goal of this series
of works is to obtain a comparative analysis against the deterministic one, in
order to use the new theoretical results to predict the number of new cases of
infected people and to propose possible changes to the measures of isolation.
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