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ABSTRACT 
H. pylori is perhaps the most prevalent human pathogen worldwide 
and infects almost half of the world's population. Despite the 
decreasing prevalence of infection overall, it is significant in 
developing countries. Most infections are acquired in childhood and 
persist for a lifetime unless treated. Children are often asymptomatic 
and often develop a tolerogenic immune response that includes T 
regulatory cells and their products, immunosuppressive cytokines, such 

as interleukin (IL)-10, and transforming growth factor-β (TGF-β). This 

contrasts to the gastric immune response seen in H. pylori-infected 
adults, where the response is mainly inflammatory, with predominant 

Th1 and Th17 cells, as well as, inflammatory cytokines, such as TNF-α, 

IFN-γ, IL-1, IL-6, IL-8, and IL-17. Therefore, compared to adults, 

infected children generally have limited gastric inflammation and 
peptic ulcer disease. H. pylori surreptitiously subverts immune defenses 
to persist in the human gastric mucosa for decades. The chronic 
infection might result in clinically significant diseases in adults, such as 
peptic ulcer disease, gastric adenocarcinoma, and mucosa-associated 
lymphoid tissue lymphoma. This review compares the infection in 
children and adults and highlights the H. pylori virulence mechanisms 
responsible for the pathogenesis and immune evasion.  
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I. INTRODUCTION 
Helicobacter pylori (H. pylori) infection 

remains a considerable healthcare burden and is a 
prevailing member of the human gastric microbiome 
in ~50% of the world’s population. H. pylori is 
prolific in the USA among underrepresented 
minorities, the poor, and the elderly1, but is more 
prevalent in developing countries. Infection with H. 
pylori is most often seen during childhood2. The 
clinical presentation and gastric immune response it 
elicits in pediatric patients differs from that in 
adults. Although the frequency of pediatric 
infections is high, studies on H. pylori and host 
interactions in children are limited. The infection 
rates are higher in some children, primarily those 
from low socioeconomic backgrounds3. Since the 
initial observations by Robin Warren and Barry 
Marshall, who isolated the bacteria from gastric 
biopsies4,  H. pylori infection is now linked to 
clinically significant outcomes, such as chronic 
gastritis, peptic ulcer or gastric malignancy 
[mucosa-associated lymphoid tissue (MALT) 
lymphoma and gastric adenocarcinoma]. Gastric 
cancer is a leading cause of cancer-related deaths 
claiming nearly one million lives annually 
(http://www.iarc.fr). Because of its association with 
gastric cancer, H. pylori is now classified as a class 
I carcinogen. Thus, H. pylori has important public 
health implications, and despite its high prevalence 
and clinical importance, there is no preventive or 
therapeutic vaccine against H. pylori. Multiple 
independent studies have reported on H. pylori's 
ability to siege the host immune response; however, 
our understanding of how the mechanisms utilized 
by H. pylori to co-opt host immune defenses remains 
an important gap in the field, which has prevented 
the development of an effective vaccine. The 
mechanisms used by H. pylori to induce mostly Treg 

cells in the gastric mucosa of children, and 
therefore, create a tolerogenic niche necessary for 
the bacteria to establish a lifelong infection remain 
unclear.  
 
II.  EPIDEMIOLOGY 

 H. pylori bacteria persistently infects 4.4 
billion individuals worldwide1, with a prevalence 
that varies widely between regions and countries. 
The highest rates occur in Africa, Latin America, the 
Caribbean, and Asia5. Although H. pylori infection 
is decreasing in the United States, gastric cancer is 
still an important cause of morbidity and mortality 
among underrepresented minorities6, 
disproportionally affected by H. pylori 7. Hispanics 
have a higher prevalence of H. pylori infection than 
non-Hispanic whites (NHW; 30.3% vs. 9.2%).8 H. 

pylori infections predominantly occur during early 
childhood9 and persist for years or even decades, 
often without clinical signs. The infection is 
transmitted from person to person via the fecal-
oral, gastro-oral, and oral-oral routes10,11. 
Intrafamilial transmission is an important aspect that 
has been examined by genotyping fecal samples12. 
Interestingly, the transmission of H. pylori from 
mother to child appears to be the most probable 
route of intrafamilial transmission. Waterborne 
transmission of H. pylori has also been 
documented13. A study in Japan showed that the 
prevalence of H. pylori was associated with water 
contamination in wells with H. pylori14. However, a 
study in Peru that sought to detect the presence of 
H. pylori in the tap water in homes of gastric cancer 
patients found no correlation between gastric 
infection and water contamination15. The 
investigators in that study found H. pylori in tap-
water samples, but the rates of H. pylori detection 
were lower than in gastric cancer samples. 

 
 
III.  H. pylori INFECTION IN CHILDREN 

H. pylori infections are primarily acquired 
in childhood and persist for a lifetime unless 
treated. In most cases the infection is asymptomatic, 
and complications are less common in pediatric 
patients. A recent study estimated that about one-
third of children worldwide are infected with H. 
pylori16, confirmed by a meta-analysis examining 
the prevalence of H. pylori infection in children 
younger than 18 years of age17. That study 
concluded that the incidence of H. pylori infection 
was significantly higher in low-income to middle-
income countries than in higher-income countries, 
reflecting similar observations made in adults. Low 
socioeconomic status is the main predisposing factor 
for pediatric H. pylori infection18 and more common 
among those living in crowded dwellings19. Thus, 
despite global trends toward lower infection rates, 
H. pylori is still very common in children.  

A study in Japan that included 332 patients 
aged 2–18 years showed that the most common 
clinical manifestations associated with H. pylori 
infection were gastritis, iron deficiency anemia, and 
duodenal ulcers, which represented 75% of those 
studied. Gastric ulcers were observed in <10% of 
all cases20. A link between gastric cancer and H. 
pylori infection in pediatric populations is unclear. 
Case reports of gastric malignancy in children 
infected with H. pylori are scarce. The few reported 
cases include a family history of gastric cancer, 
which may be related to a genetic predisposition. 
An intriguing observation is that allergic disorders 
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and H. pylori seem to have an inverse association. 
Chen and Blaser initially reported an inverse 
association between H. pylori seropositivity and 
asthma in children21. Those observations were 
recently repeated by Fouda, et al. 2018, who also 
noted that H. pylori seropositivity safeguards 
against childhood asthma and is inversely 
correlated to its clinical and functional severity22.  
 Several studies have noted that H pylori-
infected children have reduced gastric inflammation 
compared to the infected adults, despite 
comparable H. pylori colonization levels. 
Sequencing of the bacteria isolated from the 
infected children and adults showed similarity in 
cagA and vacA gene profiles, suggesting that 
variations in bacterial strains and key virulence 
factors could not account for the lower levels of 
inflammation in infected children23. A study by 
Harris et al. 2007, conducted with 36 children and 
79 adults with abdominal symptoms in Chile showed 
that the level of gastritis in children was 
substantially lower than in adults24. In that study, the 

investigators observed that gastric levels of TGF-β1 

and IL-10 and the frequency of Treg cells in H. pylori-
infected children are higher than in adults. The same 
investigators also reported that H. pylori-infected 
children have lower gastric IL-17-specific mRNA 
and protein levels and fewer gastric Th17 cells23. 
Together, these observations suggested a skewed 
CD4+ response toward a more tolerogenic gastric 
environment with increased Treg cells and reduced 
mucosal Th17 response in infected children. 
Additionally, the gastric mucosa of the infected 

children has lower levels of IFN-γ mRNA, suggesting 

a diminished Th1 response in children with H. pylori 
infection. Interestingly, similar observations were 
made in mice25. Adult mice infected with CagA+ H. 
pylori promptly develop gastritis, gastric atrophy, 
epithelial hyperplasia, and metaplasia. In contrast, 
neonatal mice infected with the same H. pylori strain 
produced a tolerogenic response and were 
protected from preneoplastic lesions. These 
differences in the responses elicited by H. pylori in 
the mucosa of young subjects could explain why 
children are considerably less prone to develop 
significant clinical gastric diseases than H. pylori-
infected adults.  
 
IV.  H. pylori CHARACTERISTICS AND VIRULENCE 
MECHANISMS 

H. pylori is a human-specific, spiral-shaped, 
flagellated, Gram-negative bacterium that 
selectively colonizes the gastric mucosa. H. pylori 
has an assortment of virulence factors that have 
been identified to play a role in the development 

of adverse outcomes associated with H. pylori 
infection. Some virulence factors aid H. pylori in 
adapting to the harsh environment within the gastric 
niche and facilitate chronic colonization by evading 
immune-mediated clearance, as discussed below.  

 
A. CagA 
Among the virulence factors expressed by 

H. pylori, there are two toxins, the cancer-
associated gene toxin (CagA) and the vacuolating 
cytotoxin (VacA), which are both critical in the 
pathology associated with infection and immune 
evasion. CagA is a cytotoxin encoded within an 
island of genes in a 40 kbp DNA segment and 
referred to as the H. pylori cag pathogenicity 
island, cag-PAI, possibly the most studied H. pylori 
virulence factor. The cag-PAI comprises a cluster of 
31 genes, most of which code for a type 4 secretion 
system, T4SS. The T4SS is a syringe-like structure 
used by H. pylori to penetrate the gastric epithelial 
cell (GEC) membrane and translocate H. pylori 
products into the cytosol of GECs. CagA is one of 
the products injected and is the effector protein 
encoded at one end of cag-PAI and does not 
appear to have homologs in other bacterial species. 
However, type 4 secretion systems are expressed 
by several species of bacteria but are less 
complex.26 CagA is possibly the most virulent factor 
connected with H. pylori and is a risk factor for 
peptic ulcer disease and gastric cancer. In fact, 
CagA is considered an oncoprotein because it 
affects tumor suppressor signaling pathways via 
various molecular mechanisms and promotes 
neoplasia.  

After CagA is translocated into GECs, it 
localizes to the inner leaflet of their plasma 
membrane, where it is phosphorylated at tyrosine 
residues within Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs in 
the C-terminus by Src and Abl kinases27. 
Phosphorylated CagA initiates a series of signaling 
events. Four major EPIYA motifs (A, B, C, and D) are 
based on the amino acid sequence bordering the 
EPIYA motif on both sides. EPIYA-A, EPIYA-B, and 
EPIYA-C motifs in tandem are expressed by 
"western strains." In contrast, "East-Asian strains" 
have CagA with EPIYA-A, EPIYA-B, and EPIYA-D 
motifs28. These motifs contribute to the 
polymorphism in the C-terminus of the protein and 
occur as tandem repeats varying in number from 
one to seven. The number of EPIYA motifs is relative 
to the extent of phosphorylation and the effects in 
epithelial cells. Src family kinases and c-Abl kinase 
phosphorylate the EPIYA motifs29. The 
phosphorylation of these EPIYA motifs plays a key 
role in neoplasia as demonstrated by studies in 
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transgenic mice expressing phosphorylation 
resistant CagA30. In those studies, transgenic mice 
expressing wild-type cagA spontaneously 
developed gastrointestinal carcinomas and 
hematopoietic malignancies30. H. pylori CagA also 
promotes PD-L1 (B7-H1) expression by GECs, which 
could allow for immune avoidance by developing 
cancer cells31. 

In addition to the CagA protein, the T4SS 
also translocates bacterial cell wall components such 
as peptidoglycan or muropeptides into GECs. H. 
pylori peptidoglycan is recognized by NOD1, an 
intracellular pathogen-associated molecular 
pattern (PAMP) recognition receptor that senses 

peptidoglycan. NOD1 activation leads to NF-κB 

activation and upregulation of proinflammatory 
immune responses. Peptidoglycan and H. pylori 
CagA injected into GECs lead to a reduced 
expression of B7-H2, a positive costimulatory of 
effector T lymphocytes, by activating the p70 S6 
kinase pathway32.  

CagL is also a cag-PAI-encoded protein. 
CagL is a pilus structure component that develops at 
the interface between H. pylori and GECs. 
Significantly, CagL enhances the binding of the 

T4SS to a5β1 integrin receptor on GECs. CagL 
possesses an arginine-glycine-aspartate (RGD) 
motif that is a recognition site for integrins33. 
Deletion of CagL abolishes H. pylori's ability to 
stimulate IL-8 secretion by GECs, suggesting that 
CagL is essential for the translocation of CagA by 
the T4SS. Other Cag proteins, such as CagY, CagI, 
and CagA, may also bind to integrin. This binding 
results in cellular alterations, such as cell spreading, 
focal adhesion formation, and tyrosine kinases' 
activation.  

 
B.  VacA 
Another major H. pylori virulence factor is 

the vacuole-inducing cytotoxin (VacA), a key 
secreted protein without a known homolog in other 
bacterial species. It contributes to gastric 
colonization and the pathogenesis of gastric 
neoplasia. VacA is initially synthesized as a 140 
kDa pro-toxin, including an N-terminal signal 
peptide, a central region representing the toxin, 
and a C-terminal domain participating in transport 
function. Following processing, the central region 
(~88 kDa) representing the mature virulent form of 
the toxin is secreted and processed further into two 
subunits of 33 kDa (A subunit) and 55 kDa (B 
subunit)34, or remains on the bacterial surface35. The 
p33 form was initially regarded as a pore-forming 
subunit, while the p55 form was initially viewed as 
the cell-binding component. However, both subunits 

are known to contribute to binding and vacuole 
formation. The exact entry mechanism is still in 
question as various receptors have been proposed 
but binding to sphingomyelin appears to be 
important in the process.  

Although all strains of H. pylori have the 
vacA gene, there is a great deal of diversity in the 
gene, which includes three regions: signal- (s), mid-
(m), and intermediate (i)-regions36. There are two 
allelic types for each region. Most virulent strains 
have the s1, i1, and m1 alleles associated with the 
highest risk of gastric adenocarcinoma.37 While s1 
forms of VacA induce vacuoles, type s2 forms of 
VacA do not have that property. This is because 
different signal sequence cleavage sites in s1 and 
s2 VacA proteins affect the vacuolating ability of 
the toxin.36 The increased risk of disease for H. 
pylori strains containing s1, i1, or m1 forms of vacA 
is likely due to the coexpression of additional 
virulence factors. For instance, type s1 vacA allele-
containing strains usually include cag-PAI38.  

VacA has pleiotropic effects on host cells39. 
The most studied is its ability to induce vacuole 
formation that results in the disruption of endosomal 
trafficking40,41. This effect on endosomes, in turn, 
impairs the processing and presentation of foreign 
antigens42. A closely related property of VacA is its 
ability to induce autophagy, a process that 
depends on VacA binding to low-density 
lipoprotein receptor-related protein 1 (LRP1)43. H. 
pylori VacA has also been reported to alter host cell 
mitochondria and cell signaling44,45, disrupt 
epithelial barriers46, and cause cell death via 
apoptosis and necrosis47,48. Among the effects of 
VacA on other cells is the ability to impair T cell 
responses49, which is likely a mechanism that aids H. 
pylori in immune evasion properties, as discussed 
below.  

 
C.  Urease 

 The urease enzyme is produced in large 
amounts by H. pylori and is directly linked with 
virulence. H. pylori urease is probably the most 
abundant protein produced by H. pylori, 
representing ten percent of the total protein50. 
Urease stimulates the rise of gastric pH through 
urea hydrolysis leading to the production of CO2 
and ammonia, which help neutralize gastric acidity. 
This effect on gastric pH critically contributes to the 
colonization of H. pylori and its pathogenesis. The 
importance of urease in successful colonization was 
demonstrated when mutant strains lacking urease 
could not establish persistent infection51–53. The 
urease expression by H. pylori has been used to aid 
clinical diagnosis by developing various rapid 
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urease tests to detect H. pylori in gastric specimens. 
Since CO2 is a product of urease hydrolysis of urea, 
a breath test was developed that employs either 
13C or 14C-labeled urea. The subject ingests the 
labeled urea, and the tagged CO2 in the breath is 
measured using a detector.  
 H. pylori urease is comprised of two 

proteins, α and β subunits54. The α subunit (UreA) is 

approximately 30 kDa and the β subunit (UreB) is 

60 kDa. Six of each subunit contribute to forming a 
dodecamer of about 600 kDa. Urease is found both 
inside and outside H. pylori. Approximately 30% of 
H. pylori urease is localized on the surface of intact 
cells after lysis of neighboring bacteria55,56. The 
urease expression outside the bacteria allows it to 
display biological activity independent of its 
enzymatic action. H. pylori urease has been shown 
to bind to class II MHC molecules and CD74 on 
GECs57–60. The interaction of urease with these cell 
surface proteins results in the induction of 
proinflammatory cytokines and apoptosis of host 
cells60,61. H. pylori urease was also reported to 
activate neutrophils and prevents their apoptosis62. 
Recently, H. pylori urease was shown to have pro-
angiogenic activity both in vitro and in vivo63. This 
biological activity could be significant in gastric 
neoplasia associated with the infection. Another 
recent study showed that H. pylori urease might also 
bind to toll-like receptor (TLR)-2 on GECs, 
stimulating their expression of the human 
transcription factor hypoxia-induced factor-1a 

(HIF-1α). Notably, enzymatic activity was not 
required for this response64. In a previous study, 
these investigators showed that HIF-1a activation 
occurs via a PI3K-dependent pathway to create a 
G0/G1 cell cycle arrest in GECs65. The investigators 
in that study highlighted that the urease/TLR2/HIF-
1 axis in immune cells was related to the generation 
of tolerance and posited whether activation of this 
axis in GECs might also play a role in the 
development of pre-neoplastic lesions64.  
 H. pylori expresses other virulence factors 
that play an essential role in shaping the immune 
response and modulating the immune 
microenvironment to favor persistent infection. For 
clarity, those bacterial components will be discussed 
below in the context of immune evasion mechanisms.  
 
V.   IMMUNE EVASION PROPERTIES 

Multiple studies have documented the 
remarkable ability of H. pylori to siege the host 
immune defenses surreptitiously. H. pylori has an 
array of evasion pathways to successfully escape 
innate and adaptive immunity to persistently infect 

the gastric mucosa and cause diverse 
gastrointestinal conditions.  

 
A. Innate Immunity 

1. Pattern recognition receptors 
Pattern recognition receptors (PRRs) 

play a crucial role in innate immunity. PRRs 
recognize pathogen-associated molecular patterns 
(PAMPs) or molecules secreted by damaged cells 
(damage-associated molecular patterns (DAMPs)). 
PRRs induce various downstream signaling 
pathways essential for pathogen clearance upon 
their activation. Four families of PRRs have been 
described that include Toll-like receptors (TLRs), 
NOD-like receptors (NLRs), RIG-like receptors 
(RLRs), and C-type lectin receptors (CLRs)66. These 
receptors are strategically localized in the cell to 
allow recognition of conserved molecular structures 
of pathogens with diverse life cycles. GECs and 
immune cells in the lamina propria express TLRs that 
recognize various H. pylori PAMPs. TLR2 and TLR4 
recognize lipopolysaccharide (LPS), TLR5 flagellin, 
and TLR9 CpG motifs in bacterial DNA. Yet, H. 
pylori effectively evade recognition by these TLRs 
through structural modification of the corresponding 
PAMPs67–69.  

 
2. Phagocytes 

Macrophages and neutrophils are 
essential elements of innate immunity as they are 
responsible for the phagocytosis of bacteria. 
However, H. pylori possess antiphagocytic 
activity70. In a report where H. pylori phagocytosis 
by human and murine macrophages was monitored 
with immune fluorescence and electron microscopy, 
H. pylori strains that were cag-PAI+ and VacA+ 
avoided intracellular killing by hindering actin 
polymerization and phagosome formation71. The 
phagosomes that contained H. pylori formed clusters 
and fused, forming "megasomes" containing 
numerous bacteria, which allowed resistance to 
intracellular killing. However, a subsequent study 
reported that the fusion of those phagosomes was 
independent of VacA and CagA72. H. pylori 
bacteria have yet another mechanism to escape 
intracellular killing. H. pylori expresses catalase and 
superoxide dismutase that detoxify reactive 
oxygen species (ROS) and protect H. pylori from 
ROS73,74. H. pylori also downregulates CXCR1 and 
CXCR2 expression in human neutrophils, which are 
receptors to IL-8, which is the neutrophil recruiting 
chemokine75. This effect of H. pylori on CXCR1 and 
CXCR2 limits neutrophil migration and reduces 
bacterial killing. Studies by Gobert et al., 2001 
have shown that H. pylori arginase competes with 

https://esmed.org/MRA/index.php/mra/article/view/3370
https://esmed.org/MRA/mra


                                                      
 

Helicobacter Pylori Immune Response in Children Versus Adults 

 

 
Medical Research Archives |https://esmed.org/MRA/index.php/mra/article/view/3370  6 

iNOS in macrophages for the substrate, L-arginine, 
and induces the expression of arginase II 
(Arg2)76,77. These two mechanisms protect H. pylori 
from NO-mediated killing. 

 
3. Dendritic Cells 

Dendritic cells (DCs) represent critical 
mediators of innate and adaptive immunity since 
they capture antigens and present them to T cells. 
H. pylori promotes a "tolerogenic" phenotype in 
DCs. H. pylori inhibited DC maturation in response 
to LPS and a panel of other inducers of DC 
maturation when naïve DCs were co-cultured with H. 
pylori78. Ann Müller, et al. 2013, demonstrated that 
H. pylori reprograms DCs toward a tolerogenic 
phenotype since they did not elicit T effector cell 
responses78. Instead, DCs that were exposed to H. 
pylori induced in naïve T cells the expression of the 
transcription factor forkhead box protein 3 
(FOXP3), which is the master regulator of T 
regulatory (Tregs) cells. The induction of Tregs by H. 
pylori-exposed DCs depended on IL-18 signaling 
since Tregs did not develop if IL-18-/- BM-DCs or T 
cells lacking the IL-18 receptor were used.  

 
B. Adaptive Immunity 

1. Humoral Immunity 
Although H. pylori elicit a robust 

adaptive immune response, studies that examined 
humoral immunity in H. pylori-infected persons 
showed that although they produce H. pylori-
specific IgA and IgG, the antibodies do not control 
H. pylori. However, differences in the antibody 
response were noted between subjects who 
developed gastritis or duodenal ulcers compared to 
subjects who developed gastric cancer79. The serum 
antibody titers in infected individuals who 
developed gastritis or duodenal ulcers 
demonstrated a higher IgG response than in those 
who developed gastric cancer. In contrast, gastric 
cancer patients displayed a more robust IgA titer 
than subjects with gastritis and duodenal ulcers. A 
separate study showed that a weak antibody 
response was associated with a high risk of 
developing gastric cancer in infected individuals80.  

 
2. Cell-Mediated Immunity 

a. Th1 Cells. The T cell response 
to H. pylori includes activation of both CD4+ and 
CD8+ T cells since both infiltrate the H. pylori-
infected gastric mucosa. We and others reported 
that the response is polarized to Th1 cells81,82, which 
are ineffective in protecting against extracellular 
pathogens, such as H. pylori. This was an early clue 
that H. pylori surreptitiously maneuvers the host 

response to establish persistent infection. The H. 
pylori neutrophil-activating protein (HP-NAP) is an 
essential mediator in this response. HP-NAP has 
been shown to act on neutrophils and monocytes, 
causing them to secrete IL-12 and IL-23, and these 
cytokines foster Th1 responses83. Adding HP-NAP to 
T cell lines promoted a shift from a predominant Th2 
to a Th1 phenotype of the T cell lines. The polarizing 
property of HP-NAP in these studies was shown 
when HP-NAP redirected allergen-induced T cell 
lines to express a Th1 cytokine profile instead of the 
characteristic Th2 cytokine profile induced in 
allergen responses83. Although Th1 cells may afford 
some protection from H. pylori by limiting its growth, 
they also seem to aid in pathogenesis, as supported 
by studies in human carriers suggesting Th1 
participation in H. pylori-associated lesions. The Th1 

cytokine IFNγ is linked to damaging effects 
associated with H. pylori infection by aiding 
inflammatory processes that result in gastritis and 

gastric neoplasia84. IFNγ directly induces 
inflammatory mediators and apoptosis of 
GECs85,86. Recent studies in a mouse model of 

autoimmune gastritis showed that IFN-γ-/- mice had 
almost complete abrogation of precancerous 
histopathological atrophy and metaplasia 

compared to IFN-γ-sufficient controls85.  
 

b. T regulatory Cells. In addition 
to Th1 cells, other CD4+ T cell subsets infiltrate the 
lamina propria of the gastric mucosa in H. pylori-
infected patients. Those CD4+ T cells include Treg and 
Th17 cells. We and others noted the presence of 
Th17 and Treg cells in the infected gastric mucosa87–

93. Treg cells play a role in the maintenance of 
peripheral self-tolerance91. Treg cells inhibit T 
effector cells using various mechanisms, including 
cell-cell contact and immunosuppressive cytokines: 

TGF-β, IL-10, and IL-35.91 There are two subclasses 

of Treg cells: natural Treg (nTreg) and inducible Treg 

(iTreg) cells, and both express the master 
transcription factor FOXP3, encoded by the foxp3 
gene on the X chromosome94–96. The nTreg cells 
develop in the thymus, while antigenic stimulation of 

naive CD4+T cells in the presence of TGF-β and IL-

2 triggers Treg cell differentiation in peripheral 
lymphoid organs91. The presence of Treg cells in 
gastric tissue biopsies from infected persons is well 
documented88–90. The stimulation of Treg cells in the 
gastric mucosa of H. pylori-infected persons may 
explain early reports of hyporesponsiveness by T 
cells from H. pylori-infected subjects when 
restimulated with H. pylori antigens compared to T 
cells from uninfected persons97. An interesting 
observation pertinent to the Th1 cell response 
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elicited by H. pylori is that those Th1 cells can be 
reprogrammed into Treg cells98. Despite the robust 
inflammation induced by H. pylori, bacterial 
clearance is often inadequate due to activated Treg 

cells. It is important to note that the gastric 
epithelium is instrumental in expanding Treg cells. 
GECs respond to H. pylori infection with the 
expression of B7-H199,100, discussed in detail below, 

and TGFβ92 and it is important to note that both of 
these proteins promote the development of Treg 

cells99,100. The expansion of Treg cells in the H. pylori-
infected gastric mucosa could promote persistent 
infection and limit tissue damage associated with an 
excessive inflammatory response. This is supported 
by observations in H. pylori-infected mice deficient 
in Treg cells, which developed increased 
pathology101.  
 

c. Th17 Cells. Th17 cells 
represent a CD4+ T cell subset important in immune 
protection against extracellular bacteria. Th17 cells 
are a proinflammatory CD4+ T cells subset that 
arises from antigen stimulation of naïve CD4+ T cells 

in the presence of TGF-β and IL-6, but IL-1β and IL-

23 are also crucial in driving Th17 maturation. 
These cytokines are produced during H. pylori 
infection102,103. IL-23 promotes the maintenance and 

pathogenicity of Th17 cells by inhibiting Tbet and 
FOXP3, master regulators for Th1 and Treg cells, 
respectively104,105. Interestingly, when CD4+ T cells 
from H. pylori-infected mice were co-cultured with 
macrophages in the presence of the H. pylori UreB 
subunit, that led to the induction of Th17 cells and 
production of IL-17A. Immunization with 
recombinant UreB induced UreB-specific Th17 cells 
and reduced H. pylori numbers.106 The 
differentiation of Th17 cells is regulated by the 
transcription factors retinoic acid receptor-related 

orphan receptors (ROR)γt and RORα107,108. 

Deficiency of RORγt or RORα impairs the 

differentiation of Th17 cells107. Pinchuk et al., 2013, 
showed that gastric stroma, specifically 
myofibroblasts, induced Th17 cells during H. pylori 
chronic infection and gastric cancer109. Gastric 
myofibroblasts isolated from H. pylori-infected 
biopsies or resected gastric tissue when co-cultured 
with naïve CD4+ T cells led to the expression of 

RORγt and IL-17 by CD4+ T cells. As might have 

been predicted, the process was IL-6, TGF-β, and 

IL-21 dependent109. Th17 cells are known to 
produce a battery of proinflammatory cytokines 
that include IL-17A, IL-17F, IL-21, IL-22, and IL-
26110. The cytokines produced by Th17 cells 
promote neutrophil recruitment and secretion of 
antimicrobial peptides. IL-17 has pleiotropic effects 

as it may mediate antibacterial action and may 
also have a pathogenic outcome. Mouse 
immunization studies showed that Th17 cells protect 
against H. pylori by limiting bacterial growth111,112, 
but in infected mice, H. pylori impair Th17 cells by 
inhibiting their costimulation and tips the balance to 
Treg cells32. The Treg/Th17 balance is essential to 
immune homeostasis. The role that IL-17A and IL-
17F play in H. pylori infection in humans is unclear, 
and studies suggest that these cytokines may 
contribute to pathology. Various studies with Asian 
patients have identified that genetic variants of IL-
17 are associated with a risk of gastric cancer113. 
Still, several studies comparing circulating levels of 
IL-17 in gastric cancer patients versus healthy 
subjects have had conflicting results, possibly due to 
the inclusion of different populations in the studies.   
 

d. Th2 and Th22 Cells. Other 
CD4+ T cell subsets have been examined in the 
context of H. pylori infection, but their role is 
unclear. Th2 cells are not highly activated within the 
H. pylori-infected mucosa but have been considered 
protective due to observations in mice orally 
immunized with recombinant H. pylori urease B 
subunit plus and cholera toxin114. The immunization 
led to the development of a Th2 cell response that 

caused a progressive reduction in IFN-γ and the 
clearance of H. pylori. However, a subsequent study 
by Garhart, et al., 2003, found that immunized 
double-knockout in IL-4 and IL-5 mice were 
protected from the H. pylori challenge115, which 
suggested that Th2 cells were not necessary for 
protection. Th22 cells represent a newer CD4+ T cell 
subset that is understudied in the context of H. pylori 
infection. Perhaps due to their similarities with Th17 
cells concerning IL-22 production, expression IL-22 
was previously ascribed to Th17 cells. But it is now 
accepted that both Th17 and Th22 subsets produce 
IL-22, and the latter produces the highest levels of 
IL-22. Th22 cells are now recognized as a critical 
source of IL-22 and are found at the infection site 
and in various inflammatory conditions. A recent 
study that included 47 patients with peptic ulcer 
disease and 48 uninfected subjects found that Th22 
cell numbers and IL-22 expression in the infected 
subjects were significantly more than in uninfected 
subjects116. Also, both parameters in infected 
subjects with PUD were significantly greater than in 
the infected subjects with gastritis. In addition, the 
investigators noted an inverse correlation with the 
Treg counts in the infected subjects with PUD and 
gastritis. 
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e. CD8 T Cells. CD8+ T cells have 
been detected in the H. pylori-infected gastric 
mucosa117. Studies on human CD8 gastric T cells are 
limited, perhaps because H. pylori is primarily an 
extracellular bacterium. In one study, investigators 

examined proliferation and IFN-γ production by 
circulating CD4+ and CD8+ T cells from infected and 
uninfected subjects in response to in vitro stimulation 
with Helicobacter antigens118. They observed 
modest proliferation by both T cell subsets from 
both groups. However, H. pylori antigens induced 

IFN-γ production, preferentially by CD8+ cells. 

Since recent studies have detected H. pylori inside 
epithelial cells, there may be more interest in 
follow-up studies on the role of gastric CD8+ T cells 
in H. pylori immunopathogenesis119.  
 

3.  Inhibition of T cells.  
The activation of T cells requires 

recognition by their antigen receptor (TcR) of 
peptides/MHC complexes expressed on antigen-
presenting cells (APCs) and a second signal 
delivered by costimulatory molecules on the APCs. 
H. pylori uses multiple mechanisms to interfere with 
multiple steps leading to T-cell activation or 
viability. Some mechanisms involve the disruption of 
APC functions. H. pylori may prevent or delay 
phagocytosis by macrophages120,121. H. pylori 
bacteria that are internalized induce phagosome 
fusion into compartments that are referred to as 
megasomes120. As stated earlier, the VacA toxin 
disrupts endosomal traffic. It thus prevents antigen 
processing.122 Gebert et al., 2003, showed that 
VacA also acts directly on T cells by inhibiting 
signaling and proliferation through the induction of 
a G1/S cell cycle arrest123. This effect resulted from 
the interference with T cell receptor/IL-2 signaling 
at the level of the Ca2+-calmodulin-dependent 
phosphatase calcineurin. The translocation of the 
nuclear factor of activated T cells (NFAT), a 
transcription factor that regulates immune response 
genes, into the nucleus was abolished, causing 
downregulation of IL-2 transcription123. However, a 
subsequent independent study showed that human T 
cell proliferation inhibition was not attributable to 
VacA effects on NFAT activation or IL-2 secretion. 
Instead, the inhibition of T cell proliferation by VacA 
entails an intact N-terminal hydrophobic region 
required for forming anion-selective membrane 
channels that prevent the clonal expansion of T cells 
already activated by H. pylori antigens49. The cag-
PAI, described above, induced apoptosis of T cells 
via a process highly dependent on the induction of 
Fas ligand (FasL) by cag PAI-bearing strains124. 
However, a separate report showed that the 

mitochondrial pathway mediates T cell 
apoptosis125. In that study, H. pylori-induced 
apoptosis of T cell lines was not blocked by 
inhibition of the death ligands TRAIL (TNF-related 
apoptosis-inducing ligand), FasL, and TNF-a. 

 Another mechanism that H. pylori 
use to inhibit T cells directly is gamma-glutamyl 
transpeptidase (GGT). GGT is a 60 kDa 
proenzyme that, after catalysis, yields a 
heterodimer of 40 kDa and 20 kDa subunits126. It is 
a threonine N-terminal nucleophile (Ntn) hydrolase 
that catalyzes the transpeptidation and hydrolysis 
of the gamma-glutamyl group of glutathione and 
also has an affinity for glutamine. GGT converts 
glutathione into glutamate and cysteinyl glycine, 
while its action on glutamine produces glutamate 
and ammonia. It is secreted by H. pylori and induces 
cycle arrest in lymphocytes in the G1 phase 127. 
Schmees, et al.,2007, showed that the G1 arrest 
was due to disruption of Ras- and not PI3K-
dependent signaling by H. pylori GGT and inhibited 
T cell proliferation. H. pylori arginase is another H. 
pylori enzyme that prevents T cell proliferation by 
depleting L-arginine availability128. The role of H. 
pylori arginase is to hydrolyze L-arginine to urea 
and ornithine. Urea is converted by urease to 
ammonia, which neutralizes gastric pH. H. pylori 

arginase lowers the expression of the CD3ζ-chain 

of the T cell receptor (TCR), which is critical for T cell 
activation. Arginase inhibitors reverted the effect, 
and an isogenic arginase mutant strain of H. pylori 
did not alter T cell function128.  
 

4. Immune Checkpoints.  
The absence of the second signal 

during recognition by T cells of antigen-MHC 
complexes renders T cells anergic. The costimulatory 
signals delivered by members of the B7 family of 
receptors are balanced by coinhibitory signals that 
limit the extent of T cell activity and whose absence 
may lead to uncontrolled T cell proliferation129. B7 
family ligands are a group of proteins initially 
represented by B7-1 (CD80) and B7-2 (CD86), 
whose interactions with CD28 and CTLA4 begin and 
end T cell activation, respectively 130–132. This family 
of regulatory receptors has grown to include PD-L1 
(B7-H1), PD-L2 (B7-DC), ICOS-L (B7-H2), B7-H3, 
and B7-H4 (B7-S1). More recently, B7-H5 
(Vista)133,  B7-H6134, and B7–H7 (originally called 
HHLA2)135,136 emerged; however, their expression 
patterns, ligands, and functions are still being 
defined. PD-L1, PD-L2, and ICOS-L were initially 
defined for T cell activation or tolerance through 
binding their coreceptors PD-1 (for PD-L1 and PD-
L2) and ICOS (for ICOS-L) on activated and 
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memory T cells137–139. The B7 family of 
costimulatory/coinhibitory receptors has emerged 
as pivotal in immune regulation, maintaining a 
delicate balance between immune potency and 
suppression of autoimmunity (reviewed in 140–142). 
Therefore, this family of receptors is now 
collectively known as immune checkpoints, and the 
pioneers who described them were the recipients of 
the 2018 Nobel prize in Physiology and Medicine. 
As reviewed previously143, these proteins act as 
rheostats for T cell activity. Studies suggest their 
role in influencing T cell differentiation or 
phenotype. Interestingly, H. pylori have mechanisms 
that allow the bacteria to control the expression of 
these immune checkpoints143,144. For instance, we 
demonstrated that H. pylori elicit heightened 
expression of PD-L1 (aka CD274, B7-H1) by GECs 
in vitro and in vivo31,99. PD-L1 expression by GECs 
from biopsies of H. pylori-infected subjects is 
significantly greater than on GECs from uninfected 
subjects, and infection of GECs induced the 
expression of PD-L199. This feature of H. pylori is 
important because PD-L1 stifles the proliferation of 
effector CD4+ T cells99 and promotes the 
development of Treg from naïve CD4+ T 
cells100(Figure 1). One study showed that PD-L1 
converted Tbet+ Th1 cells into FOXP3+ Treg cells in 
vivo145, which results in impaired cell-mediated 
immunity and shed some light on the previously 
unrecognized plasticity of T cells. Some recent 
studies redefined the functions of immune 
checkpoints as being able to fine-tune T cell 
responses, shape T cell phenotypes, or reprogram 
"terminally differentiated" T cell subsets100,145–148. 

The mechanisms regulating this family of receptors' 
expression are under active study due to their 
potential in immunotherapeutics. In fact, immune 
checkpoint inhibitors have become an important 
pillar in cancer immunotherapy, allowing long-term 
survival in patients with metastatic disease. 
However, H. pylori exploits those regulatory 
mechanisms to promote its persistence in the host. In 
addition to inducing PD-L1 expression by 
GECs99,100, H. pylori also induce the expression of 
B7-H3149, a receptor with dual function. While 
causing increased expression of co-inhibitors, H. 
pylori simultaneously prevent the expression of B7-
H232 (aka CD275, ICOS-L, B7RP-1), which is the 
only positive costimulator known to act on activated 
or memory T cells. Thus, H. pylori sets a "perfect 
storm" that prevents host effector T cells from 
clearing the infection. These responses partially 
depend on H. pylori CagA and peptidoglycan 
translocated by the type 4 secretion system (T4SS).  

A recent study by Amieva's group used 
high-resolution mapping that led to development of 
a model to explain how H. pylori establish persistent 
infection in the stomach by colonizing microniches 
deep in the gastric glands150. They found that a low 
number of bacterial founders at first establish 
colonies deep in the gastric glands and later grow 
and colonize adjacent glands, producing clonal 
population islands that persist. Interestingly, their 
work tied together previous observations regarding 
the age of the infected subject and T cell immunity 
on how they influence the outcome of the host-
bacterial interactions since they noted that both 
factors regulate bacterial density within the glands. 
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Figure 1. Model of the cross-talk between H. pylori, GECs and immune cells in the LP. H. pylori activates mechanisms 
that alter expression of immune checkpoints PD-L1 (increase) and B7-H2 (decrease). Altered expression of these 
receptors have consequences on T cells leading to suppressed or skewed T cell responses that allow H. pylori immune 
escape and chronicity. CagA activates multiple signaling pathways, including the PI3K/AKT/mTOR pathway that affects 

immune checkpoint expression. 

 
  
VI. CONCLUSIONS 

Globally, infection with H. pylori remains a 
challenge in the pediatric population as it is in this 
age group when most cases initially become 
established via the oral route and persist for a 
lifetime. Through thousands of years of coexistence, 
H. pylori have evolved multiple mechanisms to 
adapt in humans. In children, the infection is largely 
asymptomatic, rarely creates complications, and 
elicits reduced inflammation and an immune 
response that is tolerogenic to allow for bacterial 
persistence over many years. The persistent 
infection favors the potential for spread to others 

who more often share key risk factors, such as low 
socioeconomic status, having a mother who is 
infected, having multiple siblings, living in crowded 
conditions, and drinking untreated water.  

H. pylori has mechanisms that allow survival 
in one of the harshest environments in the body, such 
as the highly acidic conditions in the stomach. The 
expression of urease allows the bacteria to raise 
the local pH, and this, in turn, represents an obvious 
advantage for the long-term colonization of H. 
pylori in the stomach. Although the infection leads to 
a marked inflammatory response with the 
infiltration of T lymphocytes in the gastric mucosa, 

https://esmed.org/MRA/index.php/mra/article/view/3370
https://esmed.org/MRA/mra


                                                      
 

Helicobacter Pylori Immune Response in Children Versus Adults 

 

 
Medical Research Archives |https://esmed.org/MRA/index.php/mra/article/view/3370  11 

the immune response is misguided and is ineffective 
in clearing the infection. Multiple virulence factors 
expressed by the bacteria contribute to immune 
evasion either by inhibiting antigen processing, T 
cell activation, and proliferation or by affecting the 
expression of an important family of receptors that 
determine T cell activation and influence T cell 
phenotype. 

In contrast to childhood infections, the 
infection in adults may lead to clinically significant 
outcomes that include peptic ulcer disease, MALT, or 
gastric cancer. Most gastric cancer patients are > 
50 years of age. However, a recent study found 
that in the United States there is an increasing 
incidence of cases of non-cardia gastric cancer in 
people < 50 years of age151. It is important to note 
that non-cardia gastric cancer is often diagnosed at 
a metastatic stage and is difficult to treat. As a 

pathogen-associated form of cancer, gastric cancer 
is potentially preventable with a vaccine. For the 
development of an effective vaccine, it is necessary 
to understand the spectrum of H. pylori-associated 
disease in children, why their gastric immune 
response to H. pylori differs from that of adults, 
improve our understanding of the 
immunopathogenesis of gastric disease outcomes 
linked to H pylori, and identify candidate targets 
that will elicit an immune response that is not 
affected by any of the known H. pylori immune 
evasion mechanisms.  
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