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ABSTRACT 
Clot strength is of utmost clinical significance. The elastic constant of the 
forming clot is a surrogate of its strength. The elastometric assessment 
of the forming clot, known as thromboelastography, is therefore of 
utmost clinical importance. Thromboelastography using a rotational 
viscoelastometer requires a geometric model to couple the shear 
deformation of a forming blood clot to its viscoelastic properties. 
Hartert’s original model idealized the complex geometry of the clot as 
a single cuboid and predicted a maximal effective shear modulus 
Gmax=5000 dyn/cm2. Hochleitner et al. recently reviewed this decades-
old model, with the aim to refine it by reducing geometric simplifications 
that made the model more tractable. Hochleitner’s revised model 
uncouples annular segments and idealizes them as cuboids, thereby 
obtaining a maximal effective shear modulus of Gmax=4466 dyn/cm2. 
Hochleitner’s idealizations, while more accurate that Hartert’s, still 
produces error of at least 52%. Using the actual formula for annular 
shear from an applied torque, as derived by Ramberg and Miller, 
obviates several geometric simplifications assumed for analytical 
tractability and produces an elastic constant of G=2930 dyn/cm2. The 
clinical importance of precise determination of the formula for 
transforming clot amplitude to clot strength is underscored by the 
nonlinear relationship between elastometric amplitude and elastic 
constant, as the systematic error cannot be linearly rescaled. Thus, clot 
strength in several clinical scenarios should be based on clot strength as 
opposed to clot amplitude. 
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1. │INTRODUCTION 

Normal hemostasis controls exsanguination by 
rapidly sealing injured vessels with a blood clot that 
is strong enough to withstand the pressure and shear 
stress imposed by hemodynamic forces. Clot 
strength, therefore, is of utmost clinical importance. 
In 1948 Helmut Hartert designed a prototype 
viscoelastometer (VEM) that measures the forming 
clot strength and kinetics.1 Of all contemporary 
clinical coagulation tests, elastometry provides the 
most comprehensive assessment of hemostasis. 
Consequently, viscoelastometry has become the 
standard of care in trauma, transplant, and cardiac 
anesthesia. Nevertheless, viscoelastometric 
quantification of clot strength continues to elude 
clinicians and researchers alike. In this manuscript 
we present the prevailing methodology and flaws 
of VEM-derived quantification of clot strength. We 
then derive more accurate formula for the 
conversion of amplitude to clot strength in clinical 
coagulative elastometry. 

 

1.1 │Background 
Viscoelastometry is the measurement of two 

distinct material properties: viscosity and elasticity. 
Viscosity describes the resistance of fluids to flow,2 
and elasticity is the physical property of a solid to 
return to its original shape and size upon removal 
of a deforming force.3 Viscoelastic materials 
possess both fluid and solid properties. In contrast 
to the instantaneous response of solid materials, 
blood clots and many other biological materials 

show gradual deformation and recovery in 
response to a transient deforming force. This time-
dependent anelastic behavior of materials is called 
viscoelasticity.4 VEMs apply a small and gradual 
force to the evolving blood clot; viscosity, therefore, 
is negligible and can be ignored.5-7 As such, the clot 
can be viewed as an elastic solid that obeys linear 
elasticity.5-7 Linearity denotes a direct 
proportionality between a deforming force and 
ensuing deformation, such as stretch, compression, 
twist (torsion), or shear (sliding). When a tangential 
(i.e. parallel and coplanar) shearing force (F) is 
applied to a surface of an elastic cuboid with area 
(A), it produces a shear stress equal to F/A (Figure 
1), and results in a tangential displacement of area 
A by ∆x. The tangential displacements of inner 
layers of the cuboid decrease monotonously toward 
the fixed layer. The shear strain is defined as the 
fractional deformation in the dimension (L) along 
which the stress and strain spread, and equals ∆x/L 
(Figure 1). The proportionality constant between 
shear stress to shear strain is called the shear 
modulus, and is denoted by G.3 Accordingly, in a 
cuboid the shear modulus is 

 

G = 
Shear stress

Shear strain
 = 

F/A

∆x/L
=

F∗L

A∗∆x
.  (1) 

 
In the clinical arena, VEMs estimate the effective 

shear modulus G as a surrogate of clot strength; 
‘effective’ shear modulus differs from standard 
definition of shear modulus in that it is an estimate 
that is derived from a model. 

 

 
Figure 1: The shear modulus of a cuboid and an annulus.  

https://esmed.org/MRA/index.php/mra/article/view/3033
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A force F is shearing surface area A of the cuboid 
and deforms it by ∆x in the direction of the force. 
The tangential displacements decrease 
monotonously in the inner layers of thickness L (black 
arrows). The shear modulus G is derived from the 

equation G = 
F/A

∆x/L
. Adapted from Hochleitner et 

al.5 
Hartert’s apparatus included a cylindrical 

stainless-steel plunger, coaxially suspended on a 

torsion wire inside a cylindrical stainless-steel cup 
(Figure 2A).5 A fresh sample of blood is placed in 
the cup and coagulation is initiated. As the nascent 
clot adheres to the inner surface of the cup and the 
outer surface of the plunger, the clot assumes the 
irregular geometry of the space between the cup 
and the plunger. This space can be divided into two 
vertical cylindrical segments and an inverted conical 
base (Figure 2B).5 

 

 
Figure 2: Hartert’s Thromboelastograph.  
Panel (A): Hartert’s prototype viscoelastometer (left) includes a cylindrical stainless-steel plunger, coaxially 
suspended on a torsion wire inside a cylindrical stainless steel cup.  
Panel (B): After fresh sample of blood is placed in the cup and activation of coagulation, the nascent clot 
assumes the irregular geometry of the space between the cup and the plunger with two vertical cylinders 
(segments A and B), and an inverted conical base (segment C). Adapted from Hochleitner et al.5 

 

 The cup oscillates by θ’= 1/24 radian in each 

direction,7 and applies a torque, i.e. a rotational 
force, on the outer layers of the two cylindrical clot 
segments, as well as the base. The torque spreads 
centripetally (cylindrical segments A and B) and 
upwards (conical base, i.e., segment C; Figure 2B) 
and the shear stress and strain ultimately reach the 
innermost layer of the clot. As depicted in panels A 
and B of Figure 3, the resultant shear stress that acts 
on these three segments angularly displaces their 

outer and inner layers by θ’ and θ, respectively. At 

the completion of each half oscillation the cup comes 
to a stand-still. This pause is sufficiently long for all 

layers of the clot and the plunger to come to a 
rotational stand-still, and a short steady state is 
achieved.7 During this steady state, the torques 
acting on concentric clot’s layers equalize, and all 
layers of the clot become immobile. In the innermost 
layer of the clot, a tangential force (F) produces a 
torque (T) that rotates the plunger and wire, so that 
T = F*r, where r is the distance between F and the 
perpendicular radius (r) of rotation of the plunger 

(Figure 3A). The torsional stiffness (τ) of the wire 

hinders its twisting; τ is defined as the torque 

required to twist the wire by one radian. The 

torque, therefore, also equals τ*θ. Taken together, 

https://esmed.org/MRA/index.php/mra/article/view/3033
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T = F*r = τ*θ, and after rearrangement: 𝐹 =
τ∗ θ

r
. 

As the torsional wire arrests the plunger’s rotation 

at θ, the innermost clot’s layer becomes fixed, and 

relative to it the outermost layer is angularly 

displaced by a magnitude of θ’-θ (Figure 3 A & B). 

As with a cuboid, the angular displacements of the 
inner layers of a clot formed in Hartert’s 
thromboelastograph (TEG) decrease monotonously 
toward the plunger (Figure 3B).

 
Figure 3: The shear modulus of an annulus in Hartert’s apparatus.  
Panel (A): The cylindrical outermost clot layer of an annular segment in Hartert’s thromboelastograph is 

attached to the cup and oscillates with it by angle θ’. The innermost layer is attached to the plunger. The 

innermost layer has an angular displacement of θ and imposes a torque (T) on the plunger. Adapted from 

Hochleitner et al.5 
Panel (B). Hartert’s apparatus includes a plunger suspended on a torsion wire inside a blood-filled cylindrical 

cup. The cup oscillates by θ’ radians and applies a torque on the outer layers of the clot. The torque spreads 

centripetally and upwards and ultimately reaches the innermost layer of the clot, which then begins to rotate 

the plunger. As the torsional wire arrests the plunger’s rotation at θ, the innermost clot’s layer becomes fixed, 

and relative to it the outermost layer is angularly displaced by a magnitude of θ’-θ. Ensuing angular 

displacements of the inner layers decrease monotonously toward the plunger. 
Panel (C): Unfolding a cylinder along its long-axis yields a horseshoe-shaped object that cannot be 
straightened due to uneven inner and outer curvatures. 
 
 

2.0 │The Shear Modulus of Hartert’s TEG 
In 1962, Hartert formulated the derivation of the 

shear modulus in his apparatus.7 In the absence of 
a tool for precise analysis, and for the sake of 

tractability, Hartert restricted his calculation to the 
longer cylinder alone (Segment B of Figure 2B). He 
visualized the annular clot as if sliced along its long 
(vertical) axis and unwrapped (Figure 3C); the 

https://esmed.org/MRA/index.php/mra/article/view/3033
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resultant annular shape has two concentric curves 
whose arc lengths ratio equals the ratio of their 
radii. For tractability, however, Hartert idealized 
the annulus as a sheared cuboid with an area 
A=2πhr and an ensuing linear displacement of 

∆x=r*(θ’-θ), where h and r are the height and inner 

radius of the clot annulus, respectively (Figure 3A). 
After substitution for A, F and ∆x in Eq. (1), we get: 

𝐺 =
F∗L

A∗∆x
=

L∗τ∗ θ

2πhr∗r∗r(θ’−θ)
=

Lτ 

2πh𝑟3 ∗
 θ

(θ’−θ)
.     (2) 

 
Experimenting with healthy individuals’ blood, 

Hartert observed a maximal inner displacement θ 

of θmax=θ’/2, and after rearrangement 2θmax=θ’. 

For this maximal displacement and with his 
apparatus variables’ values, Hartert calculated an 

effective maximal shear modulus Gmax =
L∗τ∗ θ

2πhr∗r∗r(2θ−θ)
=

Lτ 

2πh𝑟3 = 5000 dyn/cm2, and 

referred to Gmax as the (elastic) constant of TEG.5,7 
Hartert’s graphing apparatus was calibrated so 

that a full cup oscillation of 2θ’=1/12 radians 

corresponded to 100 mm deflection on the 
graphing paper,7 while the total (back and forth) 

angular amplitude of the plunger (2θ) was 

recorded as linear deflection (S in mm) for each 
oscillation (supplementary Figure 4A). An actual 
recording of Hartert’s TEG is given in 
Supplementary Figure 4B.5,7 Accordingly, 
contemporary TEG commonly transforms an angular 
amplitude into an effective shear modulus by the 

formula G=5000∗
 S

(100−S)
.8,9  

 
Supplementary Figure 4: Recording of the oscillatory motion of Hartert’s thromboelastograph. 
Panel (A): Schematic representation of cup and plunger’s oscillatory angular motions in radians and 
corresponding graphically-recorded linear displacements in mm, after reaching maximum clot strength of 
normal blood. Adapted from Hartert.7 
Panel (B): Actual recording of Hartert’s thromboelastograph. Amplitude of the angular motion, in mm, is 
depict along the y-axis of a film paper moving leftward along the x-axis in at a speed of 2 mm/min. 
Adapted from Hartert.1 
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2.1 │The shear modulus of an annular elastic 

body. 
In 1953, nine years before Hartert’s analysis 

and presumably unbeknownst to Hartert, using 

identical variable definitions as Sec. 2.0, Ramberg 
and Miller10 derived the governing equation for the 
shear modulus of an elastic annulus as follows: 

 

𝐺 =
 T 

4πh(θ’−θ)
∗ (

1

𝑟2 −
1

(𝑟+𝐿)2) =
 τθ 

4πh(θ’−θ)
∗ (

1

𝑟2 −
1

(𝑟+𝐿)2).  (3) 

 
 Equation (3) was later described by Brannon as 

well.11 The error (ε) associated with employing Eq. 

(2) in lieu of Eq. (3) depends on the ratio 𝑞 =
𝐿

𝑟
 as 

follow: 

ε = 
2𝑞2+3q

2+q
 (please see supplementary file 1, section 

A for derivation). Given that segment B in Hartert’s 
design had dimensions of Lb = 0.1 cm and rb = 0.3 

cm, q = ⅓, the error ε = 
2𝑞2+3q

2+q
 = 

11

 21
 = 0.52. Thus, 

by idealizing segment B as a cuboid, Hartert 

overestimated its clot firmness by 52%. For a ≤ 5% 

error, the 
𝐿

𝑟
 ratio should be ≤ 0.0332 

(supplementary file 1). In Hartert’s apparatus, the 
𝐿

𝑟
 

ratio was 10 times larger; thus, Hartert’s 
visualization of the unwrapped annulus as a cuboid 
was unsound. Again, Hartert was presumably 
unaware of Ramberg and Miller’s derivation of Eq. 
(3). It is valid, however, to idealize an annulus as a 

cuboid when the L≪ r, since Ramberg and Miller’s 
equation then becomes identical to Hartert’s 
equation, as shown in section B of supplementary 
file 1. 
 

3.0 │Previous scrutiny of Hartert’s calculations. 
In 2017, Hochleitner et al. proposed a more 

refined calculation of the effective maximal shear 
modulus in Hartert’s apparatus by including all 
three segments of the clot (Figure 2B).5 Confronted 
with an object of irregular geometry, and lacking 
an exact analytical solution to the elasticity problem 
at hand, Hochleitner et al. did not seek the aid of 
available analytical tools. Instead, their approach 
was to: (i) separate the clot into three uncoupled 
segments, (ii) analyze each segment independently 
of its adjacent segment(s), and (iii) add the elastic 
resistance of all three segments to calculate the 
maximal effective stiffness of the clot (i.e. Gmax). 
Such an approach underestimates the effective clot 
stiffness and ignores the forces between adjacent 
layers, with ensuing geometric compatibility errors 
(please see Sections 3.1 and 3.2 below). 
Furthermore, in the calculation of the elastic 
resistance of the annular segments A and B, the 
authors did not use the governing annular equation 
(Eq. (3)) as derived decades earlier by Ramberg 

and Miller.10,11 Instead, and in common with Hartert, 
they idealized the annular segments as cuboids, 

which we above proved is only valid for L ≪ r. 
While their error in idealizing segment B as a 
cuboid is identical to Hartert’s, the now-included 

segment A has a ratio 
𝐿

𝑟
 of 

0.25

0.15
 = 

5

3
, which yields an 

error ε = 
2𝑞2+3q

2+q
 = 

95

33
 = 2.88, i.e. 288% in excess 

of its true elastic resistance. Even so, the inclusion of 
segments A and C in the calculations more than 
canceled the overestimation of the elastic resistance 
of segment A (please see Section 3.1 below). 
Hochleitner calculated for the clot in its entirety an 
effective Gmax = 4466 dyn/cm2; a value that is 
nearly 11% lower than that calculated by Hartert. 

  

3.1 │The impact of inclusion of additional clot’s 
segments on calculated Gmax 

How the inclusion of additional clot’s segments 
(segments A and C; Figure 2B) reduced the 
calculated effective stiffness could be intuitively 
appreciated as follows: The clot’s resistance to 
torsional deformation is identical to a spring’s 
resistance to stretch; a torque imposed on several 
clot’s segments is, therefore, analogous to a force 
acting on several springs in parallel arrangement. 
The effective stiffness of a parallel arrangement of 
springs is the sum of the individual springs’ 
stiffness,12 and a given torque imposed on two 
parallel annuli of an elastic material would displace 
them less than when imposed on a single annulus. If 
we experimentally observe that a given torque 
imposed on two annuli of material “A” yields a 
displacement identical to the displacement 
recorded for a single annulus of material “B”, we 
must conclude that the shear modulus (G), i.e. the 
resistance, of material “A” is lower than that of 
material “B”. As noted in Section 2.0, for tractability 
Hartert assumed that the clot’s elastic resistance is 
due to segment B alone and calculated its Gmax 
using a given torque and displacement. 
Hochleitner’s analysis correctly used the same 
torque and displacement, and correctly attributed 
it to the elastic resistance of all three segments. As 
a result, Hochleitner calculated a smaller Gmax by 
the virtue of inclusion of additional segments. The 
reduction in the effective elastic modulus G, when 

https://esmed.org/MRA/index.php/mra/article/view/3033
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attributed to 3 clot segments in parallel surpassed 
the overestimation of elastic resistance of segments 
A, to the extent that Hochleitner’s calculated value 
was nearly 11% lower than that calculated by 
Hartert. 

 

3.2 │Uncoupling of clot segments results in 
geometric incompatibilities.  

Hochleitner’s uncoupling of the clot segments 
results in geometric compatibility errors as follows: 
In response to a small stress, adjacent points of an 
intact material are expected to displace in 
conjunction with each other, and undergo nearly 
identical displacement, because internal forces 
resist the pulling-apart of the points. Hochleitner’s 
methodology separated the continuous structural 
components of the clot, applied a shear force on 
each segment individually, and then summed up the 

ensuing shear stresses and strains.5 When 
considered independently, adjacent points of 
connected components may be predicted to deform 
incompatibly, i.e. with very different amplitudes. 
Figure 5 displays a schematic of the area near the 
horizontal surface of the plunger (the “shoulder”). 
Points A, A’, A” and B’, B” are on the clot’s annular 
segments A and B, respectively. Points A” and B” 

are angularly displaced by θ’ while points A and B’ 

are displaced by θ < θ’. The angular displacement 

of clots’ layers in between A-A” and B’-B” of 
segment A and B, respectively, decreases 

monotonously in centripetal direction from θ’ to θ, 

as shown in Figure 3B. Accordingly, in segments A 
and B the magnitudes of angular displacements are: 

A = θ < A’ < A’’ = θ’, and B’ = θ < B’’ = θ’, 

respectively. 

 

 
Figure 5: Geometric incompatibilities due to uncoupling of clot’s segments.  
The upper portion of the cup includes the attachment of segment A annulus to the horizontal “shoulder” of 
the plunger and to segment B annulus. The adjacent points A’ and B’ undergo nearly identical displacement, 
since internal forces resist the pulling apart of the points. When segments A and B are uncoupled and 
independently considered, these adjacent points are predicted to deform incompatibly, with very different 

amplitudes. In segments A and B the magnitudes of angular displacements are: A = θ < A’ < A’’ = θ’, and 

B’ = θ < B’’ = θ’, respectively. Thus, magnitudes of angular displacements are A = B’ = θ < A’ < A’’ = B” = 

θ’, with B’ < A’. Uncoupling segments A and B results in a serious incompatibility since the contiguous points 

A’ and B’ deform compatibly with magnitudes A’ ≈ B’. 

https://esmed.org/MRA/index.php/mra/article/view/3033
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Combining these two orders of angular 

displacements’ magnitudes yields A = B’ = θ < A’ 

< A’’ = B” = θ’, with B’ < A’. But the adjacent points 

A’ and B’ are expected to undergo nearly identical 
angular displacement, i.e. A’ ≈ B’. Simply put, 
uncoupling segments A and B frees the contiguous 
points A’ and B’ to deform unrestrictedly and with 
magnitudes B’ < A’, when in fact A’ ≈ B’. Thus the 
untethering of the adjacent points A’ and B’ results 
in a serious incompatibility. The internal forces 
between segments further restrict their 
displacement and enhance the effective elastic 
resistance. In addition, the attachment of segment A 
to the horizontal surface of the plunger (the 
“shoulder”) adds additional elastic resistance to the 
displacement of the clot, but this too was 
intentionally unaccounted for by Hochleitner’s 
analysis, for the sake of tractability. Similar to 
added resistance driven by the inclusion of 
additional clot segments, added resistance due to 
attachment of segment A to the plunger’s shoulder 
and the attachment of clot segments to each other 
should further decrease the calculated effective 

Gmax for a given θ. Thus, accounting for the errors 

associated with idealizing the two annuli as cuboids 
is insufficient, and the true shear modulus is 
expected to be even lower. 

 

4.0│ Recalculation of Gmax using Ramberg and 

Miller equation. 
Hochleitner et al.’s inclusion of all 3 clot’s 

segments proffered a more precise method for 
estimating Gmax. The accuracy of Hochleitner’s 
approach could be further increased by using 
Ramberg and Miller’s equation to estimate the 
contribution of annular segments A and B to total 
Gmax of Hartert’s clot. From Eq. (3) the elastic 
resistance of an annulus is 

 𝐺 =
 T 

4πh(θ’−θ)
∗ (

1

𝑟2 −
1

(𝑟+𝐿)2) and after 

rearrangement 𝑇 =
G4πh(θ’−θ) 

(
1

𝑟2−
1

(𝑟+𝐿)2)
. From Hochleitner’s 

derivation the torque of segment C—the conical 

base—is 𝑇𝑐 =
G2π(θ’−θ)𝑟𝑏

4

4ℎ𝑐
.5 

The total torque on the clot is the sum of its three 

components so that 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑎+𝑇𝑏+𝑇𝑐 . But the total 
torque also equals the torque on the torsional wire 

so that 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝜏𝜃 and 𝜏𝜃 = 𝑇𝑎 + 𝑇𝑏+𝑇𝑐= 
G4πℎ𝑎(θ’−θ) 

(
1

𝑟𝑎
2−

1

(𝑟𝑎+𝐿𝑎)2)
+

G4πℎ𝑏(θ’−θ) 

(
1

𝑟𝑏
2−

1

(𝑟𝑏+𝐿𝑏)
2)

+
G2π(θ’−θ)𝑟𝑏

4

4ℎ𝑐
. 

Hartert and Hochleitner papers 5,7 provided the 

following values: ha=0.3352 cm; 𝑟a =0.15 cm; 

La=0.25 cm; hb=0.75 cm; 𝑟b =0.3 cm; L𝑏 = 0.1 𝑐m; 

hc=0.1 cm; 𝜏 = 6377 𝑑yn.𝑐m; and (θ’ − θ) = θ as 
derived from Hartert’s observation. 

 

6377=
G4π0.3352 

(
1

0.152−
1

(0.15+0.25)2)
+

G4π0.75 

(
1

0.32−
1

(0.3+0.1)2)
+

G2π0.34

4∗0.1
=

G4π0.3352 

38.1944
+

G4π0.75 

4.8611
+

G2π0.0081

0.4
= 0.11028G +

1.9388G + 0.12723G = 2.1763G, and G=2930 
dyn

𝑐𝑚2. 

 

4.0 │DISCUSSION 
Algorithms for transfusion of blood products and 

administration of hemostatic agents incorporate 
VEM-derived clot-kinetics and maximal clot strength 
variables into clinical decision-making.13,14 VEMs, 
therefore, require accurate calibration of 
calculated clot strength. For several decades the 
calibration of VEMs has proven challenging due to 
complex clot geometry that lacks an analytical 
elasticity solution. The flaws of published 
methodologies largely stem from the need to 
separate the clot to simpler geometric shapes, and 
presumable unfamiliarity with the 1953 derivation 
of the governing equation of shear modulus of an 
annulus by Ramberg and Miller.10 In this regard, our 
calculations offer a highly improved precision by 
addressing the latter alone. Accordingly, Hartert’s 
and Hochleitner’s values have over-estimation 
errors of at least 70.6% and 52.4%, respectively. 
The actual elastic constant of normal blood is 

expectedly lower than 2930 dyn/cm2 due to 
resistive forces between the clot segments and the 
attachment to the plunger’s horizontal shoulder, as 
discussed in section 3.2. 

Some have argued that since 
thromboelastographic determination of G is 
inherently insufficiently accurate, it may be 
preferable to use a dimensionless linearity constant 
between clot elasticity and amplitude.5 The premise 
is that for clinical decisions recorded values are 
compared to manufacturer-provided reference 
values, regardless of VEM-provided absolute 
value.5 However, G reflects clot strength and in 
several clinical scenarios decisions should be based 
on clot strength as opposed to clot amplitude due 
to the nonlinear relationship between clot strength 
and amplitude.15 The improved accuracy of VEM-
derived clot stiffness is, therefore, of paramount 
clinical importance. 

https://esmed.org/MRA/index.php/mra/article/view/3033
https://esmed.org/MRA/mra
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A superior VEM-calibration methodology would 
be to use the VEM machine to measure the shear 
modulus of an elastic material of a known shear 
modulus, and with elastic properties—such as 
Young’s modulus and Poisson ratio—similar to 
blood. A comparison of the VEM-derived shear 
modulus with the material’s known elastic constants 
would then yield the calibration/conversion factor 
of amplitude to G. This methodology, however, is 
likely to be costly due to damage to the cup and 
plunger. 

Hartert’s notion that VEM amplitude can be 
transformed into clot elasticity was based on the 
premise that viscosity’s contribution to clot strain is 
negligible. However, Hartert’ supposition was later 
challenged by the VEMs recording of substantial 
strain amplitudes in experiments where blood was 
substituted with liquids of sufficiently high shear 
viscosity, despite the absence of fluid elasticity.16-18 

Determination of the viscoelastic constant of a 
VEM clot of irregular shapes may be more readily 
achieved with innovative, up-to-date rheological 
methods, such as finite elemental analysis, ultrasonic 

shear-wave approach, quartz crystal microbalance 
assay, and surface plasmon resonance.19-23 These 
contemporary rheological methods also permit an 
independent measurement of clot’s viscosity and 
elasticity and the related shear-loss and shear-
storage moduli. 

 
4.1 Limitations and Conclusions 

The calculations in this study specifically apply 
to Hartert’s TEG. Despite increased accuracy, our 
calculation of the elastic constant of coagulative 
elastometry overestimates the actual value due to 
some residual and inevitable simplifications. An up-
to-date rheological methodology should be 
implemented to derive the actual viscosity and 
elasticity constants of coagulative elastometry. 
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