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ABSRACT 
The epidemiology has recently witnessed great advances based on 
computational models. Its scope and impact are getting wider thanks 
to the new data sources feeding analytical frameworks and models. 
Besides traditional variables considered in epidemiology, large-scale 
social patterns can be now integrated in real time with multi-source 
data bridging the gap between different scales. In a hyper-connected 
world, models and analysis of interactions and social behaviors are 
key to understand and stop outbreaks. Big Data along with apps are 
enabling for validating and refining models with real world data at 
scale, as well as new applications and frameworks to map and track 
diseases in real time or optimize the necessary resources and 
interventions such as testing and vaccination strategies. Digital 
epidemiology is positioning itself as a discipline necessary to control 
epidemics and implement actionable protocols and policies. In this 
review we address the research areas configuring current digital 
epidemiology: transmission and propagation models and descriptions 
based on human networks and contact tracing, mobility analysis and 
spatio-temporal propagation of infectious diseases and infodemics 
that comprises the study of information and knowledge propagation. 
Digital epidemiology has the potential to create new operational 
mechanisms for prevention and mitigation, monitoring of the evolution 
of epidemics, assessing their impact and evaluating the 
pharmaceutical and non-pharmaceutical measures to fight the 
outbreaks. Epidemics have to be approached from the lens of 
complexity science as they require systemic solutions. Opportunities 
and challenges to tackle epidemics more effectively and with a 
human-centered vision are discussed here. 
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propagation, epidemiological impact, infodemics, human mobility, Big 
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1. INTRODUCTION 
 
Epidemiology is the field that encompasses the 
study of the distribution, prevalence and etiology of 
human diseases 1-3. Although data and models have 
always been part of epidemiology 4, the 
appearance of new sources of Big Data and 
technology 5 have enabled computational 
frameworks and opportunities to increase impact 
and knowledge 2. In parallel to the appearance 
and use of new data sources, the growth of Artificial 
Intelligence (AI) and specially Machine Learning 
(ML) techniques 6-9, are giving rise to multiple 
methodologies and applications that can be 
categorized as the emergent digital epidemiology. 
 
The studies of epidemiology have been grounded 
in data collected in clinical practice and field work 
10. Based on individual’s web searches, researchers 
have been developing algorithms (e.g. Google flu 
trends) to monitor and estimate the progression of 
epidemics. 11-14. This trend generated the first 
challenges in methodologies and epistemology of 
the new field 15-17. Currently, we count on many 
sources such as social media, social networks, mobile 
apps and other services that generate data 18. The 
COVID-19 pandemic emergency sped up the 
adoption of digital tech in all sectors with a slow 
digital transformation. 
 
For this reason, digital epidemiology seeks to 
understand the dynamics of patterns, both social 
and clinical, of people affected by the disease, and 
the causes of these patterns 18. According to the 
definition of the World Health Organization 
(WHO), epidemiology is the study of the 
distribution and the determinants of the estates and 
events related with health and the application to 
disease control and management and other health 
challenges. Therefore, epidemiology has a 
pragmatic dimension aimed to improve response 
systems against epidemics including prevention, 
management, mitigation and preparation to future 
epidemics and waves. Besides, due to its complexity 
and importance, epidemiology is promoting new 
research practices and techniques. Digital 
epidemiology has a wider scope, it is not only about 
new technology, but mostly about the scope of 
epidemiology to manage complexity of diseases 
and their factors: biological, social and, 
environmental. More data is used and analyzed 
including data that was not thought of or designed 
for health applications 18. In this document, we 
overview the work areas and the ongoing work 
along with the most important contributions where 
COVID-19 has been a disruption point 19. 

2. MODELS AND NETWORKS 
 
There are two types of epidemiological models: 
models based on equations and models based on 
agents (ABMs). Models based on equations assume 
homogeneity and similar collective behavior 4. 
Progress on computation has enabled ABMs that 
can model heterogeneity in epidemics, e.g. detailed 
age-stratification, population density, vaccination 
coverage, and realistic social networks 20-23. Both 
types of models are based on the conceptualization 
of the disease through different states, being SIR 
(Susceptible, Infected, Recovered) the most used 
and extended. There are several extensions to 
introduce new complexities and details. For 
instance, the model SEIR inserts the state Exposed 
that comprises people infected in the incubation 
process. Each state can be parametrized towards 
quantifying the transition between states given 
biological and social criteria inferred from clinical 
data, surveys and questionnaires. While inputs may 
greatly differ between models, the outputs typically 
consist in forecasts of infected cases and deaths, 
and estimations of epidemiological parameters such 
as the reproductive number R0. The reproductive 
number R0 is the average number of contagions 
generated by each person and R is the full 
distribution of (Rn) in each node. Models integrate 
diseases characteristics, temporality and volume of 
the epidemic. 
 
A recent key element in sophisticated 
epidemiological models is to consider the contact 
between individuals (contact matrices) as multi-
layer networks, so the disease depends on the 
structure, properties and topology of the contact 
networks that can be partially modelled using 
metapopulation approaches 22,23. Even when all 
scales are interlinked (from biochemical to social), 
epidemiology based on networks is useful to predict 
the spatio-temporal propagation of the disease, 
and also, to implement social distancing policies. 
Networks allow modelling the behavioral 
component of the disease through the network itself 
and its dynamics: percolation and diffusion. 
 
Considering the topology of the network, a disease 
can propagate with different speed and strengths 
24-26. Several studies have used “scale-free” 
networks (networks whose degree distribution 
follows and power law) to simulate a realistic 
scenario of how people are interconnected. 
Assuming an infinite population, for infections that 
do not confer immunity upon recovery, the 
spreading process on scale-free networks does not 
exhibit an epidemiological threshold, and has a 
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large heterogeneity in the behaviour of the 
network. This is a consequence of the extreme 
heterogeneity in the connectivity distribution of 
scale-free networks 24.  Considering finite network 
sizes, more realistic models reproduce threshold 
and still heterogeneous behavior 27-29.  
 
Percolation is a process that affects network 
connectedness by deactivating links. This process 
removes links uniformly at random with some given 
probability. After removing a critical fraction of 
links, the network is fragmented in two or several 
smaller networks. This process features a phase 
transition that resembles critical transitions in 
several contexts 30. The structure is key for this 
dynamic phenomenon due to the compartments of 
the network 31,32. Through percolation it is possible 
to model the dynamics of disease spreading, when 
the epidemiological threshold is passed and size of 
disease outbreaks 33. Diffusion is the other dynamic 
phenomenon that can be studied. Diffusion is the 
process from which several nodes are reached from 
one node and depends on the topology of the 
network and the dynamics of the disease. Predicting 
diffusion is critical to slow down and stop epidemics 
34. 
 
Sophisticated epidemiological models consider 
contact tracing matrices that enable the 
reconstruction of the contagion network if they are 
properly designed and collected. These matrices 
can be stratified (different age groups and gender 
groups),  based on metapopulations 22,23 or multi-
layer (if several flows are labelled, i.e. work 
travels, home travels, leisure travels, etc) 20. Recent 
methodological advances comprise the use of 
hyper-graphs with links that connect several nodes 
instead of pair-to-pair links 35. Thus, networks are 
used to build risk forecast and propagation 
forecast systems, including the analysis of 
transportation hubs 36, confirming that 
heterogeneity favors the propagation as it is easier 
to percolate. Consequently, actions to prevent, stop 
and contain epidemics seek to reduce and make 
more homogeneous the degree of the nodes in all 
scales for a given time window, so the epidemic is 
easier to control 37-39.  
 
Network analysis has witnessed a new revolution 
during COVID-19 due to the new data sources 
acquired via Bluetooth and geo-location of mobile 
devices that enable GPS-based and proximity-
based contact tracing to obtain dynamic and high-
resolution matrices 40. Multi-source networks will 
enable multi-partita networks where interactions 

between people and locations can be represented 
more realistically. 
 
Networks are also useful to track and understand 
recovery and resilience, which in this case is favored 
by heterogeneity processes of recovery within the 
network 26,41. Another application is to understand 
the interaction among concurrent diseases 42.  
 
3. MOBILITY AND PROPAGATION 
 
Mobility has a direct impact on disease 
propagation air-borne or vector-borne. The 
mobility studies have a long tradition but have been 
hampered by the lack of dynamic and fine-grained 
data to differentiate types of mobility 43. In the last 
decades we have witnessed different types of 
mobility: tourism, events, business, long-term labor 
or students’ mobility. It is not possible to properly 
study different layers of mobility through surveys 
and static data. The analysis of mobility and spatial 
characteristics of diseases depends on the 
availability and resolution of longitudinal data 44-

46. 
 
Human mobility is multi-scale in temporal and 
spatial dimensions 44,47-49. Human mobility is also 
multilayered depending on the population flows. 
These layers are interconnected and each of them 
are propagated through a “social medium” 50. The 
structure of mobility has an amplifier effect in the 
propagation due to diffusion and percolation if it is 
not properly managed 51. First studies in mobility as 
epidemiological factor were focused on the global 
scale based on demographic data and 
international mobility statistics 52. The temporal 
resolution of data in these studies only allowed 
studying seasonal variability 53. The models used 
were gravitation-driven model and radiation-
driven model 54. However, these models only work 
under strong assumptions and it is difficult to make 
them work in epidemiological practice 55. 
 
In vector-borne diseases, such as malaria or 
dengue, or diseases transmitted through air and 
water, small scale mobility affects the exposition of 
people to the disease whereas large-scale mobility 
affects the introduction, reinsertion and circulation 
of the contagions and even the global propagation 
56-58. Frequently, diseases induce a systemic change 
in mobility with hard-to-control impact 59. For this 
reason, it has been identified the need to create 
monitoring mechanisms of mobility based on high-
resolution mobile devices data. 
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Mobile phone data are generated from telecom 
operators and contain geolocation of calls and 
connections to the Internet. Also, geolocation 
services for smartphones allow capturing mobility 
traces (i.e. Cuebiq, Foursquare, etc). The temporal 
resolution of this data is very high 60,61. The data 
requires an anonymization and aggregation 
process to preserve privacy 62-64  
 
High-resolution longitudinal allowed the 
characterization of “hotspots” and optimize the 
location of actions to prevent and stop the diseases 
65,66. However, mobile phone data has enabled the 
revolution of mobility for epidemics 67-73. Sources 
and sinks characterization was the first and one the 
most notable to decipher the structure of 
propagation and generate risk maps separate 
from vector density maps 67. However, a more 
detailed study based on mobility flows descriptors 
49, can help understand the dynamics of risk and 
super-propagation phenomena 74. 
 
Among the mobility phenomena, cultural events in 
many regions of the world have been analyzed as 
high-impact events in epidemics 75. Long-term 
mobility analysis and mobility profiles are useful 
tools to understand the dynamics of the epidemics 
in a disaggregated way 76. Disaggregation is 
necessary to understand the socio-economics of the 
epidemics 39,77-79 and the relationships with other 
sectors such as work, tourism 37,80 or agriculture and 
the rural-urban migration 48. Finally, mobile phone 
data and survey data can be integrated to have 
high spatio-temporal and demographic resolutions 
81. 
 
During SARS-CoV-2, the number of applications 
and use cases of mobile phone data has increased 
82, including distancing and lockdown measures: 
lockdown enforcement, measuring the 
epidemiological impact of the lockdowns and 
distancing and evaluating the measures for re-
opening 39,83. 
 
4. INFODEMICS 
 
Decision-making during pandemics is key for good 
response and management and to stop negative 
effects. The asymmetry of negative impact requires 
additional actions to avoid systemic risk 84-86. 
Decision-making demands the right information with 
the right timing 87, for this reason, information 
propagation during pandemics has become a key 
use for United Nations General Secretary 88. SARS-
CoV-2 has been marked by the spread of fake 
news and news that generate division 89-91. When 

this situation gets more severe in moments of crisis, 
it becomes an infodemic 92-94. 
 
Several works have been done to study information 
propagation, especially rumor and fake news, using 
analogies of disease spreading across complex 
networks 95-97. For instance, through network 
analysis it is possible to discover who are the 
leaders of the social media and their influence in 
information propagation 98-100 and quantify viral 
processes and info spreaders 101. Beyond 
information propagation, semantics analysis is a 
useful tool to classify text. New  Deep Learning tools 
7 are making this task accurate and scalable 102-104. 
 
Facing the risk of hatred content, it is necessary to 
highlight the need of propagating positive 
information, being constructive through the social 
media and the networks. Information empowers the 
population to make better decisions at the 
individual and the collective levels. Information can 
help people keep their environment safe. 
Furthermore, it helps building up resilience and 
increase socio-economic impact driven by Collective 
Intelligence 105.  
 
Information gathered by citizens helps manage risk 
and understand the epidemic better 106,107, feeding 
computational systems and models that deal with 
probabilities beyond demographic and clinical 
data. In this sense, new sensors to monitor variables 
and dynamic changes in the population are 
necessary. There exist already several tools to 
classify disease analyzing coughing 108 or problems 
with the smelling 109. Finally, new channels between 
authorities and the population are necessary to 
build up trust and improve response. 
 
5. ARTIFICIAL INTELLIGENCE-DRIVEN POLICY 
 
5.1. Prediction and prevention 
 
An early and rapid response minimizes and 
mitigates the impact of the epidemics. Models are 
principally used to predict the evolution of the 
epidemics. The prediction is based on the area of 
influence, the epidemiological curves and R0. The 
models are expressed in terms of variables like 
population density, age and gender, implying 
limitations in the understanding and the prediction 
of propagation and impact of the epidemic. 
Variables like vulnerability, socio-economic 
inequality or WASH infrastructure are key to 
having more effective models. Epidemiology 
complexity increases with the variability and the 
complexity of the ecosystems where the epidemics 
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propagate, hampering the use of local models. 
Some efforts have been made to develop clustering 
strategies to have epidemiological profiles for a 
geographical model 110-112. Furthermore, models 
need to be more dynamic to include and explore 
changes in public policy, locally and internationally. 
This implies better data infrastructure (Health Data 
Spaces) and better models to move towards 
deployment and production phases. Furthermore, 
process and model parameters backtracking is 
necessary to perform causality analysis of test 
clinical evidence. 
 
Apart from modelling, researchers have applied 
Machine Learning (ML) tools to predict the behavior 
of epidemiological curves 113,114, and analyze 
temporal patterns 115,116. These frameworks have 
potential for policy making during distancing, 
lockdown and reopening. Training these models 
needs datasets that are not often available 117. For 
instance, during the crisis of SARS-CoV-2, 
researchers have used data from other diseases like 
flu even when the behavior is very different 118,119. 
In other cases, it is necessary to use small datasets 
6. 
 
Some diseases have a strong environmental 
component, for instance, increasing the density of 
vectors 81,120. Thus, it is important to integrate 
environmental data and social models with high 
resolution and real-time. For diseases where the 
transmission is mainly from individual-to-individual, 
it is necessary to model asymptomatic cases and 
their contribution to the propagation 121,122. There is 
new research to identify biomarkers and have 
clinical studies to control asymptomatic cases and 
understand different immunity, being necessary to 
configure model parameters 123-125.  
 
Super-propagation has also become central 
because it has been observed a great variability in 
the distribution of R (dispersion k), giving rise to 
super-propagation events and spots. The role of 
super-propagators at the individual level is also 
important and can only be studied through contact-
tracing matrices 74. 
 
The society needs new tools to manage systemic risk 
of epidemics. This implies managing the information 
better by taking advantage of social systems 
exploiting complexity. Risk is multi-dimensional and 
even though the health response is the most 
important phase, it is necessary to leverage 
economic risk, social inequalities, drawbacks with 
rights and freedom and the effects on cognition and 
psychological state of the population. 

5.2.  Impact tracking and assessment 
 
Non-pharmaceutical measures have become very 
relevant including lockdowns, distancing, contact 
tracing and mobility analysis 126. The objective of 
these measures is to reduce R0 (average of 
distribution R) being the output of predictive models 
127,128.  
 
The strategies of distancing are restrictive 
depending on the transmission medium, the 
morbidity and the mortality of the disease 129. To 
track the effect of these strategies now we can use 
other data such as mobile phone data 82, Internet 
searches and social media 130 and other data 
generated by mobile devices. However, these kinds 
of systems are not fully implemented in our world. 
Some agencies are developing workflows to assess 
the impact on the most vulnerable populations and 
have a global understanding of the social dimension 
of epidemics 76.  
 
One of the new systems is the digital contact tracing 
based on Bluetooth apps or physical proximity 
derived from GPS location. There are several 
architectures, centralized (PEPP-PT) and 
decentralized (DP-3T) to manage the info about risk 
of contagion. These techniques allow, given privacy 
and security mechanisms, generating suitable 
contact matrices with high disaggregation. 
 
Information curation is another key process to avoid 
negative effects 131.  Ad-hoc systems are normally 
better than general digital platforms to ensure a 
responsible flow of information and data 132,133. 
Dedicated chatbots and curation pipelines are part 
of the new epidemiology 6. 
 
5.3.  Evaluation of epidemiological measures 
 
Evaluation of measures is key to improve response 
systems for the short and long term. Evaluation is 
key for governance and policy, so the mechanisms 
have to be truthful and transparent to measure the 
impacts. COVID-19 pandemic has sped up the 
innovation in this area due to the severity of the 
distancing and lockdowns and their socio-economic 
impact. Deep Learning algorithms have been used 
to simulate scenarios of the pandemic at a global 
scale 134 and measure the effects of lockdowns 135. 
Mobile phone data has been used to measure the 
effects of the measures in geographical areas but 
also in meta-populations and population target 
groups 39,76,78. A global challenge is to isolate the 
effect of each mitigation measure to be quantified 
and evaluated with data 136-139. Global pandemic 
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has shown the need to make dynamic policy and 
update the measures using computational models in 
nearly real-time 20. 
 
6. CONCLUSION 
 
Epidemics are multi-dimensional: molecular, clinical, 
social and political. A better understanding of social 
systems is necessary to create new mechanisms 
based on collective action and efforts to avoid 
future pandemics. It has been clear that inequality 
is an important factor that accelerates disease 
propagation and their impact making the system 
more fragile and implying latent systemic risk 86,140. 
Super-propagation phenomena has been also 
shown as a systemic problem for pandemics and we 
do not have the tools to tackle them 141,142. 
Epidemiological policy must act at different levels, 
from local aid to global governance mechanisms 143. 
We still need to progress complex multi-scale 
systems for acquiring data, diagnostics and 
delivering aid in real-time. 
 
Assessing measures to stop epidemics still present 
several epistemological, operational and political 
challenges. For instance, we should think in 
experimentation and simulations and isolate factors 
(pharmacological, non-pharmacological, social, 
political, economic, etc) to quantify how each 
measure contributes and also assess the synergies 

of integrated policy 136,137. Next challenge is a 
better international system to control epidemics 
which implies not only regulatory issues but more 
technology to be prepared to stop future epidemics 
143-145. Cross-disciplinary research is also key for 
better policies 105, including crossing molecular and 
clinical research with technological innovation 6. 
Innovation in communication channels and novel 
dashboards is an important area of research 146. 
Artificial Intelligence has to exploit the upcoming 5th 
Industrial Revolution and 2nd Data Revolution to 
design better systems for response and decision 
making in all layers of the society including policy 
makers and citizens 105 and deliver Collective 
Intelligence platforms to empower people and 
amplify collective efforts 147,148.  
 
Ethical issues have arisen because of the exhaustive 
use of technology in some countries during the 
SARS-CoV-2 pandemic 145,149,150. Privacy and rights 
have suffered an important debate because there 
was not sufficient reasoning on these topics 143. 
Ethical frameworks based on principles are 
necessary to leverage technologies for sustainable 
development and emergencies 149. We still must 
work on implementing epidemiological policies, 
technology and mechanisms to fight future 
epidemics and progress towards a more 
sustainable and resilient society 151. 
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