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ABSTRACT

From time to time, it is necessary to determine whether there
are sufficient measurements for the image reconstruction task
especially when a non-standard scanning geometry is used.
When the imaging system can be approximately modeled as
a system of linear equations, the condition number of the
system matrix indicates whether the entire system can be
stably solved as a whole. When the system as a whole cannot
be stably solved, the Moore-Penrose pseudo inverse matrix
can be evaluated through the singular value decomposition
(SVD) and then a generalized solution can be obtained.
However, these methods are not practical because they
require the computer memory to store the whole system
matrix, which is often too large to store. Also, we do not know
if the generalized solution is good enough for the application
in mind. This paper proposes a practical image solvability
map, which can be obtained for any practical image
reconstruction algorithm. This image solvability map measures
the reconstruction errors for each location using a large
number of computer-simulated random phantoms. In other

words, the map is generated by a Monte Carlo approach.

Index Terms: Internal problem, Inverse problem, Image
reconstruction, Biomedical imaging, Computed Tomography,

Computer simulations, Monte Carlo
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[. INTRODUCTION formulates the imaging process as a system of

Data sufficiency conditions for continuous
measurements were developed for many
imaging geometries. For example, Orlov’s
condition uses the great-circle criterion to
determine whether a emission
(PET)

complete data

positron
tomography system measures a
set for analytical three-
dimensional (3D) image reconstruction’. In
Orlov’s condition, the PET detector size is
assumed to be infinity, and the sampling is
assumed to be continuous. If the normal
direction trajectory of the PET detector
contains a great circle, the data set is
sufficient. Orlov’s condition considers the 3D
parallel line integral measurements. Tuy's
condition, on the other hand, considers the
3D cone-beam line integral measurements?®.
Tuy’s condition is able to verify if a 3D cone-
beam imaging system acquires a complete
data set. Tuy’s condition states that if every
plane that cuts through the object intersects
the cone-beam focal-point trajectory, the data
set is sufficient for the reconstruction of the
object. Once again, the detector is assumed
to be infinite, and the sampling is continuous.
A more general data sufficiency condition in
the n-dimensional complex space is proposed
by Kirokov*.

For discrete sampling, the detector takes
discrete finite number of positions, and the
detector consists of discrete finite number of
detection cells. The detector size is finite,
which may lead to data truncation, where the
detector does not cover the entire object. The
common practice in processing discrete

measurements is to use a linear model, which

linear equations AX = P. The unknowns (i.e.,
the variables), X, of the system are the image
pixels or voxels. The coefficient matrix (also
known as the system matrix), A, is assumed to
be known. The measurements, P, are the
constant terms. The condition number
analysis is a classic approach to investigate
whether the normal equations ATAX=A'P is
stably solvable’. Singular value
decomposition (SVD) analysis is able to
diagnose invertibility and noise sensitivity of
systems of linear equations. In reference 5, the
condition number (i.e., the ratio of maximal
and minimal singular values of matrix A) was
calculated using the Lanczos iterative
method?® for image volumes of 65 x 65 x 128.
Some cone-beam imaging trajectories were
analyzed and compared using the condition
number analysis; a circular sine-wave
trajectory was determined to be the most
stable sampling scheme among the orbits
investigated®. One drawback of the condition
number analysis is that it does not work in
region-of-interest (ROI) reconstruction with
because the system of
and the

associated condition number is essentially

truncated data,
equations is under-determined,
infinity. In this case the inverse matrix of A’A
does not exist.

In situations where A'A is singular, the
Moore-Penrose pseudo inverse matrix, A*,
can help®. If Ais an n x m matrix, then A" is an
m x n matrix. In general, A*A = |, where | is
the m x m identity matrix. A method in
Reference 6 was proposed to identify the
solvable subset of the unknowns. The method

in Reference 6 used the diagonal elements of
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A*A as a map. Each diagonal element of A*A
corresponded to an image pixel. If a diagonal
element is one, the corresponding image
pixel can be reconstructed. A drawback of this
method is that the Moore-Penrose pseudo
inverse matrix A* is not easy to compute for a
large imaging system, because the singular
value decomposition (SVD) is required to
perform on a large matrix’, which requires a

huge amount of computer memory.

This paper proposes a method to overcome
the drawback in Reference 6 so that the SVD
computation is not required. This new method
is Monte Carlo based and is described in
Section 2 of this paper. The computer
simulation results are presented in Section 3.

IIl. METHODS

A. Region-of-interest (ROI) image
reconstruction

One of the following situations can happen
when an object is not completely measured.
The first situation is due to the limited
detector size, and only a portion of the object
can be seen by the detector. The second
situation is due to the lack of angular
coverage. When the measurements are
insufficient, it is likely that we are unable to
have a stable reconstruction of the entire
object. However, we may be able to have a
stable reconstruction of a subset of the
knowns. The aim of this paper is to determine

such a subset if it exists.

B. Proposed method

Let us consider a generic image

reconstruction algorithm, G; it can be an

iterative or non-iterative algorithm,; it can be a
linear or nonlinear algorithm. For example,
this generic image reconstruction algorithm,
G, can be the iterative gradient descent (GD)
algorithm, or a variate of the GD algorithm
the data

maximum-likelihood

tailored for truncation, or a
expectation-

maximization (MLEM) algorithm, and so on.

We use computer simulation to create a
large number of random objects, generate
their projection measurements, add noise to
the measurements, reconstruct the images,
and compute the error between the
reconstructed images and the true images.
Finally, calculate the average error image for
these large number of random objects. This
average error image is our proposed image

solvability map.

C. Avoiding the inverse crime

When a physical continuous system is
modeled as a discrete system, modelling
errors exist®. It is an inverse problem crime
when these errors are ignored in developing
and analyzing an inverse solution. For
example, a typical inverse crime during
computer simulations is to use the same
generator to create the measurements and to
be used in the reconstruction algorithm. To
avoid inverse crime, in our case, if Gis used to
creating computer simulated measurements,
G is not allowed to be used as the forward
projection operator in the reconstruction

algorithm.

In the computer simulations in this paper,

the measurement generation uses random
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phantoms with the size of 384 x 384, and after
projections are computed, the three adjacent
projection bins are combined. Some Poisson
noise is then incorporated in the combined
measurements. In the image reconstruction,

the image size is 128 x 128.

D. Imaging geometry

A hypothetical parallel-beam imaging
system was simulated. The detector was
asymmetric about the axis of rotation as
shown in Fig. 1. The detector rotated 180°
with 180 stops. In other words, the angular

interval was 1°.

. Centef of |
-_[Rotation

Detector

FIGURE 1. A hypothetical parallel-beam imaging

system.
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FIGURE 2. The points in the ROl have 180° angular

measurements.

In 2D tomography, according to Kirokov's
criterion®, a point is fully measured if all lines
passing through that point are measured. In
Fig. 2, the ROI indicates the region of points
that are fully measured. If an object is
completely contained in the ROI, the object
can be stably reconstructed, under the

conditions that the projections are not

truncated, and the number of views is
sufficient.
E. Image reconstruction algorithms

In this paper, the iterative gradient descent
(GD) algorithm and the iterative maximum-
likelihood expectation-maximization (ML-EM)
algorithm are considered to test the feasibility
of the proposed method’. These two
algorithms are well-known in medical imaging
community. When the projection data set is
not complete or truncated, these two original
algorithms may not work well. These two
algorithms have many variations. The GD
algorithm and the ML-EM algorithm are

expressed in (1) and (2), respectively’.
GD: xi(k+1) = xi(k) - “z aij(z anijLk) -pj) (1
j n

j
k
ML-EM: x**V = Zx‘%z a;j L(k) 2)
JU T X Xy

where

xi(k) is an element in image X and is the ith
image pixel value at the kth iteration;

a;j is an element in the system matrix A and
is the contribution from the ith image pixel to
the jth projection bin;
p;j is an element in projections P and is the jth
projection value;

kis the iteration number;

a is the step size for the GD algorithm.
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When the object is larger than the detector
and the projections are truncated at both
ends of the
reconstruction problem is referred to as the

detector, the image

internal problem’. It is known that the internal

9 A support of an

problem is unsolvable
object is an image, whose pixel value is non-
zero (say, value one) if the corresponding
object value is non-zero at the same location.
If the support of the object is known, using the
support information can improve the
reconstruction in an internal problem™. An
internal problem is illustrated in right part of

Fig. 3.

Dietector

ROI

I Detector

Detector

FIGURE 3. Upper: Every point in the object is fully
measured when the detector rotates 180°. Lower:
An internal problem is shown where the detector

is too small to cover the entire object and

truncation happens at both sides of the detector.

For the GD algorithm, we enforce the finite
support at every iteration as

i(k“) = 0 if pixel x; is not in the support. (3)

X
For the ML-EM algorithm, we only need to
enforce the finite support at the initial
condition as

xi(o) = 0 if pixel x; is not in the support, (4)
because a pixel is zero at any iteration, the
pixel will remain zero thereafter in the ML-EM
algorithm. It is recommended that whenever
using truncated projections in an iterative
algorithm, the image array be large enough to
contain the entire object even though the
detector is not large enough to see the entire

object .

For the truncated data, a simple modified
method can be used to reduce the artifacts'.
This modified method assumes that if pj is not
measured, pj is assigned to the forward
projection value X, anjx,gk) at each iteration k
for both the GD and the ML-EM algorithms,

that is,

k
pj =Zanjx,(l ),

n

if p; is not measured. (5)

F. Computer simulations

In this paper, each of the computer-
generated phantoms consisted of four
ellipses with random sizes, locations, and
intensities. The phantom size was 384 x 384.
A narrow Gaussian lowpass filter with a
standard deviation of one was applied to
smooth out the sharp edges a little. Next, the

image was normalized to the range of [0, 1].
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Line integrals were calculated using the
parallel-beam imaging geometry shown in
Fig. 1, where the detector was asymmetric,
and the number of views was 180 over 180°.
After the line integrals were calculated,
Poisson noise was incorporated into the
simulated line-integrals. Then, the three
adjacent detector bins were combined into
one detector bin. In other words, the new
detector’s bin-size was three times larger than
the original detector’s bin-size. The binned-
down measurements were ready for image
reconstruction into an image array with the
size of 128 x 128.

There were two sets of simulated
measurements. The first set consisted of 1000
random phantoms and was described in the
paragraphs above. The second set contained
the same 1000 random phantoms as in the
first set; the only thing different from the first
set was that the detector was large enough to
see the entire phantom as indicated in left
diagram in left part of Fig. 3. The detector in
the first set was asymmetric and had 107
detection bins. The detector in the second set
was symmetric and had 185 detection bins.
The detector bin size was the same as the

image pixel size.

The following six algorithms were used to
reconstruct the images and were compared:
e lterative gradient descent (GD)
algorithm (1);
e lterative GD algorithm with the finite
support enforcement (3);
e lterative GD algorithm with the

truncation modification enforcement (5);

e lterative GD algorithm with the finite
(3) and
modification (5) enforcements;

support truncation

maximum-likelihood
(ML-EM)

e lterative
expectation-maximization
algorithm (2);

e [terative ML-EM algorithm with the
finite support enforcement (4);

e lterative ML-EM algorithm with the
truncation modification enforcement
(5);

o lterative ML-EM algorithm with the

(4) and

modification (5) enforcements.

finite support truncation

G. Image solvability map

For each reconstructed image X, a squared-
error image E(X) is calculated as

e; = (x; —x{T)?, (6)

where e; is the ith pixel in the squared-error
image E(X), x}/™€ is the ith pixel in the true
image X™¢, and x; is the ith pixel in the
reconstructed image X.

If nis the total number of random phantoms
in the computer simulation (we had n = 1000
in this paper), the image solvability map is the
average image of the squared-error images,

that is
Image Solvability Map =

n
1
- z E (the mth phantom's reconstruction) . (7)

m=1

All image values in the image solvability
map are non-negative. A smaller value in the
map indicates that the corresponding pixel is
more solvable. Due to the random noise and

the determinist discrepancies introduced to
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fight the inverse problem crime, the minimum

value in the image solvability map is not zero.

In order to visualize the map details when
the pixel values are close to zero, the display
values of the image solvability maps use the
following non-linear transformations
vy =1— e 20%vi, (8)
where vi is the input value calculated from (7)
and Vo is the output value to be displayed in
figures. This non-linear transformation (8)
translates [0, ) to [0,1). The large values in
the map (7) are suppressed to close to one

when they are displayed.

17
08

06/
e |1
=

0.4+
02t

0]— - 1 1 1 1 L 1 1 1 -
0 02 0.4 08 03 1 12 14 16 18

V.
FIGURE 4. The image solvability map uses a
nonlinear transformation to suppress the large

values before the map is displayed.

[ll.  RESULTS

Fig. 5 shows one representative of the 1000
random phantoms. The image reconstruction
results from the first data set using truncated
data are shown in Figs. 6 and 7 for the
representative phantom shown in Fig. 5. The
reconstruction algorithms are listed in the Part
F of Section 2. The images in Fig. 6 are
obtained from the gradient descent (GD)
algorithms. The images in Fig. 7 are obtained
from the ML-EM algorithms.

For the representative random phantom
shown in Fig. 5, the squared-error images
associated with the reconstructed images are

shown in Figs. (8) and (9) for the GD and ML-
EM algorithms, respectively. After finding the
average of the 1000 squared-error images, an
image solvability map is obtained. The image
solvability maps for the 8 reconstruction
algorithms are shown in Figs. 10 and 11,

respectively.

In this paper, all phantom images (Fig. 5, (A)
and (B) of Figs. 6,7, 12, and 13) are displayed
in the linear grayscale window of [0, 1]. All
squared-error images and image solvability
maps are displayed from zero to the maximum
pixel value in the image. The image solvability
maps are displayed with a non-linear
transformation (8) to emphasize the small
values. The minimum and maximum values for
the image solvability maps are listed in Tables

1 and 2.

For the comparison purposes, the results of
using untruncated measurement data (i.e., the
second data set) are shown in Figs. 12 and 13,
for the GD algorithm and ML-EM algorithm,
respectively. The minimum and maximum
values for the image solvability maps are
listed in Table 3.

FIGURE 5. One of the 1000 random phantoms
used in the computer simulations.
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D)

FIGURE 6. The images reconstructed with the GD
algorithms using truncated data. (A) With formulas
(1), (3), and (5); (B) With formulas (1) and (3); (C)
With formulas (1) and (5); (D) With formula (1).
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FIGURE 7. The images reconstructed with the ML-
EM algorithms using truncated data. (A) With
formulas (2), (4), and (5); (B) With formulas (2) and
(4); (C) With formulas (2) and (5); (D) With formula
(2).
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(D)

FIGURE 8. The squared-error images for the
reconstructions with the GD algorithms using
truncated data. (A) With formulas (1), (3), and (5);
(B) With formulas (1) and (3); (C) With formulas (1)
and (5); (D) With formula (1).
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D)

FIGURE 9. The squared-error images for the
reconstructions with the ML-EM algorithms using
truncated data. (A) With formulas (2), (4), and (5);
(B) With formulas (2) and (4); (C) With formulas (2)
and (5); (D) With formula (2).
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= (D)

FIGURE 10. The image solvability maps for the
reconstructions with the GD algorithms using
truncated data. (A) With formulas (1), (3), and (5);
(B) With formulas (1) and (3); (C) With formulas (1)
and (5); (D) With formula (1).
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FIGURE 11. The image solvability maps for the
reconstructions with the ML-EM algorithms using
truncated data. (A) With formulas (2), (4), and (5);
(B) With formulas (2) and (4); (C) With formulas (2)
and (5); (D) With formula (2).
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(D)

FIGURE 12. Results of the GD algorithm using the
untruncated data. (A) The true phantom; (B) The
reconstruction; (C) The squared-error image; (D)

The image solvability map.

(@)
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(D)

FIGURE 13. Results of the ML-EM algorithm using
the untruncated data. (A) The true phantom; (B)

The reconstruction; (C) The squared-error image;

(D) The image solvability map.

TABLE 1. Maximum and minimum values in the image solvability

map for the GD algorithms (see Fig. 10) using the truncated data

Algorithm

Minimum value

Maximum value

GD (1) with support (3) and
truncation modification (5)

4.0035 x 10°%

0.0307

GD (1) with support (3) 0.0022 20.7523
GD (1) with truncation 0.0022 0.0537
modification (5)

GD (1) 0.0034 20.9302

TABLE 2. Maximum and minimum values in the image solvability map for
the ML-EM algorithms (see Fig. 11) using the truncated data

Algorithm

Minimum value

Maximum value

ML-EM (2) with support (4) and

truncation modification (5)

4.1328 x 10%

0.1168

ML-EM (2) with support (4) 6.3099 x 10% 50.4166
ML-EM (2) with truncation 3.5910 x 10 0.1734
modification (5)

ML-EM (2) 6.3049 x 10°% 50.4502

TABLE 3. Maximum and minimum values in the image solvability map for
the GD algorithm (see Fig. 12) and the ML-EM algorithm (see Fig. 13) using

the untruncated data

Algorithm Minimum value Maximum value
GD (1) 0.0020 0.0156
ML-EM (2) 1.8218 x 10°% 0.0249
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IV. DISCUSSION

From the results, we observe that the
untruncated data gives much stabler
reconstructions than the truncated data. Table
3 indicates that the image solvability maps for
untruncated data are close to zero and the
reconstruction are overall stable. Figures 12
and 13 show that the image solvability maps

for untruncated data are smooth.

When the measurements are truncated as in
the first data set, different algorithms have
different performances. The image solvability
maps in Figs. 10 and 11 have some dramatic
differences for different regions. Whenever
the truncation modification (5) is not used, the
reconstruction looks very poor. In fact, the
default naive implementation of (1) and (2)
treats unmeasured projections as zeros; this
naive implementation is not correct. The
unmeasured projections should never be
treated as zeros. The unmeasured projections
should be discarded and not be included in
the reconstructions (1) and (2). Formula (5) is
an alternative way to discard the unmeasured
projections. The image solvability maps thus
can indicate which algorithm implementation
is preferred and which regions the image can
reconstructed stably.

The proposed solvability map is an
extension of the data sufficiency conditions'?,
which
Currently, no data acquisition systems are

assume  continuous  sampling.
able to acquire data continuously. On the
other hand, the proposed method is based on
discrete sampling and can be directly apply to

a current state-of-the-art tomographic system.

The traditional data sufficiency conditions

have binary outcomes': satisfied or
unsatisfied. When the conditions are satisfied,
the whole object is able to be reconstructed.
When the conditions are not satisfied, we do
not know whether a sub region of the object
can be reconstructed. On the other hand, our
proposed method is a gray scale solvability
image, which clearly displays which regions

are more solvable than other rations.

Unlike the traditional data
conditions'?, the proposed solvability map is

sufficiency

reconstruction algorithm dependent. It can be

used to compare image reconstruction

algorithms and to evaluate the accuracy of the
reconstruction algorithms.

One important application of the proposed
image solvability map is in C-arm cone-beam

imaging  trajectory design™".  Another

important application is in region-of-interest

15-16

(ROI) imaging system design

In fact, the proposed method has a broader

impact on imaging systems, including
transmission tomography, emission
tomography, and magnetic resonance

(MRI). The applications of the
proposed solvability map are well beyond the

imaging

scope of truncation data effects. The map can
evaluate the effectiveness of various data
strategies  and

acquisition sampling

strategies.
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V. CONCLUSIONS

It has been a desire to develop a tool that
can identify which regions can be stably
reconstructed if the projection measurements
are not complete. It is clear that the condition
number is disqualified, because the condition
number only tells whether the entire system
can be stably solved as a whole. Even one
pixel (i.e., one unknown) is unsolvable, the
condition number is extremely large or
infinity. If the condition number is infinity and
not all pixels can be solved, we ask a further
question: “Are there any pixels that can be
stably solved?”

The Moore-Penrose pseudo inverse matrix
method is SVD based and is a powerful tool
to use when some singular values of the
system matrix are zero. However, the SVD
method requires that the entire system matrix
be stored in the computer memory during
computation. In reality, the system matrices
are too large to store. The SVD methods are
not practical.

This paper proposed a practical tool that
maps out the stably solvable regions in the
image. The basic idea of the tool is to
reconstruct a large number of random images
and compute their errors with respect to their
associated true images. In other words, this is
a Monte Carlo based method, The errors are
location dependent. The regions that have
large errors are not solvable. This idea is
similar to machine learning. Here we use a
large number of phantoms to ‘train’ the image
solvability map. The

map is imaging-

geometry dependent. If the imaging

geometry is altered, we need to ‘re-train’ a
new map for the new geometry. We must
point out that the image solvability map is also
reconstruction algorithm dependent.
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