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ABSTRACT 
Since the SARS CoV-2 virus was first identified in December 2019, 
huge scientific endeavor has occurred in order to characterize the 
pathogenesis of this virus and how best to treat it. Early observations 
noted marked cytokine release, coagulopathy and a prothrombotic 
phenotype associated with severe disease. The potential contribution 
of red blood cells to these findings remains an area of ongoing 
investigation. 
While there is no evidence of direct infection of red blood cells by the 
SARS CoV-2 RNA virus, anaemia and increased variability in shape 
and size of red cells have been shown to be associated with adverse 
outcomes in COVID-19 infection. This is likely related to the impact of 
inflammatory cytokine-induced oxidative stress on erythrocytes, where 
decreased levels of reducing agents have been shown to correlate 
with disease severity. The consequences of increased oxidative stress 
on red cells include membrane damage leading to the morphological 
abnormalities seen in patients, and increased rates of programmed 
red cell death with resultant anaemia. Production of nitric oxide by 
red cells is altered, possibly as a means to alleviate tissue hypoxia in 
these patients, and red cells may also demonstrate enhanced lactate 
influx, possibly reducing circulating levels at a time of increased 
glycolysis.  
In this review we discuss the currently available evidence describing 
the impact of SARS CoV-2 infection on erythrocytes and the possible 
roles they play in patients with COVID-19 infection.  
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Introduction 
 
The COVID-19 pandemic, caused by infection with 
the Severe Acute Respiratory Syndrome 
Coronavirus-2 (SARS CoV-2) virus has caused high 
levels of mortality and morbidity. Since the start of 
the pandemic in December 2019 there have been 
over 600 million documented cases leading to 
approximately 6.5 millions deaths world-wide 1. 
Severe COVID-19 disease is associated with an 

endotheliopathy and excess production of 
inflammatory cytokines, the so-called cytokine storm 
2,3. This dysregulated immune response can lead to 
development of coagulopathy and a prothrombotic 
state 4,5. The part that erythrocytes play in the 
pathogenesis and response to SARS CoV-2 infection 
remains incompletely characterised. In this review 
we summarise the current understanding of the role 
of erythrocytes in COVID-19 infection, shown in 
Figure 1.  

  
Figure 1. Erythrocytes in COVID-19: increased production of NO by RBC NOS, increased oxidative stress 
causing membrane damage and promoting eryptosis, increased glycolysis and possible increase in lactate 
influx into erythrocytes. 
 
Morphological changes in erythrocytes 
 
The impact of COVID-19 on erythrocyte structure 
and function has not been fully determined. 
Anaemia and an increased red cell distribution 
width (RDW) have been shown to be associated 
with increased mortality in hospitalized COVID-19 
patients 6,7. One group analysed peripheral blood 
morphology in 115 patients, categorizing them as 
having no red cell changes, changes in <10% of red 

cells and changes in 10%. Mortality correlated 
significantly with increasing erythrocyte 
abnormalities from 12.5% to 41.9% across the 
three groups. Patients with more erythrocyte 

abnormalities were also more likely to have 
lymphopenia and thrombocytopenia, suggestive of 
worsened disease severity 8. Despite early claims, 
there is no unequivocal evidence that SARS CoV-2 
can specifically infect red cells. In active COVID-19 
infection, SARS CoV-2 RNA is only detectable in a 
minority of blood products at low viral levels, with 
no direct evidence of transfusion related COVID-19 
infection 9.  
 
Does SARS CoV-2 directly affect haemoglobin? 
 
Various putative binding sites for SARS CoV-2 have 
been proposed in erythryocytes. The angiotensin-
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converting enzyme 2 (ACE2) receptor is expressed 
by haematopoietic progenitor cells but has not been 
shown to be involved in direct erythrocyte infection 
10. CD147 and CD26 were suggested as potential 
targets, however the available evidence does not 
support this 11,12. A resonance recognition model 
suggested that the SARS CoV-2 spike protein could 
bind to erythrocyte band3 protein 13. While this 
theory remains unproven, interestingly, red cell 
morphological anomalies seen in COVID-19 
patients include stomatocytes and mushroom cells, 
typical in patients with band3 defects 14,15.  
 
It also does not appear that patients with COVID-
19 have altered oxygen binding capabilities. SARS 
CoV-2 has a number of open reading frame (ORF) 
polyproteins, responsible for replicating viral RNA 
16. One group used homology modelling and 
molecular docking algorithms to identify potential 
interactions between ORF polyproteins. They 
reported that several ORF proteins might be able 
to dissociate iron from porphyrin in haemoglobin 17.  
The methods used in this paper were later criticized 
18. Nor were they corroborated by another study, 
which identified increased levels of the porphyrin 
by-products uroporphyrin I and coproporphyrin I 
and the metabolite coproporphyrin III in the serum 
of COVID-19 patients. Accumulation of these 
byproducts was thought to exacerbate the heme 
shortage seen, whereas the normal levels of 
protoporphyrin IX identified suggested that SARS 
CoV-2 is not directly competing with the heme 
group for the iron atom as stated by the previous 
publication 19. Moreover, subsequent studies have 
not found convincing evidence of altered 
haemoglobin oxygen affinity in these patients, 
further refuting these claims 20,21.   
 
Impact of red blood cell groups 
 
Red cell blood group may alter the risk of 
contracting COVID-19 and degree of disease 
severity 22. The ABO blood group consists of 
glycosylated cell surface glycoproteins and 
glycolipids which form the A and B antigens. 
Individuals who lack expression of A and B are 
termed group O and rapidly form anti-A and anti-
B antibodies during early life 23. Globally, the most 
common ABO group is O, followed by A, B and 
finally AB. A number of studies have published 
higher rates of COVID-19 in Group A individuals, 
particularly compared with Group O 24-28. One such 
paper compared COVID-19 patients with healthy 
controls, reporting a significantly higher proportion 
of Group A patients than controls (38% vs 32%) 
and a lower proportion of Group O patients (26% 

vs 34%). The Group A results were likely 
confounded by increased prevalence of 
comorbidities in this cohort, but other authors have 
reported similar findings 24,25. ABO group may also 
influence disease severity. A prospective study of 
95 critically ill COVID-19 patients reported an 
increased risk of requiring mechanical ventilation in 
non-Group O cases 29. Various hypotheses have 
been suggested to explain this observed association 
including whether A and B antigens may serve as 
low-affinity SARS CoV-2 receptors, or if anti-A 
antibodies might alter viral ability to infect target 
cells, as seen in a preclinical Severe Acute 
Respiratory Syndrome (SARS) study 30. Reduced 
antibody titres in patients of all ABO groups were 
reported in one study, compared with healthy 
controls 31. Conversely, a recent meta-analysis of 
over 233,000 cases did not find an association with 
ABO group and severe disease, defined by need 
for mechanical ventilation, or mortality 32. In 
addition, no definitive evidence of if or how ABO 
group interacts with the SARS CoV-2 has so far 
been produced.  
 
Oxidative stress in COVID-19 erythrocytes 
 
The cytokine storm seen in COVID-19 is highly 
prothrombotic. Cytokines lead to upregulation of 
tissue factor on endothelial cells and monocytes 
33,34, activate platelets 35, alter fibrinolysis 36 and 
promote formation of neutrophil extracellular traps 
(NETs). NETosis is increased particularly in severe 
COVID-19 infection 37, where extracellular histones 
within NETs cause platelet activation and thrombosis 
38. Increased oxidative stress is a well-recognized 
occurrence in severe viral infections where 
neutrophils move towards sites of infection and 
release reactive oxygen species (ROS) to aid in 
pathogen killing 39,40. Oxidative stress itself refers 
to increased production or reduced elimination of 
ROS, whereby the balance of the redox state is 
disrupted with potentially deleterious 
consequences. An increased neutrophil:lymphocyte 
ratio in COVID-19 is associated with the presence 
of increased levels of neutrophil-derived ROS and 
with an increased mortality rate 41,42. Nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase 
2 (NOX2), an enzyme involved in production of 
ROS is also overexpressed in hospitalized patients 
with COVID-19 43. ROS stimulate further NETosis in 
SARS CoV-2 infected patients 44, promoting a 
positive feedback loop and worsening the 
proinflammatory, prothrombotic milieu.  
 
Binding of the SARS CoV-2 virus to ACE2 may itself 
trigger an increase in ROS production. Binding to 
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ACE2 prevents conversion of angiotensin II (Ang II), 
leading to increased levels. Ang II binds the 
angiotensin type 1 receptor (AT1R), stimulating 
NADPH to produce more ROS 45. ACE2 deficiency 
has been shown to lead to increased ROS levels, 
although not specifically in the context of COVID-
19 infection 46.  
 
Erythrocytes are particularly vulnerable to 
oxidative stress based on their primary function of 
oxygen transport. Intracellular defense against 
oxidative stress relies upon the presence of 
reducing agents. Glutathione (gamma-glutamyl-
cysteinyl-glycine) plays an important role in this 
process. It exists as oxidized GSSG and reduced 
GSH and is made in the cytoplasm of all 
mammalian cells 47,48. GSH reduces ROS producing 
GSSG, which is subsequently reduced by 
glutathione reductase 49. Reduced GSH levels have 
been identified in COVID-19 patients, with degree 
of abnormality of GSH/GSSG ratio correlating 
with disease severity 50,51. Thomas et al. reported 
increased GSSG levels in erythrocytes from 
COVID-19 patients alongside evidence of 
membrane damage including oxidation and 
fragmentation of ankyrin, spectrin beta and the N-
terminal cytosolic domain of Band3 with altered 
lipid metabolism. Alongside increased GSSG levels 
they showed reduced levels of antioxidant enzymes 
including catalase, peroxiredoxins 1, 2 and 6, 
glutathione peroxidases 1 and 4, and superoxide 
dismutase 52. Other key regulatory genes may also 
be affected following SARS CoV-2 infection. The 
NF-E2 related factor 2 (NRF2) transcription factor 
regulates genes required for ROS scavenging 53. 
NRF2 gene expression has been shown to be 
reduced in biopsies from COVID-19 patients, 
although not specifically within erythrocytes. 
Interestingly, treatment with a NRF2 agonist also 
inhibited viral replication in cell lines 54.  
 
The findings reported by Thomas et al. suggest a 
significant impact of infection on erythrocyte 
membrane integrity, which could potentially alter 
their deformability, potentiating haemolysis, 
reduced oxygen delivery to tissues and thrombosis 
52. In vitro data in the pre-COVID-19 era showed 
that inducing oxidative stress, demonstrated by a 
decrease in the GSH/GSSG ratio, decreased red 
cell deformability and increased blood viscosity. 
This effect was more pronounced in NRF2 knockout 
mice 55. One group reported altered red cell 
deformability in 50 COVID-19 patients compared 
with 42 healthy controls, with evidence of increased 
ROS detected within female patients only 56. A 
further recent publication reported conflicting 

results in COVID-19 patients with acute respiratory 
distress syndrome (ARDS) requiring intensive care 
support, showing normal erythrocyte deformability 
on admission and over the course of one week 57. 
Another group hypothesized that endothelial 
dysfunction in COVID-19 might be partly mediated 
by erythrocyte handling of ROS. Rat aortic rings 
were incubated with erythrocytes from COVID-19 
patients and healthy controls. Endothelium-
dependent and independent relaxation (EDR, EIR) 
were both impaired in COVID-19 samples, however 
the addition of apocynin (a NOX inhibitor) had no 
impact on either EDR or EIR 58.  
 
At our hospital, we measured ROS in red blood cells 
from COVID-19 patients and healthy controls by 
incubating cells with 2’-7’-dichlorofluorescin (DCF) 
and measuring mean fluorescence intensity (MFI) by 
flow cytometry. There was a significantly higher 
increase in MFI in the COVID-19 patients following 
incubation with hydrogen peroxide (H2O2), which 
correlated with CRP level 59. Pre-incubation with the 
anti-oxidant N-acetyl cysteine (NAC, a precursor of 
GSH) partially reversed the ROS generation indued 
by H2O2 59 as has been previously shown in normal 
red cells and those from various disorders 60. 
Elevated CRP has been shown to be predictive of 
severe disease and adverse outcomes by several 
studies in COVID-19 61-63. The positive correlation 
between increased ROS and CRP in our study 
provides further support to the hypothesis that the 
cytokine storm is a key factor in development of a 
state of oxidative stress following SARS CoV-2 
infection. Eryptosis, or programmed erythrocyte 
death, may be triggered by oxidative stress via 
activation of cation channels and calcium influx into 
cells 64,65. Caspases are activated by oxidative 
stress, which cleave Band3, leading to translocation 
of phosphatidylserine from the inner layer of the 
bileaflet red cell membrane to the erythryocyte 
surface 66,67. Oxidative stress also stimulates 
chloride channels leading to cell shrinking, a 
hallmark of eryptosis 68. Increased red cell death in 
states of high oxidative stress, such as severe 
COVID-19 infection, may partly explain the 
anaemia observed in critically ill cases. 
Furthermore, exposure of phosphatidylserine is 
prothrombotic, and can lead to interactions 
between dying red cells, the endothelium and 
platelets 69,70, although we did not show this in our 
work.  
 
Several groups have trialed use of NAC to treat 
COVID-19 patients with variable success. A 
retrospective cohort study of approximately 900 
patients found no impact of NAC on in-hospital 
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mortality or ICU admission, but a shorter admission 
duration in NAC-treated individuals 71. Another 
retrospective analysis of around 2000 patients 
treated with NAC reported a significant mortality 
benefit, independent of concomitant corticosteroid 
use and comorbidities, but no effect on ICU 
admission or requirement for mechanical ventilation 
72.  
 
Nitric oxide in COVID-19 erythrocytes 
 
Nitric oxide (NO) is a free radical gas which induces 
relaxation of vascular smooth muscle via the 
activation of soluble guanylate cyclase, plays a key 
role in the pathogenesis of inflammation and 
controls mitochrondrial oxygen consumption by 
inhibiting cytochrome c oxidase 2,73. The majority of 
vascular NO produced is made by endothelial nitric 
oxide synthase (eNOS) 74. Erythrocyte intracellular 
NO may be produced by the RBC NOS enzyme, 
may enter red cells by binding to the haemoglobin 
beta chain as S-nitrosohaemoglobin (SNO-Hb) or 
may be derived by reduction of nitrite by 
deoxyhaemoglobin 75-77. Tissue hypoxia stimulates 
release of NO from SHO-Hb and cellular stress 
triggers activation of RBC NOS to produce NO, 
thereby leading to vasodilation in areas of tissue 
hypoxia to improve oxygen delivery 78,79. NO 
levels are reduced in COVID-19 infection, 
potentially contributing to the prothrombotic milieu 
observed in these patients. Decreased NO is likely 
due to a combination of vascular dysfunction, 
inflammation and endothelial cell damage 80-82. 
Free heme, potentially released by red cell 
haemolysis may also bind NO, generating 
methaemoglobin and nitrates. Indeed, 
methaemoglobin level was shown to be slightly but 
statistically significantly higher in COVID-19 
patients by one group 83.  
 
However, analysis of 14 patients with COVID-19 
and four healthy controls revealed increased levels 
of erythrocyte-derived NO in the COVID-19 
patients, irrespective of the presence or absence of 
hypoxia. The authors hypothesized that this might 
potentially account for the phenomenon of ‘silent 
hypoxia’ seen in COVID-19 patients, where 
patients are observed to be relatively 
asymptomatic despite measurable hypoxaemia 84.  
 
Red blood cell glycolysis in COVID-19 
 
Glycolysis is a critical cellular metabolic pathway. 
Under aerobic conditions, glucose is converted into 
pyruvate and NADH. Pyruvate is turned into acetyl 
CoA which is used in oxidative phosphorylation to 

make ATP.  Under hypoxic conditions, pyruvate is 
reduced into lactate by lactate dehydrogenase 
(LDH), compromising the production of ATP. The 
glycolytic pathway produces two ATP molecules for 
each glucose metabolized, compared with 
oxidative phosphorylation, which produces 32 85,86. 
In hypoxia, when cells are reliant upon glycolysis, 
this leads to increased glucose use termed 
hyperglycolysis, and increased production of 
lactate 86,87. 
There is some evidence in COVID-19 infection of 
increased glycolysis within monocytes from 
bronchoalveolar lavage samples 88. This seems to 
potentiate cytokine production and may be 
exacerbated under conditions of hypoxia in 
patients with severe disease, although this theory 
remains unproven. As a consequence of enhanced 
glycolysis, high lactate levels may be expected in 
patients with SARS CoV-2 infection, however clinical 
data has not mirrored this, with lower-than-
expected lactate levels seen, even in critically ill 
individuals 89. 
 
In order to regulate intracellular acid-base, cells 
have a variety of pH regulators including 
monocarboxylate transporters (MCT). MCTs 1-4 
are involved in glycolysis, with activities including 
transport of L-lactate and pyruvate 90. MCT1 is the 
only MCT expressed by human red cells 91. Its 
expression is regulated by CD147 which can be 
used as a surrogate marker. The presence of 
CD147 markedly increases movement of lactate 
into cells by increasing its concentration at the 
extracellular entry site to MCT1 92,93. We analysed 
CD147 expression on the red cells of COVID-19 
patients and healthy controls and found that mean 
CD147 expression was significantly higher in the 
COVID-19 group than controls. There was also a 
significant positive correlation between serum 
lactate and red cell CD147 expression, whilst the 
subset of patients who died from complications of 
SARS CoV-2 infection had significantly higher serum 
lactate and red cell CD47 levels that patients who 
survived 59.  We, thus, hypothesize that, in severe 
SARS CoV-2 infection, increased expression of 
CD147/MCT1 on red blood cells facilitates 
transport of lactate from plasma into erythrocytes 
to protect against lactic acid-induced organ 
damage 94. This might account for the lower than 
expected levels seen in these patients 89. However, 
further research, such as measurement of 
erythrocyte membrane expression of MCT1 protein 
by western blot and lactate distribution between 
plasma and red blood cells, is required to further 
this hypothesis. 
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Conclusions 
 
Over the past few years, the SARS CoV-2 virus has 
had a huge impact on the World, accounting for 
over 6.5 million deaths. Understanding of this virus 
has expanded dramatically, with the production of 
safe and effective vaccines occurring at record 
speed. The role of erythrocytes within COVID-19 
infection has yet to be fully elucidated. While there 
is no evidence to support direct infection of red cells, 
morphological red cell anomalies alongside 
anaemia and an elevated RDW are associated with 
adverse outcomes.  Changes in erythrocyte 
metabolic pathways, notably those regulating the 
redox status, production of NO and handling of 
lactic acid, occur in response to viral infection, and 
in some cases may impact pathogenesis.   
 
As mentioned, a number of groups have 
investigated the role of oxidative stress as a 
potential therapeutic tool in COVID-19. NAC may 
be beneficial, although the evidence is not consistent 
71,72. Much focus has been placed on ameliorating 
the cytokine storm caused by SARS CoV-2 infection. 
Tocilizumab was approved for use in this setting 

based on results of the RECOVERY and EMPACTA 
trials. Both studies showed a reduced likelihood of 
progressing to mechanical ventilation, whereas only 
RECOVERY found a survival benefit 95,96. Whether 
administration of tocilizumab causes appreciable 
changes in haemoglobin concentration or 
erythrocyte morphology has not been reported. It is 
therefore not known if dampening down the 
cytokine storm can reverse the deleterious effects of 
oxidative stress on red cells in patients with COVID-
19, and whether this contributes to the improved 
outcomes observed.   
 
Although much progress has been made in the fight 
against SARS CoV-2, further research is required to 
clarify the exact role of red cells in COVID-19 
infection and to determine the associated potential 
therapeutic implications.  
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