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ABSTRACT 
Alzheimer’s disease is one of the main challenges of modern 
medicine since no cure has been found yet, the scientific community 
still does not fully understand the reasoning behind it, and any 
interventions found can delay the progress for only a limited amount 
of time. Over the years, research has shifted from attempts for curing 
the disease to efforts towards understanding the mechanisms behind 
it as well as finding tools that will speed up diagnosis many years 
before its clinical manifestations, when the brain deterioration 
begins. One of the many promising tools towards this direction is 
electroencephalography. Electroencephalography employs a 
variety of different measures that can be used as biomarkers for 
early diagnosis and differentiation of Alzheimer’s disease from 
other neurodegenerative disorders. Literature has produced a 
number of methods that have established reliable correlation 
between electroencephalography signals and structural 
abnormalities in Alzheimer’s disease. To that end, the present work 
proposes the combination of Tsallis Entropy and Higuchi Fractal 
Dimension within a common classification framework using machine 
learning techniques for classification among healthy, Mild Cognitive 
Impairment, and probable Alzheimer’s disease. The proposed 
methodology is applied on 75 subjects with different feature 
utilisation scenarios, reaching to an accuracy of 98.03% when 
classifying a signal epoch, following a 10-fold cross validation, as 
compared with other similar studies. Nevertheless, in a leave-one-
out scenario with the same approach, the average accuracy drops 
significantly, suggesting that this method could complement other 
diagnosis approaches but cannot be used on each own. 
 
Keywords: Alzheimer’s disease, EEG, Tsallis Entropy, Higuchi Fractal 
Dimension, Signal Processing 
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1. Introduction 
According to the International Alzheimer’s 
Association,1 Alzheimer’s Disease (AD) is the most 
common form of dementia. With more than 1 in 9 
people (11.3%) age 65 and older having AD, the 
decease remains as one of the most severe factors 
that affect brain dysfunctioning, mainly in elderly 
people. It is expected to affect roughly 12.7 million 
65+ people by 2050. Although modern medicine 
and advanced technology breakthroughs are 
continuously applied to moderate the situation, the 

incidence and mortality due to AD keeps rising. 
From 2000 to 2019 an increase of 145.2% has 
been observed. To that end an enormous amount of 
resources have been employed not only to 
postpone the effects of AD (which is still currently 
the only successful course of action) but to also 
understand and fully analyse the underlying 
physiological processes responsible for the brain 
degradation, both in terms of tissue quality and 
volume shrinkage (Figure 1). 

 
Figure 1 From left to right: a healthy brain, an AD brain, and the comparison between the two2. 

 
Given the fact, that the scientific community has 
failed so far to develop a cure for AD and that the 
solutions available only target symptoms but not the 
cause of the disease,3 efforts have shifted towards 
better understating of the initial mechanisms that 
cause cognitive decline that could lead to an early 
AD diagnosis, especially at the Mild Cognitive 
Impairment (MCI) level, as this is considered a 
precursory stage of AD.4 In this connection, it is also 
pointed out that to this day, diagnosis is mainly 
based only on clinical criteria, a fact that introduces 
additional challenges.4-5 An early diagnosis may 
contribute not only to the development of more 
effective interventions that could delay the progress 
or even inhibit it entirely, but it could also prevent 
some of the symptoms to evolve when dealt with at 
an early stage. Towards the direction of 
accomplishing an early diagnosis, several different 
methodologies have been proposed; some of them 
are invasive (e.g., blood and Cerebrospinal Fluid – 
CSF), others are expensive (i.e., MRI, SPECT, or PET), 
with only a number of them eluding significant 
results.6 In contrast with these, a non-invasive, low-
cost and high-resolution method in terms of brain 
activity is the electroencephalography (EEG). 
With research going back a few decades,7-8 a 
plethora of studies have been focused on the use of 
EEG in AD, revealing certain commonly agreed 
features and some other rather controversial9. The 
most interesting features that are commonly agreed 
upon regarding EEG and AD are summarized 
below10-13:  

• Overall retardation of specific rhythms; in 
particular, the observations so far present an 
increase in delta (0.1 - 4 Hz) and theta (4 – 8 
Hz) activities and decrease in alpha (8 – 13 Hz) 

and beta (13 – 30 Hz) activities. Earliest 
changes are characterised by an increase in 
theta and a decrease in beta activities, 
followed by a decrease in alpha, while delta 
increases later during the progress of the 
disease. This is supported by the fact that 
patients with severe dementia exhibit a 
decrease in alpha and an increase in delta 
activity, whereas patients with mild dementia 
show a decrease in beta and an increase in 
theta activity; 

• Decreased complexity; 

• Decreased coherence in general and among 
different brain regions; 

• Overall topography changes; in particular, 
observations indicate that slow activity is 
prominent in the left temporal area of AD 
patients, whereas differences between pre-
senile patients and normal controls are 
detected in the right posterior temporal area. 
Largest differences between senile patients 
and the controls are found in the midfrontal and 
anterior frontal lobes bilaterally. 

When evaluating complexity, significant effort has 
been focused on non-linear dynamics,14 under the 
assumption that EEG signals are generated by 
nonlinear deterministic processes with nonlinear 
coupling interactions between neurons. Studies 
employing such measures have found that AD 
patients have reduced values of the correlation 
dimension (D2) in the occipital EEG compared with 
those of healthy subjects, and with probable AD 
subjects.14-18 In addition, it has been highlighted that 
AD patients exhibit reduced spatio-temporal brain 
activity in comparison with that in normal controls,19 
and in some cases the former subjects are 
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characterized by specific patterns of dysfunction in 
dementia.20 Investing in the analysis of EEG 
complexity, a lot of novel biomarkers have been 
extracted from non-linear approaches (e.g., 
entropies, fractality, lacunarity) towards providing 
the necessary methods for accurate and early 
diagnosis of AD.  
Such biomarkers have gained an even greater 
importance with the emerging trend of artificial 
intelligence based solutions, such as machine 
learning. The proper feature selection in order to 
train models that can successfully classify an epoch 
(most commonly followed in the literature along with 
a k-fold cross validation) or an entire subject (leave 
one out methodology) is consider of utmost 
importance. Interestingly enough, going through 
recent literature, although quite promising findings 
are reported (e.g., Yang et al.21 reported a 
classification accuracy of 98%), there are still 
significant challenges that need to be addressed, as 
stated by Tanveer et al.,22 such as the classification 
of MCI, which hasn't been researched a lot, as well 
as the size of the datasets explored, and the 
noise/artefacts introduced in AD, which if removed 
(as seen in most studies), remove a significant 
portion of the signal. 
As this is a vast field of research nowadays, the 
present study focuses mainly on two specific non-
linear biomarkers (i.e., Tsallis Entropy and Higutchi 
Fractal Dimension) that have been found through the 
literature to have promising potential and combines 
them for the intended purpose. The methodology 
designed and the methods selected are presented 
in the following section. 
 
1.1.  Entropy and the Tsallis approach 
Entropy is a measure of the uncertainty associated 
with a random variable or otherwise it’s defined as 
a measure of uncertainty of information in a 
statistical description of a system, and has been 
applied initially to thermodynamics, and later on to 
statistical mechanics. Up to this day, over forty (40) 
different types of specific, generalized, extended, 
etc. entropies have been introduced. For Statistical 
Mechanics one of the entropies proposed over the 
years was the Tsallis entropy.23 The Tsallis entropy 
(or Tsallis statistics), was introduced as a 
generalized version of the Boltzmann-Gibbs 
statistics and from that point onward have been 
applied in various domains, one of which is 
statistical bio-mechanics and particularly brain-
related cases where the ways that the “system” can 
be arranged are limitless as far as we know. 
To the knowledge of the authors, the first 
application of the Tsallis entropy on EEG signals 
was performed by Gamero et al.24 in 1997. They 

used wavelet transforms in multiple resolutions, 
extracting probabilities from the wavelets 
coefficients and calculating the Shannon and Tsallis 
entropies of EEG data focusing on spike–wave 
paroxysms. Within this context, they proved the 
robustness of the Tsallis over the Shannon entropy 
for the detection of these waves. Taking it a step 
further, Capurro et al.25 continue working on human 
brain dynamics using the Tsallis measure on EEG 
data. By examining again Shannon and Tsallis 
entropies over different levels of wavelet analysis 
on epilepsy patients’ EEG data, they produced 
similar results to those reported in Gamero et al.,24 
but for sharp waves. A year later, Martin et al.26 
used Tsallis analysis on EEG focusing also on 
epileptic seizures that provided valuable insight on 
signal analysis by revealing a particular degree of 
sensitivity as a detector of changes in the 
parameters of dynamical systems. 
Following their work, Thakor et al.27 in 2001 used 
both Shannon and Tsallis entropies to quantitatively 
access brain rhythms; in particular normal versus 
injured brain signals. A reduction in the entropy of 
the brain rhythm has been observed after 
calculating the mean and standard deviation of the 
Tsallis entropy. As a result, they proposed Tsallis 
entropy as a non-redundant information measure of 
brain dynamics with promising applications to 
various brain-related research areas. Three years 
later, they expanded their research by reviewing in 
general quantitative EEG analysis methods, 
including Tsallis entropy, highlighting the nonlinear 
properties of the EEG source. They provided in 
particular, an initial link between Tsallis entropy, 
EEG and AD, thus establishing a new robust method 
for assessing EEG complexity which seems to be 
affected by the neurodegeneration caused by the 
disease.28 
Sneddon29 demonstrated an estimator of the Tsallis 
entropy in order to assess the information in the EEG 
of subjects that were trying to recall objects or 
faces, under the hypothesis that neurodegeneration 
is linked/caused by faulty information processing. 
Some of the subjects were diagnosed with probable 
AD, whereas the others were considered healthy. In 
order to compare results, a ratio between frontal to 
posterior brain information was utilised with the 
threshold of 1 being the separator between the two 
(normal >1 and AD < 1). The overall results 
suggested that this decision criterion exhibits a very 
high accuracy for AD detection. However, the 
sample that this method used was too small (30 
healthy and 16 AD) and moreover, it was not 
accompanied with neurophysiologic information 
about the subjects. After more screening was 
performed, better results were established but, 
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again, the sample consisted of 10 normal and 10 
AD subjects only. Nevertheless, interesting findings 
were obtained regarding Tsallis entropy monitoring 
of AD treatment.   
In the same year, Zhao et al.30-31 presented a 
normalised Tsallis entropy for EEG to be used as a 
biomarker for AD. In their studies two small subject 
databases were examined with a high diversity and 
only between normal and AD (most of which 
probable AD). The experimentally extracted values 
for the Tsallis Entropy characterisation parameters 
were: N=5120 and q=0.5. They applied the 
normalized Tsallis entropy (NTSE) calculation to all 
21 EEG channels and found that the AD group had 
clearly lower NTSE than the normal group. An 
interesting outcome was their threshold value of 
p=0.22, according to which subjects with NTSE 
lower than that are AD whereas higher than that 
they can be considered as normal. However, their 
analysis between datasets produced low sensitivity 
results and highlighted the need for efficient pre-
processing due to high levels of noise. 
Given the fact that MCI diagnosis is more useful 
than early AD diagnosis, De Bock et al.32 following 
the work of Shennon29 presented two ratios which 
were calculated using the Tsallis entropy: prefrontal 
cortex to posterior parietal lobe, and prefrontal 
cortex to occipital lobe. The study did not provide 
any definite results and, once again, the sample 
examined was considered too small (15 normal and 
11 MCI). In the same context, McBride et al.33 
explored a multiscale entropy theory that combined 
Tsallis, "approximate" and "sample" entropies, and 
through support vector machine (SVM) models 
discriminated AD, MCI and normal subjects (43 
subjects). Their findings suggest high discrimination 
accuracy, through promising ratios for AD vs. 
Normal discrimination clustered in the parietal and 
frontotemporal (frontal and temporal channels) 
regions of the head; especially for responses to 
matching target held in working memory. 
Differences between MCI and the other groups 
appeared to be widespread across the head, 
including the occipital, parietal, and frontal regions. 
Garn et al.34 conducted one of the most extensive 
studies of quantitative EEG (QEEG) markers in order 
to identify which ones (either individually or 
combined) can best correlate to AD severity. For 
complexity measures, the Tsallis entropy was once 
again employed, examining only on the band of 2–
15 Hz. Although the complexity measures obtained 
are not the optimal ones for AD severity, when 
combined with other factors, they can provide 
added value to the overall correlation. An 
interesting highlight of their work is that left sided 

indices in temporal and parietal regions consistently 
showed most significant results in their subjects. 
Al-nuaimi et al.35 continued the work from Zhao et 
al.30-31 by taking the normalised Tsallis entropy 
which was applied to each EEG channel and for 
each subject from their dataset. They established 
two reference feature vectors (AD and normal) and 
they used K-means clustering to compare a new 
dataset to their reference vectors. Their approach 
provided improved results in terms of sensitivity, 
specificity, accuracy and precision. However, the 
dataset was the same as the one used in the 
previous work; i.e. small enough to derive reliable 
results. Later on, in 2018 they presented36 a more 
complete work, investigating once more the 
complexity measures, in order to quantify changes 
in EEG for AD. They focused again on the most 
promising methods that have been used so far: 
according to them, the Tsallis Entropy, the Higuchi 
Fractal Dimension (see next section) and the Lempel-
Ziv complexity. Their results indicate that all three 
measures are significantly lower for AD subjects for 
specific EEG bands and channels, and that we can 
now start detecting AD with a sensitivity and 
specificity of more than 90%. 
Finally, in a most recent extensive analysis, 
Tzimourta et al.37 explored 38 linear and non-
linear features on EEG signals, consisting of multiple 
entropies including Tsallis, in an effort to identify the 
most promising ones, through their correlation to the 
Mini-Mental State Examination (MMSE) scores. By 
applying a multi-regression linear analysis on a 
dataset consisting of 24 subjects (again a very 
limited dataset with only 5 moderate AD and 9 mild 
AD), they presented a high correlation of MMSE 
score variation with Permutation Entropy. 
Interestingly, however, the Tsallis Entropy has not 
been found to have any correlation with the MMSE 
score.  
 
1.2. Fractality and the Higuchi Approach 
In general, the fractal dimension can be used, in 
particular, as an index of irregularity in signals and 
patterns to evaluate time series with non-periodic 
and turbulent behaviour,38 thus making it a very 
suitable tool for EEG waveforms. Two of the first 
researchers to apply this complexity measure were 
Woyshville and Calabrese.14 By employing the 
original Hausdorff39 fractal dimension it was 
established that the normal subjects group had the 
largest fractal dimension, whereas lowest scores 
were obtained through the (autopsy confirmed) AD 
patients. 
Following a different path, Besthorn et al.40 

estimated the dimensional complexity (fractal 
dimension) using the approach proposed by 
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Pritchard and Duke.41 They pointed out that it is 
possible (given that the same algorithm and 
parameters are used to all subjects) to investigate 
group effects without being biased by the 
heterogeneity of inter-individual variability. They 
also concluded that AD subjects have significantly 
lower values of dimensional complexity, which can 
be correlated with known dementia scales (i.e., 
MMSE) and EEG band power scores.  
Two years later, Accardo et al.42 identified the 
Higuchi Fractal Dimension (HFD)43 as a fast and 
efficient computational method that is able to 
successfully and accurately estimate the fractal 
dimension also for segments shorter than 250 ms, 
thus enabling the study of brief EEG events and the 
identification of behavioural variations with a good 
temporal resolution. A decade afterwards, 
Henderson et al.44 further assessed EEG signals as 
a tool for detecting dementia. They concluded that 
the fractal dimension can be a good candidate to 
fulfil the need for a low-cost, easy to administer and 
reasonably accurate method for detecting 
dementia. 
Staudinger and Polikar45 employed the HFD as an 
EEG based biomarker for AD (among others). Their 
finding agrees with the overall literature where AD 
subject have lower values of HFD, while they also 
attributed the relevant information carried by HFD 
to the parietal and temporal areas. Finally, an 
interesting suggestion made by the authors is the 
combination of different non-linear dynamics 
measures into a feature vector to significantly 
improve classification accuracy by more than 10%.  
Smits et al.46 examined the HFD between healthy 
and AD subjects, to assess the sensitivity of brain 
activity changes for the two groups. They also 
calculated another measure based on HFD to study 
symmetry between the two hemispheres. They 
named this new measure as Homologous Areas 
Interhemispheric Symmetry (HArS), according to 
which, left-higher-than-right HFD asymmetries 
correspond to positive values and right-higher-than-
left HFD asymmetries correspond to negative 
values. Their results indicate that HFD depends on 
age in healthy subjects but is reduced in AD ones, 
whereas focusing on a regional correlation among 
HFD, age and AD, healthy subjects’ HFD depends 
most strongly on age in parietal and central brain 
whereas for AD subjects there was a strong 
dependency in temporal and occipital areas. The 
last one is a bit controversial with other research 
findings that suggest significant changes on the 
frontal areas. Finally, based on the new metric 
introduced they found a loss of HArS of parietal 
HFD that depends on age. 

Al-nuaimi et al.47 also elaborated on the HFD in their 
most recent work.36 They demonstrated that HFD is 
indeed a promising biomarker that is able to 
capture the areas of the brain that are considered 
to be affected first in the early stages of AD. Their 
HFD values are lower on AD subjects, while (just like 
Tsallis Entropy) the analysis of separate channels 
holds more promise than that of the whole EEG 
record. 
Summarising, it is evident that there are several 
controversial findings in the literature when 
employing complexity measures such as entropy 
and fractality towards the ultimate goal of 
differentiating and quantitatively characterising the 
various stages that govern the evolution of AD. 
Furthermore, the most interesting findings retain to 
research that examines (probable) AD vs. healthy 
samples without investigating the stages in between 
(i.e., MCI). On top of that, the vast majority of the 
related studies are presenting results based on a 
very limited sample of subjects, a fact that 
considerably limits their validity. Finally, to the 
authors’ knowledge, entropy and fractality have 
not been combined together, although they have 
delivered promising results when used individually. 
To address these shortcomings, the present study 
combines the abovementioned tools of entropy and 
fractality on a larger number of subjects (from the 
majority of the relevant literature mentioned 
above), within a unifying framework which, in 
addition, can differentiate among the three main 
stages of brain deterioration: i.e., Healthy controls, 
MCI, and probable AD. This study extends the initial 
high level analysis from a previous work of the 
authors.48 
The manuscript is organised as follows: Section 2 
describes the overall methodology and the features 
employed in the analysis. Section 3 presents the 
obtained results based on several scenarios 
employed for this study, whereas Section 4 includes 
the discussion on the results. The conclusions along 
and future direction are included in Section 5, also 
including limitations of this study. 
 
2. Methods 
2.1. EEG Dataset 
Within this study, the EEG signals of 75 anonymised 
subjects were collected from the Greek Association 
of Alzheimer’s Disease and Related Disorders (25 
Healthy, 25 MCI, and 25 probable AD) in the 
context of a retrospective cohort study. Their 
cognitive status was assessed by the Association’s 
medical experts (neurologists, psychiatrists, and 
psychologists) through an extensive battery of 
neuro-psychometric tests (i.e. the Mini-Mental State 
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Examination – MMSE49, and the Functional 
Cognitive Assessment Scale – FUCAS50 tests). 
Regarding the sample size, the selection was 
performed based on availability of samples at the 
time of the investigation and not in a pre-hoc power 
analysis. However, comparing with the literature 
findings analysed in Section 1, most of previous 
studies contacted had around 50 or less 
participants, whereas only 4 had over 100, with the 
highest sample being 161. Hence, the authors 
believe that the sample size of this study is of a 
similar order of magnitude of the literature, thus it 
can be considered comparable in terms results.  
The EEG signals were collected through a set of 21 
electrodes Nihon Kohden Neurofax J_921A 
following the 10-20 international reference 
system51 at 500Hz. The input impedance was set to 

Z<10kΩ. The signals were digitised with the 

Neurofax EEG-12200 Ver. 01-93. The protocol 
used for the acquisition of the EEG signals refers to 
resting stage and lasts for 10 minutes with 5 minutes 
eyes closed and 5 minutes eyes open, while being 
seated in an upright position. For the analysis 
performed within this study, only the first part was 
explored (5 min closed eyes), resulting in signals of 
approximately 300 seconds each (some had 
slightly less). The reason for selecting only the eyes-
closed part has to do with the fact that with eyes 
closed, the subjects have less irregularities to their 
waveforms due to external stimulation.  
For all of the signals, upon acquisition, a 50Hz filter 
is applied, to remove any noise due to 
electromagnetic disturbances from surrounding 
equipment and cables.  
 
2.2. Methodology 
In previous work, both non-linear measures (TsEn 
and HFD) have been tried individually for the 

analysis of EEG signals for (probable) AD 
diagnosis, providing promising results (sensitivity 
and specificity above 90% per epoch). Building on 
this, the purpose of the present study is to develop 
an approach that will focus mainly on the MCI 
stage, thus exploring not only the effect of these 
complexity measures individually but also 
combining them in formulating a new biomarker for 
more informed and accurate diagnosis. A similar 
approach, but with Sample entropy instead of 
Tsallis, and towards detecting depression and not 
MCI or AD, has been presented by Cucic et al.52 
with very high accuracy, ranging from 90.24% to 
97.56%. 
In accordance with literature findings that indicate 

alteration on the EEG signals between stages on the 

frontal and temporal brain regions, initially only 

specific electrode channels have been examined. 

Furthermore, since it has also been suggested that 

both MCI and AD have different effect on the four 

main rhythms (delta, theta, alpha, and beta), these 

are also evaluated separately to identify any 

distinguished alterations on the proposed metrics. 

Time-series, data-driven statistical analysis heavily 

depends on the availability of data. Hence, to 

increase the number of epochs to be analysed, each 

signal was further divided in non-overlapping 

epochs of 10 seconds, as proposed by other studies 

as well (Tzimourta et al.37), thus resulting in a total 

of 22,340 seconds (or 2,234 epochs). A more clear 

presentation of the sample signals is depicted in 

Table 1 As it can be understood from the numbers 

shown, it was not possible in some cases to include 

and analyse all 5 minutes.  

 
Table 1 Sample Pool. 

 Number of Total Duration 
Samples/Signals 

Total Duration 
(seconds) 

Healthy 25 7490 
MCI 25 7370 
AD 25 7480 

 
In order to extract the desired features not only on 
the whole signal but also in each frequency sub-
band of interest, four band-pass filters (0.5 – 4 Hz, 
4 – 8 Hz, 8 – 13 Hz, and 13 – 30 Hz) are applied. 
Then, for each epoch, for each of the five bands 
(Whole, Alpha, Beta, Theta, and Delta), and for 
each of the nineteen electrodes included in the 
analysis (Fp1, Fp2, T3, T5, C3, T4, T6, C4, F3, F7, 
F4, F8, P3, P4, O1, O2, Fz, Cz, and Pz), six linear 
and non-linear features were extracted towards 

training a classification model that could allow the 
differentiation and identification among Healthy, 
MCI, and probable AD stages. To ensure the 
validity of the results a 10-fold cross validation is 
employed during the evaluation process.  
To address the classification problem, three machine 
learning techniques have been explored, the 
Support Vector Machines (SVM),53 the Gradient 
Boosted Trees (GBT),54 and the Light Gradient 
Boosting Machine (LGBM).55 Since these techniques 
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are well known to the machine learning community 
no further elaboration is provided on reviewing 
them. For the analysis, a custom software was 
developed using Python and the libraries MNE, 
Scikit-learn, XGBoost, and LightGBM. 
At this point, it has to be mentioned that in order to 
facilitate the analysis (even from non-experts), 
there was not any artefact clearance procedure 
used in this study. Hence, the signals were analysed 
including potential artefacts towards exploring the 

possibility of obtaining positive results without the 
cumbersome task of artefact removal that requires 
both extra time and expertise. 
 
2.3. Linear and Non-Linear Features 
By utilising combined information from the 
literature, six features are extracted from each 
epoch, for every band and electrode examined, as 
follows: 

 
Mean 

�́� =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

 (1) 

 
Variance 

𝜎2 =
1

𝑁 − 1
∑(𝑥𝑖 − �́�)2
𝑁

𝑖=1

 (2) 

 
Skewness 

𝛾1 =
1

𝑁
∑(

𝑥𝑖 − �́�

𝜎
)
3𝑁

𝑖=1

 (3) 

 

where σ denotes, as usual, the standard deviation (or the square root of variance). 

Kurtosis 

𝛾2 =
1

𝑁
∑(

𝑥𝑖 − �́�

𝜎
)
4𝑁

𝑖=1

 (4) 

 
Tsallis Entropy (TsEn) 

Given a discrete set of probabilities 𝑝𝑖 with the condition that ∑𝑝𝑖 = 1, and q any real number (in this study 
q=2), then the Tsallis Entropy is defined as:  

𝑇𝑠𝐸𝑛 =
∑ (𝑝𝑖 − 𝑝𝑖

𝑞
)𝑁

𝑖=1

𝑞 − 1
 (5) 

 
Higuchi Fractal Dimension (HFD) 
For an N-sample EEG data sequence (1), (2), . . . , x(N), the data is first divided into a k-length subdata set 
as: 

𝑥𝑘
𝑚: 𝑥(𝑚), 𝑥(𝑚 + 𝑘), 𝑥(𝑚 + 2𝑘),… , 𝑥 (𝑚 + [

𝑁 −𝑚

𝑘
] 𝑘) (6) 

 
where [.] is Gauss’ notation, k is constant, and m = 1, 2, …, k. The length L_m(k) for each subdata 

set is then computed as:  

𝐿𝑚(𝑘) = (7) 

 
 
The mean of L_m(k) is then computed to find the HFD for the data as: 

𝐻𝐷𝐹 =
1

𝑘
∑ 𝐿𝑚(𝑘)

𝑘

𝑚=1

 (8) 

 

https://esmed.org/MRA/index.php/mra/article/view/3064
https://esmed.org/MRA/mra
https://mne.tools/stable/index.html
https://scikit-learn.org/stable/
https://xgboost.readthedocs.io/en/latest/index.html
https://github.com/microsoft/LightGBM
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2.4. Evaluation Metrics 
For the evaluation and validation of the approach 
proposed, a 10-fold cross validation is performed 
to obtain various metrics, as is usually done in the 
machine learning (ML) domain. Following the 
assessment presented by Sokolova et al.56 and most 
recently by Tharwat57 for multi-class classification 
problems, four distinct metrics are adopted. Besides 
the overall accuracy of the classification results, 
which is rather easy to comprehend, the precision, 
recall and f or f1-score are calculated. 
 
3. Results & Discussion 
3.1. ML Technique and Feature Combination 
Selection 
As mentioned in the previous sections three ML 
techniques have been used towards classifying the 
EEG signal epochs in one of the three clinical stages: 
the SVM, GBT, and LGBM techniques. The 
configuration for the latter, that provided the 
highest accuracy in the optimal scenario, was 64 
leaves in one tree, 50 estimators, and -1 depth for 
the tree model. On the other hand the configuration 

for the GBT, which was the second best, was 400 
estimators and 5 layers (depth) for the size of the 
decision trees.  
It is evident that LGBM outperforms both SVM and 
GBT in almost all examined cases, with a sole 
exception of Delta-O2, in which GBT seems to be 
slightly better. Nevertheless, that particular 
combination is one of the least accurate 
combinations. Interestingly, the Whole band seems 
to outperform all other besides Theta, which holds 
the highest accuracy, for electrode T4, with 
82.99%. 
Through the experimental procedure (see Table 2) 
it was clear that the LGBM outperforms the other 
two in providing higher accuracy results. Hence, for 
the detailed results to be presented in the following 
sections, only the data acquired through the LGBM 
technique are given. Nevertheless, to support this 
selection some indicative results are included in the 
table given below, covering both the highest and 
lowest accuracy results in each band.  
 

 
Table 2 Accuracy comparison between SVM, GBT, and LGBM techniques. 

Band-Electrode SVM GBT LGBM 

Whole-T6 0.43912 0.65443 0.81289 
Alpha-O1 0.48702 0.58057 0.58236 
Beta-O1 0.50940 0.57833 0.58729 
Delta-Cz 0.45345 0.75112 0.76231 
Theta-T4 0.47314 0.82095 0.82990 
Whole-T3 0.38406 0.50134 0.50806 
Alpha-F4 0.44047 0.48747 0.48791 
Beta-F8 0.42704 0.47225 0.48568 

Delta-O2 0.39928 0.68174 0.68084 
Theta-F8 0.49418 0.63250 0.64235 

 
Accordingly, even though literature findings 
indicate that both the TsEn and HFD provide high 
accuracy results individually, this is not fully 
supported by the approach presented in this study 

(see Table 3). Therefore, their combination is 
preferred, along with the other four features 
proposed. The following table include indicative 
examples that support this claim. 

 
Table 3 Accuracy comparison when using TsEn or HFD as single features or their combination over 

the LGBM technique. 

Band-Electrode TsEn HFD TsEn & HFD Six Combined 

Whole-T6 0.42480 0.41495 0.54297 0.81289 
Alpha-O1 0.46106 0.41003 0.55416 0.58236 
Beta-O1 0.49642 0.35542 0.56938 0.58729 
Delta-Cz 0.35497 0.67816 0.68218 0.76231 
Theta-T4 0.64727 0.62086 0.77798 0.82990 

 
 
 

https://esmed.org/MRA/index.php/mra/article/view/3064
https://esmed.org/MRA/mra
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3.2. Scenario A: Per Band and Per Electrode 
After validating the fact that the use of all six 
features with the use of the LGBM technique 
provides the optimal setup for the analysis and 
classification of the examined EEG epochs, a 
thorough step by step procedure, consisting of four 
experimental scenarios, is followed to ensure the 
validity of the presented methodology. As this 
analysis is based on each epoch, and not the entire 
signal, a leave one out scenario is also covered, 
after the most accurate combination of features is 
presented.  

Within this very first experimental scenario all six 
features are examined per band and electrode. For 
example, only the six features for the epochs from 
the Alpha band and the Fp1 electrode are used 
towards training and testing the methodology 
presented above. In the following tables, results 
from each individual scenario are presented: 
starting with the overall accuracy results per case 
and then followed by the precision, recall and f1-
score metrics for each stage (i.e., Healthy, MCI, AD). 

 
Table 4 Accuracy results for Scenario A 

Electrode Whole Alpha Beta Delta Theta 

Fp1 0.57923 0.50224 0.52059 0.72963 0.67502 
Fp2 0.62086 0.49463 0.50269 0.73053 0.67681 
T3 0.50806 0.53536 0.51209 0.69114 0.79051 
T4 0.62399 0.50224 0.53715 0.73366 0.82990 
T5 0.60788 0.54342 0.52775 0.72874 0.79678 
T6 0.66294 0.55157 0.53626 0.75783 0.81289 
C3 0.57833 0.50582 0.52507 0.73187 0.67592 
C4 0.59982 0.50895 0.51522 0.72739 0.67860 
F3 0.64011 0.50716 0.55953 0.75828 0.68666 
F4 0.63474 0.48791 0.51164 0.74530 0.69024 
F7 0.57252 0.49687 0.49373 0.71844 0.65533 
F8 0.54611 0.49239 0.48568 0.69517 0.64235 
P3 0.64056 0.56580 0.53089 0.72874 0.72739 
P4 0.58908 0.54879 0.54342 0.71665 0.66607 
O1 0.62220 0.58236 0.58729 0.73187 0.70859 
O2 0.59624 0.55282 0.57610 0.68084 0.68353 
Fz 0.59042 0.49642 0.53268 0.75560 0.68218 
Cz 0.62578 0.50716 0.54252 0.76231 0.66831 
Pz 0.61817 0.53850 0.54745 0.75380 0.71979 

 
As depicted by the results in Table 4 and Table 5, 
the higher accuracy is achieved for the Theta band 
and electrode T4, reaching a value of 82.99% (as 
also presented in Table 3. However, Theta doesn't 
hold the highest accuracy for all other electrodes. 
Interestingly enough, Delta is more accurate than 
Theta in 14 electrodes, whereas Theta just in 5, 
including T4 which has the highest percentage. 

Another interesting finding is that when examining 
the Whole band, we can get better results, than 
examining Alpha or Beta bands. From a regional 
perspective, it can be observed that the temporal 
electrodes have in general higher values than other 
regions (as also supported by other research on the 
field analysed in Section 1, with the right-temporal 
side having slightly better results. 

 

 

 

 

 

 

https://esmed.org/MRA/index.php/mra/article/view/3064
https://esmed.org/MRA/mra
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Table 5 Detailed classification results for Scenario A 

Electrode Metric Whole Alpha Beta Delta Theta 

Fp1 
Precision 0.5801 0.5034 0.5207 0.7308 0.6763 
Recall 0.5792 0.5022 0.5206 0.7296 0.6750 

F1-score 0.5789 0.5025 0.5206 0.7299 0.6753 

Fp2 
Precision 0.6220 0.4942 0.5025 0.7325 0.6778 
Recall 0.6209 0.4946 0.5027 0.7305 0.6768 

F1-score 0.6205 0.4936 0.5026 0.7303 0.6765 

T3 
Precision 0.5086  0.5357  0.5115  0.6929  0.7920 
Recall 0.5081  0.5354  0.5121  0.6911  0.7905 

F1-score 0.5080  0.5353  0.5112  0.6914  0.7906 

T4 
Precision 0.6240  0.5028  0.5369  0.7337  0.8299 
Recall 0.6240  0.5022  0.5372  0.7337  0.8299 

F1-score 0.6240  0.5018  0.5370  0.7337  0.8299 

T5 
Precision 0.6077  0.5435  0.5269  0.7293  0.7974 
Recall 0.6079  0.5434  0.5278  0.7287  0.7968 

F1-score 0.6077  0.5430  0.5270  0.7288  0.7968 

T6 
Precision 0.6628  0.5279  0.5345  0.7577  0.8129 
Recall 0.6629  0.5278  0.5363  0.7578  0.8129 

F1-score 0.6628  0.5274  0.5346  0.7575  0.8129 

C3 
Precision 0.5781  0.5056  0.5252  0.7331  0.6767 
Recall 0.5783 0.5058 0.5251  0.7319 0.6759 

F1-score 0.5774 0.5054 0.5248 0.7319 0.6758 

C4 
Precision 0.5997  0.5092  0.5149  0.7284  0.6790 
Recall 0.5998  0.5090  0.5152  0.7274  0.6786 

F1-score 0.5992  0.5091  0.5150  0.7275  0.6785 

F3 
Precision 0.6408  0.5075  0.5593  0.7587  0.6893 
Recall 0.6401  0.5072  0.5595  0.7583  0.6867 

F1-score 0.6398  0.5071  0.5594  0.7582  0.6871 

F4 
Precision 0.6363  0.4878  0.5116  0.7455  0.6911 
Recall 0.6347  0.4879  0.5116  0.7453  0.6902 

F1-score 0.6348  0.4875  0.5116  0.7452  0.6902 

F7 
Precision 0.5724  0.4970  0.4939  0.7189  0.6549 
Recall 0.5725  0.4969  0.4937  0.7184  0.6553 

F1-score 0.5720  0.4969  0.4936  0.7184  0.6550 

F8 
Precision 0.5461  0.4916  0.4855  0.6965  0.6418 
Recall 0.5461  0.4924  0.4857  0.6952  0.6423 

F1-score 0.5457  0.4918  0.4854  0.6948  0.6420 

P3 
Precision 0.6403  0.5660  0.5309  0.7289  0.7276 
Recall 0.6406  0.5658  0.5309  0.7287  0.7274 

F1-score 0.6402  0.5654  0.5308  0.7285  0.7274 

P4 
Precision 0.5887  0.5489  0.5438  0.7171  0.6682 
Recall 0.5891  0.5488  0.5434  0.7167  0.6661 

F1-score 0.5882  0.5487  0.5435  0.7165  0.6665 

O1 
Precision 0.6223  0.5833  0.5870  0.7320  0.7087 
Recall 0.6222  0.5824  0.5873  0.7319  0.7086 

F1-score 0.6221  0.5826  0.5870  0.7318  0.7083 

O2 
Precision 0.5956  0.5548  0.5773  0.6808  0.6836 
Recall 0.5962  0.5528  0.5761  0.6808  0.6835 

F1-score 0.5959  0.5532  0.5761  0.6806  0.6831 

Fz 
Precision 0.5909  0.4968  0.5320  0.7559  0.6828 
Recall 0.5904  0.4964  0.5327  0.7556  0.6822 

F1-score 0.5902  0.4962  0.5319  0.7557  0.6820 

Cz 
Precision 0.6264  0.5069  0.5425  0.7625  0.6675 
Recall 0.6258  0.5072  0.5425  0.7623  0.6683 

F1-score 0.6252  0.5061  0.5423  0.7623  0.6675 

Pz 
Precision 0.6170  0.5384  0.5499  0.7539  0.7199 
Recall 0.6182  0.5385  0.5474  0.7538  0.7198 

F1-score 0.6174 0.5383  0.5484  0.7538  0.7197 

 

https://esmed.org/MRA/index.php/mra/article/view/3064
https://esmed.org/MRA/mra
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3.3. Scenario B: Per Electrode and Joint Bands 
In an effort to improve the results of the 
classification methodology proposed by following 
common ML practices, it was decided to increase the 
features per epoch. Hence, as a second step, this 

scenario examines for each electrode all bands 
together presenting in total 30 features per epoch 
and per electrode. The accuracy results in general 
are provided in Table 6, followed by the detailed 
classification results in Table 7. 

 
Table 6 Accuracy results for Scenario B 

Electrode All Bands Electrode All Bands 

Fp1 0.8272 F7 0.8165 

Fp2 0.8209 F8 0.7945 

T3 0.8026 P3 0.8290 

T4 0.8209 P4 0.8178 

T5 0.7950 O1 0.8250 

T6 0.8192 O2 0.8142 

C3 0.8089 Fz 0.8491 

C4 0.8115 Cz 0.8339 

F3 0.8523 Pz 0.8509 

F4 0.8357   

 
Table 7 Detailed classification results for Scenario B 

Electrode Metric All Bands Electrode Metric All Bands 

Fp1 
Precision 0.5801 

F7 
Precision 0.7308 

Recall 0.5792 Recall 0.7296 
F1-score 0.5789 F1-score 0.7299 

Fp2 
Precision 0.8207 

F8 
Precision 0.7945 

Recall 0.8214 Recall 0.7947 
F1-score 0.8209 F1-score 0.7945 

T3 
Precision 0.8028 

P3 
Precision 0.8290 

Recall 0.8040 Recall 0.8295 
F1-score 0.8026 F1-score 0.8290 

T4 
Precision 0.8208 

P4 
Precision 0.8178 

Recall 0.8210 Recall 0.8183 
F1-score 0.8209 F1-score 0.8178 

T5 
Precision 0.7949 

O1 
Precision 0.8248 

Recall 0.7952 Recall 0.8251 
F1-score 0.7950 F1-score 0.8250 

T6 
Precision 0.8191 

O2 
Precision 0.8142 

Recall 0.8191 Recall 0.8144 
F1-score 0.8192 F1-score 0.8142 

C3 
Precision 0.8089 

Fz 
Precision 0.8490 

Recall 0.8095 Recall 0.8492 
F1-score 0.8089 F1-score 0.8492 

C4 
Precision 0.8116 

Cz 
Precision 0.8338 

Recall 0.8130 Recall 0.8344 
F1-score 0.8115 F1-score 0.8339 

F3 
Precision 0.8523 

Pz 
Precision 0.8510 

Recall 0.8529 Recall 0.8511 
F1-score 0.8523 F1-score 0.8509 

F4 
Precision 0.8358    
Recall 0.8360    

F1-score 0.8357    

  
It is easy to observe that combination of the 
extracted features can increase significantly the 
accuracy of the classification process. Compared 

with Scenario A, results across all electrodes have 
over 80% (except T5 that is slightly below at 
79.5%). Furthermore, it can now been seen that the 

https://esmed.org/MRA/index.php/mra/article/view/3064
https://esmed.org/MRA/mra
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most accurate outcome is identified in F3 (85.23%) 
and not in T4 (82.99%) as seen previously. This is 
quite interesting, taken into account that this is 
opposite both in terms of left and right but also front 
and back, and it does not agree with the best results 
of previous studies. Nevertheless, since the estimates 
obtained are quite close to each other, it implies 
that in the approach followed the results will be 
more or less similar no matter which type of 
electrode is examined. These findings support 
previous studies, where differences have been 
identified to be widespread across the head, and 

not entirely focused on one specific region or 
electrode. 
 
3.4. Scenario C: Per Band and Joint Electrodes 
In an effort to increase the features even more for 
the third scenario the feature selection was 
performed in reverse order from Scenario B. For 
each band all the electrodes were merged together 
presenting in total 114 (19 electrodes x 6 
measures) features per epoch and per band. The 
results for this scenario are all provided in Table 8. 

 
Table 8 Classification results for Scenario C 

Electrode Metric Whole Alpha Beta Delta Theta 

All 

Accuracy 0.9651 0.8885 0.9409 0.9776 0.9570 

Precision 0.9651 0.8893 0.9410 0.9776 0.9571 

Recall 0.9651 0.8885 0.9409 0.9776 0.9570 

F1-score 0.9651 0.8886 0.9409 0.9776 0.9570 

 
In the results of this scenario, and in contrast to 
Scenario A, we can observe that the best accuracy 
is on the Delta band (97.76%) and not on Theta 
(even though quite close with 95.70%). Interestingly 
enough, the second best performance is observed 
for the Whole band (96.51%), which may lead to 
the assumption, that through such combination of 
features, the exploration on individual bands may 
not be needed. The results obtained through this 
scenario, are significantly higher than the previous 
two, at least by 10-12%.  
Even though this specific scenario has not be found 
in previous studies (which also applies for scenario 
B), the results obtained are quite close or better 
from most similar findings, leading to the 
assumption, that the combination of electrodes (and 
bands) in the form of features for training an ML 
model, can introduce better results, than exploring 
each one of them individually, when trying to 

diagnose a subject. However, the drawback of 
these approaches (as well as the next Scenario) is 
that they do not allow extracting meaningful 
information towards better understanding the 
pathology behind the decease.   
 
3.5. Scenario D: Joint Bands and Electrodes 
Subsequently to the previous scenarios, as one 
would expect, the final step would be to join all 
bands and electrodes in one complete set of 
features, providing for each epoch a total of 570 
features. The obtained results are very promising 
with the classification accuracy observed reaching 
the remarkable level of 98.03%, as can be seen in 
Table 4. These are extremely promising findings, 
which extend previous research results by 
differentiating successfully not only Healthy versus 
(probable) AD epochs, but also MCI simultaneously.   

 
Table 9 Classification results for Scenario D 

Electrode Metric All Bands 

All 

Accuracy 0.9803 
Precision 0.9803 
Recall 0.9803 

F1-score 0.9803 

 
3.6. Scenario E: Joint Bands and Electrodes - 
Leave one out 
Even though the above evaluation approach is most 
commonly found in literature, it can be considered 
non-practical (or performing over-training), as it 
cannot be applied to a new unclassified subject and 
its epochs. Hence, this scenario extends a bit the 
methodology explored in this work, following the 

fact that the most promising results have been 
observed when combining all features together (i.e. 
Scenario D), and performs a leave-one-out 
evaluation. This means that for 75 iterations (the 
total number of our subjects) the LGBM model is 
trained utilizing 74 subjects each time and then 
tested on the 1 subject left outside the training set. 
In each iteration, a different subject is left out, so 

https://esmed.org/MRA/index.php/mra/article/view/3064
https://esmed.org/MRA/mra
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that all possible combinations are tested. The 
average results acquired are depicted in Table 10. 
 

Table 10 Classification results for Scenario E 

Electrode Metric All Bands 

All 

Accuracy 0.4319 
Precision 0.4365 
Recall 0.4329 

F1-score 0.4342 

 
It is evident that the accuracy drops drastically to 
just 43.19%, which means that in average the 
model cannot distinguish among the three classes. 
However, as can be seen in Table 2 there is wide 
distribution for each class, with the majority of 
subjects not being able to be classified accurately. 
Nevertheless, there are also quite a few that have 
over 75% accuracy, which leads to the assumption 
that there is potential in the methodology 
presented, but perhaps a different approach 
(either in terms of features or modelling) is required. 

Interestingly enough, 10 of the subjects have 0% 
accuracy (which means that none of the epochs were 
classified correctly), whereas 8 of them have 100% 
accuracy (which means that all of the epochs were 
classified correctly). Both these cases are found 
distributed among all three classes. Such diversity in 
the results, leads to the conclusion that more 
thorough research is needed for delivering concrete 
evidence on whether such models can effectively 
work on a completely new subject.  

 
Figure 2. Distribution of Accuracy results per Subject in the Leave-one-out Scenario. The accuracy range 
refers to the percentage of accurately classified epochs of each subject (e.g. classifying correctly 21 out 30 
epochs of one subject means 70% accuracy for that subject 
 
3.7. Scenario F: Joint Bands and Electrodes - 
Leave one out – Importance selection  
In an effort to improve the above findings for the 
leave-out-out scenario, the importance of the 570 
features has been explored, using once more the 
inherent functionalities of the LGBM library. Using a 
trial-and-error approach, the authors identified 
that the best accuracy is achieved if features that 
participate with over 0.6% are included in the 
model (the full list of the selected features is 
presented in Table 11. Using only these features, 
the accuracy rises to approximately 52.5%, which 

is better than using all 570 features. As shown in 
Table 12, if we go lower (0.5%) or higher (0.7%) 
for the importance threshold, the accuracy drops 
once again below 50%. 
Interestingly enough, in terms of the initial features, 
most of the selected ones are based on the Mean 
value, followed by HFD and Var. Hence, it seems 
that HFD (which also holds the highest score in T3) is 
generally more important than TsEn, whereas for 
such models, it may be sufficient to work with 
simpler features. In terms of bands, once again, the 
majority is identified on the Whole band, which 

https://esmed.org/MRA/index.php/mra/article/view/3064
https://esmed.org/MRA/mra
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enforces even more the assumption, that in ML 
approaches, the analysis of the entire signal could 
be sufficient for classifying towards the correct 
direction. On top of that, we can see that even 
though the Delta band, which has been supported 
by the literature as the most information-rich for 

non-linear analysis, has been prominent in the 
previous scenarios of this study, here there aren't 
any features originating from that band. Finally, we 
can see that the frontal electrodes play a more 
important role than other regions.     

 
Table 11 Features with importance over 0.6% 

Feature Band Electrode Average Importance (%) 

Mean Whole Fp1 0.8271 
Mean Whole F4 0.6267 
Var Whole Pz 0.6355 
HFD Whole F7 0.6559 
Var Beta O2 0.6764 
Var Beta Fp2 0.6892 
HFD Beta Fp1 0.6973 
Var Theta Fp1 0.7039 

Mean Whole F8 0.721 
Mean Whole Pz 0.7797 
Mean Whole Fz 0.8333 
HFD Whole C3 0.8631 
HFD Whole F4 0.8746 

Mean Whole T4 0.8853 
Mean Whole Cz 0.956 
Mean Whole F7 1.0173 
Mean Whole T6 1.0684 
Mean Whole F3 1.2263 
HFD Alpha T3 1.2921 

 
Table 12 Classification Results for joint bands and electrodes - Leave One Out - Most important Features 

Electrode Metrics All Bands (0.5%) All Bands (0.6%) All Bands (0.7%) 

All 

Accuracy 0.4946 0.5249 0.4673 
Precision 0.4968 0.5263 0.4702 
Recall 0.4960 0.5260 0.4687 

F1 Score 0.4961 0.5261 0.4688 

 
Figure 3 shows the updated distribution of the 75 
subjects in terms of accuracy range. As observed, 
the results are quite improved, with 9 less subjects 
in the range between 0-25%, and 7 more subjects 

in the range between 75-100%. Out of all this, only 
4 of them remain with 0% accuracy (as described 
above), whereas 7 (one less) remain at 100%.  
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Figure 3. Distribution of Accuracy results per Subject in the Leave-one-out Scenario only with features over 
0.6% importance. 
 
4. Discussion 
As has been discussed in the state-of-the-art in the 
introduction, there is an increasing interest in 
studying the potential of non-linear features of EEG 
signals for supporting the classification of healthy, 
MCI, and AD subjects. The most recent technological 
focus is on the rapidly emerging AI-driven 
techniques, and more specifically ML-based ones, 
which have been found to hold immense potential 
for the health domain, including signal processing in 
AD. In this article, the focus is on two specific non-
linear features, i.e., the Tsallis Entropy and the 
Higuchi Fractal Dimension, along with other more 
common linear and non-linear variables such as 
mean, variance, skewness and kurtosis. Their 
combination has been examined over three well-
known ML tools (i.e., SVM, BBT, and LGMB), and the 
overall performance in properly classifying subjects 
as healthy, MCI, and AD has been assessed under 
several scenarios. To the authors’ knowledge, this is 
one of the first ML-based approaches that combines 
these specific features for addressing the challenge 
of classifying EEG signals (either at epoch or 
complete signal level) in one of three stages, without 
performing artefact removal. Regarding the main 
results obtained, a higher performance (>98%) 
from the respective literature (in terms of the 
specific features examined) has been observed 
when performing a 10-fold cross validation on 10 
seconds epochs, on the entire sample pool, when 

combining all of the selected features across all 19 
electrodes. Nevertheless, when examining a leave-
one-out scenario, the accuracy of the model drops 
significantly, creating room for improvements and 
future research. A more detailed discussion, aligned 
with the results follows.         
 
4.1. ML Technique  
In the results presented in Section 3.1, it is evident 
that by employing different ML techniques and 
tools, a better performance can be achieved, using 
the same features and modelling methods. LGBM 
outperforms both SVM and GBT in almost all 
examined cases, with a sole exception of Delta-O2, 
in which GBT seems to be slightly better. 
Nevertheless, that particular combination is one of 
the least accurate combinations. Interestingly, the 
Whole band seems to outperform all other besides 
Theta, which holds the highest accuracy, for 
electrode T4, with 82.99%. 
 
4.2. Feature Selection  
It can be seen that the TsEn provides better results 
when used individually than the HFD. This could 
potentially mean that the entropy gives more 
information in terms of classifying AD than the 
fractality, an assumption that would require further 
and more in-depth research by also employing 
other types of fractality and entropy measures, as 
well as a larger dataset. Another interesting 
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outcome of this comparison is the slight difference in 
between bands. When investigating only TsEn in the 
separate bands, the one with the highest accuracy 
is Theta, whereas for HFD the band that offers the 
highest accuracy is Delta. What's even more 
interesting is that their combination exhibits the 
highest accuracy in Delta. These results suggest that 
complexity measures seem to provide the richest 
information for classification purposes in different 
bands. Nevertheless, when combined with the other 
four selected features, the accuracy improves 
significantly, reaching in two scenarios a value over 
80%, leading to the assumption that both TsEn and 
HFD cannot capture optimally the differences 
among the three stages, using the proposed 
approach. This is something that contradicts 
previous findings in the literature, in which only one 
of them was enough to present highly accurate 
results.  
Moreover, from the abovementioned comparison, it 
is observed that when exploring either TsEn or HFD 
individually, there is a large gap between 
individual bands and the entire signal (Whole), 
whereas when all six features are combined, it is 
clear that even if the analysis doesn't go into 
individual bands, but remains at the Whole level 
(entire signal), the results are quite close to their 
best accuracy. This is quite promising, as it can 
further reduce pre-processing, computation time 
and make the diagnosis faster, making it a more 
practical tool to healthcare professionals. 
 
4.3. Classification towards accurate 

supported diagnosis  
In the classification scenarios that have been 
presented in this manuscript, several interesting 
insights can be extracted and discussed. Starting 
with the first scenario (i.e., Scenario A) it can be 
observed that when investigating each electrode 
per band, the results are quite accurate (i.e., 
reaching up to 82.99%), but not as accurate as 
when combining multiple electrodes or bands, or 
even both electrodes and bands. From a band 
perspective, Delta and Theta seem to have the 
highest accuracy in the examined scenario, whereas 
considering the regional characteristics; the 
temporal electrodes offer in general higher values 
than other regions. Both of these findings are 
aligned with the literature analysed. 
Getting in more detail, it is also interesting to 
observe the consistency of the results. Even though 
Theta holds the highest accuracy in this scenario, this 
is not observed for all electrodes. In fact, Delta has 
been found more accurate than Theta in 14 
electrodes, whereas Theta just in 5. This implies that 
there is diversity in the bands and electrodes that 

offer valuable information, and research shouldn’t 
focus on one or another independently but taking 
into account their interrelation. This extends to the 
other scenarios as well, within which it is easy to 
observe that combination of the extracted features 
(over both bands and electrodes) can increase 
significantly the accuracy of the classification 
process. This is even more evident through Scenario 
C, where the joint analysis of all electrodes leads to 
an increase of at least 10% in the accuracy, 
compared to the previous two scenarios examined, 
reaching up to 98.03% in Scenario D.  
Following closely the scenarios and their results, the 
findings support previous studies, where differences 
have been identified to be widespread across the 
head, and not entirely focused on one specific 
region or electrode. Hence, it is imperative to 
identify the optimal combination of both the 
electrodes and bands to provide meaningful data 
towards effectively modelling an accurate 
classification process, as also clearly demonstrated 
in Scenario F. 
Even though the above results are quite promising 
and follow a similar approach to previous studies in 
terms of epoch-level classification, it can be argued 
that including epochs of the same signal in the 
training and testing can affect the performance of 
the models. Nevertheless, even in this case, such as 
tool could support clinicians in their diagnosis, by 
allowing them to label epochs that are clearly 
belonging to one stage or another, and then seek 
“advice” for the remaining ones that are not so easy 
to decipher (always leaving the final decision to the 
clinician).  
Going however one step ahead, and in an effort to 
avoid the abovementioned shortcoming of the 
analysis explored by the previous scenarios, the 
leave-one-out scenario has been explored, in which 
a whole signal is left outside the training process, 
and its epochs are tested independently. There, a 
significant drop in the accuracy leads to the 
conclusion that classifying a completely unlabelled 
signal remains quite challenging and requires more 
elaborate approaches. By evaluating the 
importance of the features explored, it is possible 
to improve the performance of the model, but again 
only to slightly go above 52%, which cannot be 
used by healthcare professionals on the field. 
When taking a closer look to the signals and the 
performance of the model on them on the last 
scenario (i.e., Scenario F) it is interesting to observe 
the fact that there are signals that cannot be 
classified correctly at all (0%) and there are also 
signals that can be perfectly classified (100%). 
Hence, a closer look is required to these signals to 
better identify and understand the factors that 
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affect this behaviour, which may reveal additional 
modelling parameters that can increase the 
performance of the described approach.  
 
5. Conclusions 
This work presented a novel approach employing 
ML techniques (i.e., LGBM) for diagnosing Healthy, 
MCI, and probable AD subjects through EEG signals. 
The main merits of the presented methodology are 
five-fold: (i) slightly above 98% accuracy (with 
precision and recall/Sensitivity also slightly above 
98%) is achieved when classifying an epoch in one 
of these three stages/classes in a balanced sample 
pool; (ii) the high accuracy achieved was on epochs 
originating from a very simple EEG acquisition 
protocol (5 minutes eyes closed in resting stage), (iii) 
the approach dispenses with laborious artefact-
related pre-processing (completely damaged 
signals were not included at all in the analysis); and 
finally, (iv) different types of complexity features 
perform better when combined as features in the 
same classification algorithm. The results acquired 
are on par with other findings in the literature, 
however with quite a simpler methodology for the 
recording and the pre-processing procedures.  
Furthermore, identifying the limitation of over 
training, a comparison with a leave-one-out 
approach has shown that the best model created, 
can only reach an average accuracy of 52.5%, 
which makes clear the fact that there is level of 
uniqueness in EEG recordings, which cannot be 
easily captured by ML models, at least not with so 
few samples and the features examined in the 
present manuscript. A lot more work is required, in 
order to effectively classify epochs from a new 
subject, without any previous knowledge, besides 
the signal itself. A promising yet not fully exploited 
approach would be the use of Deep Learning 
engineering, along with an automatic feature 
extraction, as presented recently Ieracitano et al.,58 

which however requires a lot more sophisticated 
data science.   
 
6. Limitations 
Finally, even though very interesting findings were 
obtained, within this study, there are several other 
extra parameters that could aid towards a better 
understanding and further improvement of the 
approach. By adding extra complexity features in 
the analysis and cross validating with other 
additional information such as demographics (age, 
sex, etc.) and neuro-psychometric tests (MMSE, 
FUCAS, etc.) more reliable results may be 
extracted, while increasing the accuracy of the 
models employed. Another limitation of this study, 
which also characterised most other related 
literature findings, is the sample size. Towards that 
direction, effort is already denoted in order to be 
able to include additional samples and data in the 
future work, leading to a statistically significant 
sample size, taking into consideration the 
population targeted. 
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