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ABSTRACT

The development of cerebral edema following traumatic brain
injury is one of the most significant predictors of outcome and
is associated with high rates of morbidity and mortality. A
prominent focus of neurosurgical and neurocritical care is the
evaluation and aggressive management of cerebral edema
and subsequent intracranial hypertension. Despite numerous
advances and capabilities in neurocritical care, treatments
remain primarily reactive and are instituted only after
secondary pathophysiological pathways have culminated in an
intracranial pressure crisis. Recent reviews have focused on
several key molecular contributors to post-traumatic cerebral
edema and on several potential anti-edema therapeutic
targets. The present article provides a contemporary overview
of post-traumatic cerebral edema by reviewing important
historical ~ concepts,  fundamental  pathophysiological
mechanisms, various causes and key contributors specific to
and established treatments of

traumatic brain injury,

downstream intracranial hypertension.
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1. Introduction

Traumatic brain injury (TBl) is a leading
cause of death and disability worldwide." Each
year in the United States, nearly 2 million
individuals sustain a TBI resulting in nearly
52,000 deaths.? Post-traumatic brain swelling
accounts for nearly 50% of all TBI mortalities,
and cerebral edema (CE) remains the leading
cause of in-hospital mortality despite
numerous neurosurgical and neurocritical
Established

interventions aim to minimize the downstream

care advances.’ early

consequences of CE by prioritizing
intracranial pressure (ICP) monitoring and
optimization of body temperature, analgesia,
ventilation, and electrolytes. While these
interventions have possibly improved patient
outcomes over the past 50 years, they remain
largely non-specific for the underlying driving
forces that promote edema formation.**

Post-traumatic edema formation is a
complex heterogenous process influenced by
the nature of the primary injury, patient
additional

injuries. Numerous advances have improved

characteristics, and systemic
our understanding of edema formation
following TBI. Yet, a comprehensive
understanding of the networks underling CE
in TBI

development. This, in turn, translates to a

remains in an early stage of
paucity of anti-edema drugs available in
clinical practice with no targeted treatments
for post-traumatic CE currently available.
Several recent reviews have introduced novel
pathways implicated in edema formation and
drugs with theoretical benefit for targeting

edema in TBI.?27 In this review, we discuss

established and molecular

contributors to post-traumatic CE, as well as

proposed

review standard practices to mitigate and
treat downstream intracranial hypertension.
Potential anti-edema drugs will be briefly
introduced, highlighting future therapeutic
targets. We thus aim to provide contemporary
overview of the pathophysiology and
treatment of post-traumatic CE and highlight
limited  the

development of targeted therapeutics.

the complexity that has

2. History

The challenges confronting physicians and
patients combating malignant post-traumatic
CE have been described since the inception
of neurosurgery and neurocritical care. In
1942, G.F.

occasionally found the brain, in the acute

ll|

Rowbotham wrote have
phases of a head injury, under such great
tension that it bulged into the wound as soon
as the dura was opened”.? In 1901, Cannon
proposed that increased ICP can impair
cerebral blood flow (CBF) and that the injured
brain has increased osmotic pressure resulting
in an influx of water. The first use of hypertonic
saline to “shrink” brain tissue was reported by
Weed and McKibben in 1919.° Wise and
Charter first described the use of mannitol to
1962.°  The
pathophysiology of brain edema in the first
half of the 1900s
understood, but in 1967 Igor Klatzo described

decrease brain mass in

remained  poorly

the concept of “cytotoxic” and “vasogenic”
edema - nomenclature that remains widely
used today." The development of molecular
biology techniques in the 1980s catalyzed the
mediators of

investigation of molecular
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cerebral edema. With regards the TBI, the

heterogeneity of insults, patient
characteristics (including host-response), and
systemic  injuries  have limited the
development of a unified pathophysiological
understanding  of  post-traumatic  CE.
Throughout the 2000s and today, numerous
investigations continue, aimed at establishing
a mechanistic approach to understanding and

ultimately treating CE in TBI."?

3. Cerebral

Injury — An Overview

Edema in Traumatic Brain
Post-traumatic neurological dysfunction

results from a complex cascade of
pathophysiological pathways leading to the
evolution of brain injury. Direct impact,
rotational forces, penetrating trauma, and/or
blast waves cause immediate, primary injury
characterized by extra- and intra-axial
hemorrhages, diffuse axonal injury, tissue
crushing wounds, and cerebral vasculature
dysfunction. This primary injury then catalyzes
diverse pathophysiological responses in the
ensuing hours to days, collectively termed
secondary injury. While primary injury, short of
prevention, is largely non-modifiable, the
secondary injury cascades present multiple
potential therapeutic targets. Importantly, the
end result of many secondary injury cascades
is a pathologic net increase in brain tissue
water content, otherwise known as CE, which
has a profound impact on prognosis including
mortality following TBI.™

The close relationship between CE,

intracranial hypertension, and functional
outcome in TBI has been recognized for

centuries.” In accordance with the Monro-

Kellie doctrine, an increase in brain volume as
a result of CE can rapidly lead to increased
ICP. The extent and time course may vary
based on individual compliance/elastance
curves. However, unchecked ICP ultimately
compresses brain vasculature and reduces
cerebral  perfusion, eventually causing
ischemia, irreversible brain injury, herniation,
and death.” In severe TBI, increased ICP and
radiographic measures of CE correlate with
increased mortality and poor functional
outcome.”'¢?" |CP elevations following TBI
are common. As many as 45-80% of TBI
patients subsequently develop ICP elevations
above the accepted threshold of 20-22
mmHg.? In addition, the "dose” of elevated
ICP appears significant. In a retrospective
study of 135 patients with severe TBI, Vik et
al. reported a significant relationship between
the “dose” of ICP, worse CT findings, and
unfavorable patient

death and disability.?®

outcomes including

Today, the downstream effects of CE,
namely intracranial hypertension and mass
effect, remain the target of approved
interventions and a mainstay of the Brain
Trauma Foundation guidelines.?* But while
ICP-focused treatment has reduced mortality,
benefits regarding functional outcome remain

unclear.?>%

It is possible that the treatment of
elevated ICP by itself incompletely addresses
the multiple mechanisms underlying CE, and
a paradigm shift to include treatments
addressing CE-specific pathways may present
new therapeutic targets. Indeed, depending
on cerebral compliance, CE may not manifest
as intracranial

hypertension  despite
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deleterious molecular cascades causing be driven by various ion channels and

secondary injury. To better understand
contemporary management of post-traumatic
CE, the following sections will discuss CE as a
direct result of several pathophysiological
processes, discuss some of the better studied
contributors specific to trauma, and review

established treatments.

4. Pathophysiology of Cerebral Edema

CE is the manifestation of several
processes including a maladaptive program of
protein expression and function, triggered by
acute CNS injury. These go beyond the acute
osmolar forces of central necrotic tissue from
primary injury described in the 1990s.2°3" In
TBI specifically, it is important to acknowledge
the role of additional contributors to CE such
as mechanical disruption/shearing forces and
neuroinflammation.  Generally, CE is
separated into three stages: cytotoxic, ionic,
and vasogenic edema. While these stages are
typically presented sequentially, in reality,
they represent a continuum and often occur

32

simultaneously.®> Together, they form a

pathophysiological phenomenon whereby
fluid and ion dysregulation within various
compartments lead to an abnormal
accumulation of fluid within perfused brain

tissue, i.e., CE.

Cytotoxic edema, the first stage of CE
formation, describes the cellular swelling
response that many brain cells exhibit after an
acute injury. While all cell types exhibit
exhibit
particularly marked swelling.®*® Cell swelling

cytotoxic edema, astrocytes
results from several mechanisms causing

influx of osmolytes and water; this influx can

transporters and can also be a consequence

of energy failure.®

Importantly, cytotoxic
edema represents a rearrangement of brain
osmolyte and water content. During this
process, no new water is added to the tissue,

and no tissue swelling occurs.*

In contrast to cytotoxic edema, ionic
and vasogenic edema represent progressive
forms of endothelial dysfunction and
ultimately result in net influx of water into
brain tissue with resultant tissue swelling. lonic
edema formation is primarily driven by forces
generated during cytotoxic edema formation,
whereby cellular uptake of interstitial ions
creates a trans-endothelial ionic gradient that
favors influx of circulating ions into brain
tissues.* lonic influx occurs across the blood-
brain barrier (BBB) through various ion
channels and transporters expressed by brain
endothelium, which osmotically drives trans-
BBB uptake of circulating water. Vasogenic
edema represents further breakdown of the
BBB, wherein serum proteins such as albumin
are extravasated as part of the edema fluid."”
Multiple mechanisms participate in the
formation of vasogenic edema, including
increased pinocytosis, endothelial retraction,
and loss of endothelial tight junctions.*
During vasogenic edema, the BBB continues
to exclude erythrocytes. However,
progressive, severe endothelial dysfunction
and oncotic endothelial cell death may
eventually render the cerebral vasculature
permeable to all circulating contents,
including erythrocytes, thereby contributing

to hemorrhagic transformation.®

Medical Research Archives | https://esmed.ora/MRA/index.php/mra/article/view/3297 4
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4.1 Pathways Involved in Cytotoxic, lonic,

and Vasogenic Edema

During  cytotoxic  edema,  cellular
mechanisms that are normally involved in
astrocyte-mediated homeostasis of the brain
microenvironment become dysregulated,
resulting in astrocytic sodium overload and
swelling. For example, extracellular potassium
and glutamate rise dramatically after acute
CNS injury,***” which stimulates the activity of
the Na*-K*-2Cl" cotransporter (NKCC1) and
the excitatory amino acid transporter (EAAT),
resulting in cytotoxic edema formation.®4°
Interstitial pH also declines after injury and can
drive cytotoxic edema formation through
activation of the Na*/H" exchanger (NHE) and
the Na*/HCO3 transporter (NBC).*'*? In
addition to these constitutively expressed
channels and transporters, the sulfonylurea
receptor 1 — transient receptor potential
(SUR1-TRPM4)

upregulated de novo by astrocytes after injury

melastatin 4 channel is

and is a major mediator of cytotoxic edema

formation.*3-4

During ionic edema formation, a variety of

plasmalemma channels and transporters
contribute to influx of circulating ions into the
brain parenchyma. Channels and transporters
including the sodium-hydrogen antiporter
(NHE), the cation-chloride transporter
NKCC1, and the SUR1-TRPM4 channel all
contribute to maladaptive influx of solutes,

which ultimately drive water influx.*’8

Vasogenic edema is exacerbated by
secretion of multiple permeability factors from

adjacent cells following injury. For example,

pro-inflammatory  cytokines are released

following CNS injury and promote BBB
matrix

dysfunction via increased

49-51

metalloproteinase expression, leukocyte

infiltration  with  loss of tight-junction
proteins,*” increased production of substance
P and bradykinin,>® and

inflammatory  cell

expression  of

molecules.?>*

adhesion
Overall, numerous molecular mediators and
pathways contribute to cytotoxic, ionic, and
vasogenic edema and are reviewed
extensively in recent works.?” While our
understanding of the relative role of each
pathways in the development of CE in TBI
remains in its infancy, these molecular
pathways represent an important and exciting

area of future research.

5 Cerebral Edema Patterns in Traumatic
Brain Injury

Historically, BBB injury resulting from
direct mechanical trauma was thought to be
the main contributor to edema after TBI.>® For
example, in models of cerebral contusion,
Katayama et al. demonstrated that
mechanical disruption of the BBB increased
peri-contusional water content due to the
osmotic potential  between the central
necrotic core and surrounding brain.®'
Imaging studies also support the prominent
role of BBB injury in early edema following
brain trauma. Barzo et al. measured the
apparent diffusion coefficient (ADC) by MRI
imaging in rats subjected to closed head
injury and reported significant increases in
ADC and brain water content measured by T1
weighted imaging during the first 60 minutes

post-injury, consistent with vasogenic edema
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due to BBB compromise.”® Mechanical injury,
cause of BBB

disruption, is not the sole mechanism of BBB

although an immediate
breakdown. The secondary injury cascades
noted above promote a leaky endothelium 6—
24 hours post-injury.? This incompetent BBB
persists for up to 3-4 days after injury and may
worsen 5-7 days later due to microglial

activation.27>8

CE following traumatic injury is not
solely vasogenic but consists of more mixed
edema patterns.>*” Recent models suggest a
biphasic component of vasogenic and
cytotoxic edema following TBI. Barzo et al.
found that cellular edema in rodent models
began 40-60 minutes post-injury and became
dominant at 1-2 weeks post-injury.®® This
finding has been supported in human studies
wherein MR data after closed head injuries
also suggest a mixed edema pattern. Hudak
used Fluid-Attenuated
Recovering (FLAIR) imaging in combination
with Diffusion Weighted Imaging (DWI) to

characterize cytotoxic and vasogenic edema

et al. Inversion

patterns  following TBI, and reported

significant contributions of both edema
subtypes.'® This variability in edema subtypes
and timing post-injury likely reflects the
continuum between cytotoxic, ionic, and
vasogenic edema which, as noted, occur

simultaneously.®

6 Causes of Edema in Traumatic Brain
Injury

6.1 Ischemia

well-

Ischemic brain injury is a

established cause of CE in other forms of

neurological injury and mediates CE through
a variety of mechanisms, including ion channel
dysfunction with cellular edema.®® The role of
ischemia in  TBI remains incompletely
understood. Pathological studies have long
identified ischemic injury in fatal cases of TBI.
In 263 fatal head injuries, Graham et al. found
ischemic damage in the brains of >88% of
cases.®’ Similar findings are suggested based
on measurements of  cerebrovascular
physiology. A recent study comparing CBF,
CBV, cerebral oxygen metabolism (CMRO,),
(OEF)

between TBI patients and controls reported

and oxygen extraction fractions
increased ischemic brain volume highest in
the first 24 hours post-injury.? Ischemia was
identified even in the absence of increased
ICP, remained detectable up to 10 days post-
injury, and was inconsistently detected by
jugular or brain tissue oximetry.®? A study by
Bouma et al. found lower CBF in all brain
with CE

compared to those without CE, with a

regions in comatose patients
significant portion of patients exhibiting
cerebral ischemia.®® The clinical consequence
of reduced CBF, however, is not established.
Positron emission tomography (PET) studies
after severe TBI demonstrate large reductions
of CBF without energy failure.®* It is therefore
possible that oxygen metabolism is preserve
due to low baseline metabolic rate and

compensatory increases in oxygen extraction.

6.2 Hemorrhagic Blood Products and Peri-
contusional Edema

Extravasated blood harbors numerous
neurotoxic elements, including thrombin,

fibrinogen, complement, leukocytes,

Medical Research Archives | https://esmed.org/MRA/index.php/mra/article/view/3297 6
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platelets, and hemoglobin  breakdown
products.® Therefore, hemorrhage itself may
be viewed as a primary form of CNS injury
following trauma, resulting in the formation of
a shell of edema surrounding the traumatic
hematoma. Perihematomal edema formation
occurs in three stages: ionic edema,
vasogenic edema, and delayed vasogenic
edema. The forces governing its formation are
mostly similar to those that contribute to the
endothelial

phases  of dysregulation.

However, there are several mechanisms
unique to the formation of perihematomal

edema.

Perihematomal ionic edema s
generated through two major forces. First,
after hemorrhage, cytotoxic edema forms in
the perihematomal shell and drives ionic
described

Second, perihematomal ionic edema is also

edema formation as above.
generated by a phenomenon called clot
retraction. In clot retraction, the coagulation
cascade results in exudation of serum proteins
by the clot, increasing the osmotic pressure in
the tissues surrounding the clot, thereby
contributing to ionic influx of circulating
fluid.®¢¢” Perihematomal vasogenic edema is
formed when the BBB becomes permeable to
serum, but still excludes circulating
erythrocytes. The BBB adopts a permeable
phenotype through action of various factors
found in the clot, including thrombin, %
complement,®’ and leukocytes. These factors
trigger reduced expression of tight junction
and BBB

vasogenic edema, the third and final stage of

proteins opening.”” Delayed

perihematomal edema formation, forms due

to accumulation of hemoglobin degradation
products in the tissues surrounding the
hematoma. The process of erythrocyte lysis
and hemoglobin breakdown takes ~3 days to
occur.”! The toxic hemoglobin breakdown
products then trigger a delayed form of

vasogenic edema.??

Cerebral contusions are a common
form of traumatic intracerebral hemorrhage
resulting from direct trauma to the cortical
surface. They frequently exhibit the rapid
formation of massive edema in the
contusional and peri-contusional core distinct
from other pathological processes, which may
only be partly explained by the toxicity of
extravasate blood products.®®’?7>  Several
studies suggest that mechanical injury leads
to disintegration of cellular elements within
the central area of cerebral contusion,
creating a pathophysiological state in which
tissue osmolality increases rapidly, driving
water influx.”® This mechanism is supported by
Katayama et al., who suggested that the
primary driving force of water accumulation
into contused brain tissue is the elevated
osmotic contusion

colloid potential of

necrosis.?!

blood flow

studies raise the question of an “ischemic”

Alternatively, regional
state within and around contused tissues,
which has led to the concept of a “peri-
contusional penumbra”. Cunningham et al.

harbor

significantly lower CBF compared to non-

suggests that contused regions
lesion regions.”” Additional studies show low
CBF in peri-contusional hypodense grey

matter regions with increased propensity

Medical Research Archives | https://esmed.org/MRA/index.php/mra/article/view/3297 7
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towards progression towards necrosis.®*’® The

pathophysiology ~ of  these  metabolic

derangements, however, may not be
ischemic. In vivo studies using global CBF and
arteriovenous  differences  in  oxygen
concentration have largely failed to detect
appreciable ischemia in models of cerebral

contusions.”’

Similarly, Coles et al. were
unable to demonstrate focal, discrete areas of
ischemia,®® and Wu et al. found evidence of
hypoperfusion without ischemia in peri-

contusional tissues.?!

6.4 Hyperemia

Hyperemia has long been considered
a contributing cause of diffuse CE and raised
ICP after severe head injury.?? Histological
studies by Evans and Schenker suggests that
vascular

acute CE is produced by

engorgement.®® Similarly, Langfitt et al.
concluded that post-traumatic ICP elevation
was caused by cerebrovascular dilatation and
increased CBV due to injury related impaired

8 In children with severe

vasoconstriction.
head injuries, Bruce et al. performed CBF and
CT density studies and suggested that the
bilateral, diffuse swelling pattern frequently
observed was due to cerebral hyperemia and
blood

additional studies also report abnormally

increased volume.®>  Numerous
elevated CBF parameters after TBI. #% More
recent studies, however, have shown little to
no relationship between CBF, CE, and
intracranial hypertension. Bouma et al.
evaluated the responses of CBF and ICP to
induce changes in blood pressure in
comatose patients with severe closed head

injury and found no association between

ICP.%
Similarly, Sakas et al. report that post-

cerebral perfusion pressure and
traumatic hyperemia may occur across a wide
spectrum of head injuries and may even be
associated with favorable outcomes.” In their
analysis of 53 TBI patients using single-
photon emission computerized tomography
(SPECT) to map CBF, Sakas et al. found
hyperemia  predominantly localized to
structurally normal grey and white matter.
Interestingly, focal hyperemia was associated
with lower rates of mortality and improved
functional outcomes.” Importantly, although
hyperemia may be common following TBI,
OEF is highly variable and may allow for

preservation of flow-metabolism coupling.®?

7 Treatment

Currently, there are no specific
therapies for traumatic CE. Rather, treatment
today targets the downstream sequelae of
raised ICP. This section reviews established
treatments of intracranial hypertension
frequently resulting from CE and briefly
introduces potential anti-edema drugs. While
an exhaustive description of all medical and
surgical interventions for treatment of
intracranial hypertension as well as a list of all
drugs with potential anti-edema effects is
beyond the scope of this review, the following
section outlines the foundation for many
interventions implemented in daily clinical
practice, as supported by the Brain Trauma
Foundation.?* Ultimately, this highlights the
need to further advance our understanding of
post-traumatic CE to discover targeted

treatments to prevent swelling.
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7.1 Medical Optimization and Patient  consideration. Hyperglycemia is  an
Positioning independent predictor of worsened outcome

Aggressive management of CE and

optimization ~ of ICP  benefits  from

normalization of derangements affecting

metabolism and respiratory mechanics.
dioxide (COy)

tension, careful prevention of hyperglycemia,

Normalization of carbon
manipulation of patient head position, and
adequate analgesia are immediate measures
that can be taken to combat the sequelae of
post-traumatic CE and resulting ICP crisis.

Many patients with severe TBI suffer
additional polytraumatic injuries, with as many
as 20-25% exhibiting acute lung injury and
perturbations in blood CO; tension. CO; is a
potent vasoregulator, and thus hypercapnia
accompanying severe lung injury can worsen
an ICP crisis. Importantly, the development of
acute lung injury is a critical independent
factor affecting mortality in TBI patients and is
associated with worse long-term neurologic
outcomes. Holland et al. evaluated the
incidence and impact of acute lung injury in
severe TBI patients.” In their series, 31% of
patients with severe TBI developed acute lung
injury, which increased mortality to 38%
compared to 15% in those without acute lung
injury. In practice, optimization of pulmonary
mechanics in obtunded patients with Glasgow
Coma Scale (GCS) <8 or in patients with

respiratory compromise must be an
immediate  focus, both for systemic
stabilization ~and, in part, for ICP
management.

Metabolic derangement, particularly

hyperglycemia, is  another  important

and occurs in roughly 12% of patients with

severe  brain  injury.”? Salim et al.
retrospectively reviewed 834 patients with
severe TBI and found that those with blood
glucose above 150 mg/dL on all days in the
first week of admission had higher odds of
mortality.””  Importantly,  the  causal
relationship between hyperglycemia and poor
clinical outcome in TBI patients is likely
multifactorial derived from a combination of
metabolic and electrolyte derangements and
neuroinflammation.” While the relationship
between glucose control and CE in TBl is not
established, hyperglycemia is associated with
intracellular acidosis, endothelial dysfunction,
BBB impairment, edema, and necrosis.”
Current practice stresses the normalization of
blood glucose to >80 mg/dL within the first

24 hours after TBI.

Patient positioning can have a
profound impact on ICP, specifically through
optimization of cerebral venous outflow.
Neutral head positioning in the midline can
reduce ICP by up to 7 cm H2O, and elevation
of a patient’s head to 30 degrees can reduce
ICP by as much as 10 cm H,O.*" For patients
with severe TBI, CE and ICP crisis, every 10
degrees of head elevation can potentially

decrease ICP by 1.3 cm H,0.”

7.2 Hyperventilation and Hyperosmolar
Therapy

Therapeutic hyperventilation is an
effective strategy to temporize patients with

an acute ICP crisis following TBI. Therapeutic

Medical Research Archives | https://esmed.org/MRA/index.php/mra/article/view/3297 9
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hyperventilation capitalizes on the potent
vasoregulatory effects of CO; to reduce CBF
and ICP. Targeting an end tidal pCO; of 30-
32 mm Hg can rapidly reduce ICP by up to
47%  within

hyperventilation is recommended only as a

8 minutes.”® Importantly,

temporizing measure, since prolonged

hyperventilation can promote cerebral

ischemia.

Hyperosmolar agents are frequently
administered to TBI patients who continue to
suffer ICP elevations despite optimization of
patient  position, analgesia, metabolic
parameters, and CSF diversion. Hypertonic
saline and/or mannitol are frequently used in
which

oncotic pressure favoring water movement

clinical practice, increase  plasma
out of the brain parenchyma. James et al.

prospectively evaluated the effects of
mannitol in 48 patients suffering ICP crisis
resulting from a variety of pathologies, and
reported a mean 52% reduction in ICP.”
Hypertonic saline similarly demonstrates
marked reductions in ICP in those suffering
acute ICP crisis.” Numerous studies support
equivocal mortality rates when comparing

mannitol versus hypertonic saline.'® However,

additional clinical factors predominantly
based upon side-effect profile, patient
comorbidities, volume status, and renal

function  may influence  choice  of
hyperosmolar agents in clinical practice.
7.3 Sedatives, Neuromuscular Blockade,
and Hypothermia

Sedatives and analgesics reduce ICP
metabolism,

by suppressing cerebral

reducing oxygen consumption and CBF, and

improving metabolic coupling.’" Reduced
pain and agitation also improves tolerance of
endotracheal intubation and prevents
Valsalva maneuvers (e.g., cough) to help
maintain normal ICP values. The addition of
neuromuscular blocking agents may further
facilitate mechanical ventilation, prevent
coughing or shivering, and further decrease
energy expenditure to control ICP."%%'% |n the
presence of elevated ICP, propofol, fentanyl,
and rocuronium are used in more than 80% of
cases, with midazolam and ketamine reported
less frequently.'® Importantly, sedatives can
result in myocardial depression, peripheral
vasodilation, and decreased mean arterial
(MAP),

effects should be carefully monitored to avoid

pressure and hemodynamic side

secondary ischemia particularly in those with

impaired cerebral autoregulation.’®

Hypothermia  decreases  cerebral
metabolic rate, alters the release of post-
trauma excitatory neurotransmitters, and
reduces BBB disruption and is frequently used
in management of ICP crisis.’®% While
hypothermia may reduce ICP, its effect on
functional outcome is unclear. A randomized
control trial evaluating hypothermia versus
standard care for treatment of adult TBI
patients with ICP > 20 mmHg despite tier 1
found that

hypothermia plus standard care did not result

treatments therapeutic
in outcomes better than those with standard

care alone.®

7.4 Decompressive Craniectomy

Decompressive  craniectomy  (DC)

increases  intracranial  compliance  and

Medical Research Archives | https://esmed.ora/MRA/index.php/mra/article/view/3297 10
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decreases ICP and is frequently employed for
patients with medically refractory intracranial
hypertension following TBI. The DECRA trial?
and RESCUE-ICP trial?® examined the utility of
DC in TBI. DECRA compared decompression
to standard care in patients with ICP > 20

mmHg refractory to first-tier therapies.
DECRA showed early bifronto-temporo-
parietal decompressive craniectomy

decreased ICP and length of ICU stay but did
not significantly alter rates of death at 6
months and resulted in worse extended
Glasgow outcome scores (GOS) compared to
those receiving standard care.” Importantly,
DECRA had several limitations including more
severe primary TBI injuries in the surgical arm,
questionable application to DC performed
unilaterally, and high crossover rate from
standard care arm to the surgical arm.'%®
RESCUE-ICP

encountered patient types and refined the

included more commonly

refractory intracranial
RESCUE-ICP trial,
patients with refractory elevated ICP (>25

definition of
hypertension. In the

mmHg for 1-12 hours) were randomized to
undergo DC or receive ongoing medical
care.”® At 6 months, DC was associated with
lower mortality but higher rates of vegetative
bifrontal
were used in 63% of cases and unilateral
only 37%,
pattern in the

state.”® Importantly, approaches

approaches in opposite the
United States,
generalizability. A

practice

potentially  limiting
significant portion of patients in the medical
group (37%) also underwent DC due to
medical treatment failure and clinical
deterioration, whereas only 9% of patients in

the surgical arm suffered ongoing ICP crisis.

Taken together, these studies suggest that
DC may reduce mortality in TBI patients with
refractory ICP crisis but at the cost of
increased rates of long-term morbidity. More
investigation into nuances of patient selection
and development of refined clinical decision-

making tools are needed.'”

7.5 Anti-Edema Drugs

Evidence suggests that ICP-directed
therapies may reduce mortality, but the lack
of improvement in functional outcome
presents ongoing opportunities to improve
management of TBI related CE and the
downstream deleterious consequences. It is
possible that targeted treatments addressing
important  contributors to TBI edema
pathways may alter key pathophysiological
mechanisms not addressed with current ICP-
targeted therapies. Several new anti-edema
drugs are currently being investigated and
have recently been reviewed.?”""% While few
have progressed to human TBI studies, many
are supported by promising preclinical results
as well as favorable findings in clinical trials
treating CE related to other CNS pathologies.
Common molecular pathways underlying CE
development across multiple CNS injury
models may suggest potential cross-over
therapeutics. These promising agents include
vaptans, inhibitors of arginine vasopressin;'"
inhibitor  of

signaling;'21"3

fingolimod, a functional
spingosine-1-phosphate

celecoxib, a cyclooxygenase-2 inhibitors;"™*
an SUR1-TRPM4 channel

inhibitor.">""7 Several of these anti-edema

and glyburide,

drugs are reviewed in detail by Stokum et al.,

2020."% Of note, an intravenous formulation
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of glyburide (BIIBO93) is currently being
evaluated in a phase-Il study of contusional
TBL™®

Conclusions

Despite  numerous advances in

neurosurgical and neurocritical care, CE
remains a substantial burden and a major
source of morbidity and mortality following
head

progress  in our

severe injury. Despite significant
pathophysiological
understanding of CE following TBI, the
complexity remains daunting. This review

discusses several known and proposed
contributors to TBI induced CE and reviews
standard practices for treating downstream

effects of intracranial hypertension with the

aim of providing a contemporary overview
specific to TBI. The lack of approved anti-
edema drugs and current long-term morbidity
seen with ICP-directed treatments presents an
opportunity for further research to improve
our understanding and treatment of this
challenging disease process. Future
improvements in TBI care will likely come from
advances in our molecular understanding of
CE, radiographic markers, biological markers,
Such

advancements may ultimately allow targeted

and multimodal monitoring.
treatments to be instituted prophylactically to

prevent CE instead of non-specifically
addressing the downstream effects on ICP
and tissue perfusion that constitute current

practices.
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