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Abstract

Since December 31, 2020, the world has closely monitored the progress and
outcomes of the SARS-CoV-2 coronavirus (COVID). This paper focuses on two
goals. First, we compare time series algorithms for predicting fatalities during
the COVID pandemic. Second, we examine how domain affects algorithm
choice by comparing our COVID results to historical and current weekly
temperature data analyses. Critical interest revolves around tracking and
predicting the effects of COVID. Throughout the past three years, many
researchers have created models and built visualizations to observe this
disease’s progression and impact, both regionally and worldwide. Researchers
have recently proposed using machine learning to forecast the progression of
COVID. With the increased interest in time series methods and the different
algorithms available, this paper explores these techniques’ accuracy and
computational expense. We compare time series analysis approaches for
forecasting COVID fatalities from March 11, 2020, to December 28, 2021. The
time series models we include are those that can be automatically created to
scale to large datasets. Statistical analysis is used to identify significant
differences in performance. To investigate generalizability, we apply the same
algorithms to predict temperature data, a standard example dataset due to its
seasonal and trend components. An analysis is performed both for historical
data (1970s) and current data (2020s). Results allow us to: (1) identify significant
differences in algorithm performance versus pandemic data with different time
series patterns; (2) examine the performance of time series algorithms trained
on shorter, constant-length training sets; and (3) determine whether variations
in temperature due to climate changes affect how temperature data should now
be predicted. We conclude by discussing how domain and data patterns inform
the decision of which time series algorithms to consider when predicting future
events from historical or existing data. Our results illustrate that no one method
is always the best. Careful consideration of the data’s domain, the time period
in question, and the length of time to analyze must be considered when

deciding which algorithm to choose.
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1 Introduction

On March 11, 2020, the SARS-CoV-2 disease
changed the world when it was declared a
national pandemic by the World Health
Organization'. Since then, many institutions,
governments, agencies, and researchers have
been tracking and attempting to predict the
The

world’s interest in following the pandemic and

severity and spread of the virus?*“

its forecasts have inspired many different
types of models and analyses®. Historically,
forecasting the spread of diseases and viral
infections is done using epidemiological
models such as SIR (Susceptible, Infectious,
Recovered) and SEIR (Susceptible, Exposed,
Infectious, Recovered)®’” or agent-based
models®. Compartmental approaches such as
SIR use differential equations to model the
spread of disease. Agent-based models use
simulations that allow for spatial information
and interactions among individuals’. Many
assumptions  are  required  regarding
population, exposure, and other factors in all

of these models.

With the COVID pandemic several models
have been utilizing statistical and machine
learning (ML) techniques to forecast fatalities
from this disease'®. This increased interest in
ML for forecasting provides an opportunity to
review forecasting models in the context of
the coronavirus disease. Past studies have
of the
differences in time series algorithms. One of
the first reviews dates back to 1976" when the

explored and illustrated some

main focus was on autoregressive integrated
moving average models (ARIMA), exponential
smoothing models (ESM), and time series

decomposition. In a recent survey by'?, linear

regression, least absolute shrinkage and

(LASSO)
support vector machines (SVM), and ESM are

selection  operator regression,
compared to forecast aggregated global
COVID data. A more extensive illustration of a
survey of methods in Ahmed™ provides an
interesting  comparison  of  multilayer
perceptrons, Bayesian neural networks, radial
basis functions, generalized regression neural
networks (also called kernel regression), k-
nearest neighbor regression, classification
and regression trees (CART), support vector
regression (SVR), and Gaussian processes on
an M3 competition dataset. For a recent
literature review on numerous algorithms and

studies in time series, see'>,

Due to the large number of forecasts that
need to be made, we investigate the
strengths and limitations of methods that can
be created automatically. We examine nine-
time series and machine learning algorithms
to compare their performance in predicting
fatalities due to COVID. Traditional methods,
including linear regression, SVR, ESM, and
seasonal ARIMA models with exogenous
variables (SARIMAX), are considered, as well
as newer machine learning approaches:
Bayesian structural models (BSTS), Prophet,
random forests, extreme gradient boosting
(XGBoost),

recurrent neural networks (LSTM).

and long short-term memory

The paper is structured as follows: Section 2

introduces the different algorithms and
provides references for a more in-depth
understanding of each method. Section 3
introduces the COVID data, the summary
statistics obtained, and any preliminary inputs

needed for each algorithm. It then provides
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the results from each algorithm for predicting
fatalities on the date range March 11, 2020, to
December 28, 2021, for
countries with different COVID mitigation

twenty-eight

strategies, populations, and macroeconomic
properties. We use our results to discuss the
of each

advantages and disadvantages

algorithm. Section 4 applies the same
algorithms to a meteorological domain over
with  different

meteorological patterns. Section 5 provides

two  time  periods

concluding remarks and future

considerations.

2 Time Series Algorithms

There are many statistical and ML algorithms
used to forecast time series data. We focus on
linear regression, SVR, ESM, SARIMAX, BSTS,
Prophet, random forest, XGBoost, and LSTM.
Each of these models is briefly discussed, and
further reading is provided.

2.1 Linear Regression

Although linear regression is one of the oldest
modeling techniques, it is still relevant in
many analyses, both within and outside time

(a)

series. In linear regression, a response
variable y;, 1 < i < n exists for n observations.
The model for y; is a linear combination of k
known predictor variables X1, X5, ..., Xj.

Yi = Bo+ Prxis + o+ Brxix + €1, x5 € X

(1)
Linear regression assumes that the response
variable is a linear combination of the
predictors X;, together with residuals ¢; that
are independent and normally distributed
with  mean é€=0 and constant variance
a2(e) = c1°. Additionally, it is often assumed
that there is no perfect multicollinearity
between the predictors. The residual ¢; is the
difference or error between the actual value y;
and the predicted value y;,¢; = y; — 9;. Due
to the nature of time series data, there is a
potential for correlation between residuals at
subsequent points in time, which violates the
independence assumption. However, given
its simplicity and common use, linear
regression is a good reference model’. Its
closed-form solution means linear regression
is a fast and efficient algorithm. Fig. 1a shows
an example of linear regression applied to the

COVID data we are investigating.

(b)

Figure 1: Known (orange) and predicted (green) COVID fatalities and weekly RMSE (vertical lines) in the
US, March 11, 2020, to December 28, 2021: (a) linear regression; (b) SVR
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2.2 Support Vector Regression

Although support vector machines (SVM) are
a classification method, they can be extended
to regression, usually called support vector
regression (SVR, Fig. 1b). First proposed by
Vapnik in 1995, linear SVM is used for
classification by locating a hyperplane that
best different

dimensional points containing values for n

separates classes of n-

From
SVM

hyperplane that maximizes the marginal

features. among all  possible

hyperplanes, searches  for the
distance: the sum of the distances from the
closest point in each class to the hyperplane.
Each of these points is termed a support

vector.

Mathematically a training set of samples
(xl, ...,xn,yj),xi € X; with known classification
yj is used to generate a set of weights
{wy, ..., wp}. The weights are applied to an
estimate a
Yk = WiXg, +
o+ Wy Xy . Optimization reduces the number

unlabeled sample X, to

corresponding  classification

of non-zero weights to only a few
corresponding to important features critical to

choosing the separating hyperplane.

SVR can be seen as a non-linear SVM that
applies a kernel function based on the dot
product of the original data. The kernel
function projects the original data to a higher
dimension where it is separable. For example,
add

dimension z to convert a doughnutlike

a kernel function z%Z=x%+y? will

structure in 2D into linearly separable data
along the y-axis in 3D. The 3D representation
corresponds to a circle enclosing the second

class of points in the original 2d plane'.

Several standard kernel functions exist: the
polynomial kernel k(x,y) = (x-y + 1)?, the
radial basis kernel k(x,y) = exp(—ll x — y 12/
202), or the sigmoid kernel k(x,y) = tanh(kx -

y—6).

2.3 Exponential Smoothing Models
Exponential smoothing models (ESM) were
proposed shortly after World War 11", Basic
ESM is called simple or single ESM. It models
a single time series data set y4,¥5, ..., Y. This
model predicts the next observation at time
t+1 as a weighted average between the
most recent observation y; and the average
y: of the most recent observations (a
prediction y;.1 of y;11, Fig. 2a)

Vev1 =0y + (1 = 0)9;
(2)
where 6 weights the most recent observation

versus the average of the

17,19,20

previous
observations . Recursively applying this

function  exponentially  decreases  an
observation’s weight the further back in time
it occurs. The drawback of single ESM is that
predictions beyond one time point in the
future Y42, Je43, .. are the same prediction as

Ye+1

4
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(a)

(b)

Figure 2: Known (orange) and predicted (green) COVID fatalities and weekly RMSE (vertical lines) in the
US, March 11, 2020, to December 28, 2021: (a) ESM; (b) SARIMAX

Single ESM can be extended to capture trend
and seasonality by adding a trend and
Holt™
Winters®™). The seasonal component can be

seasonal component (see and

estimated in two ways: as an additive seasonal

component or a multiplicative seasonal

component. Using an additive seasonal

component, the forecasting equation is
Veen  =leth-be+ Seip-m

b =00 —Seem) + (1= 60)(Ue—1 + be_q)

by =pBUe—li—1)+ A —=B)br—

st =Y =l —bt =1+ A =V)Stm

(3)

where m denotes the length of the season (for
example, m = 12 for monthly data), 8 weights
the trend component, and y weights the
seasonal component of the model. The
multiplicative Holt-Winters model is defined
by

Veen = U +h-b)Stin-m
lp. =0¢/st—m) + (1 —0)e—1 + be_q)
by =pU—1li—1)+ A —B)b4

Yt
=y(—7t 1—
Sf y (lt_l + bt _ 1) + ( V)St—m
(4)
The main difference between the two

approaches to seasonality is how the seasonal

term is integrated. The additive model adds

the seasonal component to the main

component. To remove the seasonal
component in the level calculation, it is
subtracted. The

multiplies the seasonal component by adding

multiplicative  model
the level and trend components. Removing

this component in the level calculation
requires dividing it out of the equation.
Additional details around these and other
variations of exponential smoothing models

are found in Hyndman?' and Montgomery"’.

2.4 Autoregressive Moving Average
Models

The
average (ARIMA) model is one of the most

autoregressive  integrated moving
popular methods for analyzing time series
data. ARIMA was first proposed by Box and
Jenkins in their seminal book Time Series
The

ARIMA model combines two types of time

Analysis Forecasting and Control®.
series modeling structures: autoregressive
(AR) terms and moving average (MA) terms.
Both use data at previous time points to

predict values at the current time point.

Autoregressive Models. AR models forecast

a time series dataset based solely on a series’s
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past values (lags). For example, an AR(2)

model would be

Ve =W+ P1Yiq + P2y + €
(5)

where y,_; is the first lag of Y and y;_, is the
second lag. The coefficients ¢; represent how
much weight to assign to each lag in the
model. In AR models, the effects of a single
time point diminish as you move further back

in time.

Moving Average Models. MA models use
previous errors rather than previous response
variable values. These error lags are the
difference (or residual) between the true value
of the response variable at time t and the
prediction at t. For example, an MA(2) model
would be

Vi =w+ € — 0161 — 0261,
(6)

where €;_; is the error for time t —i,€,_; =
Ye—i — Ye-i- The coefficients 6; represent how
much weight to assign to each error lag. In MA
models, the effects of an error at a single time
point disappear if you move far enough away
from that time point.

ARIMA. In an ARIMA model, we assume the
series is stationary: the mean, variance, and
autocorrelation do not change over time?.
The data distribution depends only on the
difference in time and not the location.
Stationarity is the foundation of ARIMA
models. Without it, AR and MA models will
not produce reliable forecasts. Time series
datasets typically need to be stationary before
the AR or MA models are built. One common
approach is to replace observations y; with
the difference of d neighboring observations

Wy = y; — - — Vi_q. There are formal tests for

the usefulness of differencing to achieve
stationarity, such as the Augmented Dickey-
Fuller test or the Phillips-Perron test??.

Differencing impacts what the terms
represent, while the number of samples and
error lags define its structure. For example, if
we had a single difference d =1, then our
response variable is wy = y, — y,_4, and the
lag terms are based on this difference.
W= w+ oW+t Ppwrp — 016

———— qut—q + €

(7)
An ARIMA model is generally denoted by
ARIMA(p, d, q),

number of AR terms, q represents the number

where p represents the
of MA terms, and d represents the number of
differencing operations. An ARIMA (p,1,q)
model is shown in Egn. 7.

The ARIMA (p,d,q) model can be extended
to include additional variables that do not
depend on past values of the response
variable. These predictors are analogous to
the external predictors used in linear
regression. ARIMA models with additional X
variables are referred to as ARIMAX®. X can
be included directly in the ARIMA model

structure.
Ve= @+ Pixye+ -+ PeXpe + P1Ye1

+ A + ¢pyt—p - 91613—1 - = gqft_q + Et

(8)
The exogenous predictor variables may also
be included ahead of time in a linear
regression format, while the time series model
linear

moves over the residuals of the

regression model. An example of this would

be
Ve = Bo+ Brxye + o+ BrXpe + Z¢

=+ 1z g+t Ppzey — 0160 — - — Og€_q + €
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where z, represents the residual at time t and
Z¢_1, -, Ze—p are the lags of the residual.
These equations can be extended to include
lags for the predictor variables. This is useful
if a predictor is not related to the response
variable at the same time point. If the
predictor variable at previous time points
predicts the response variable at the current
time, then the predictor variable is referred to
as a leading indicator. An example is COVID
hospitalizations acting as a leading indicator
of COVID fatalities.

SARIMA. Seasonal ARIMA (SARIMA) is an
extension of ARIMA that considers seasonal
patterns. It does this by including seasonal
lags that occur on a seasonal cycle. For
example, for monthly data with yearly
seasonality, SARIMA uses both the regular
of ARIMA and
observations for the twelve months in a year.
SARIMA includes its own P, D, and Q terms, as
well as s, to define the seasonal length,
SARIMA(p,d,q,P,D,Q,s). SARIMA can also
handle exogenous predictor variables by
integrating with ARIMAX to form SARIMAX
(Fig. 2b).

lags lags every twelve

2.5 Decision Trees

Before discussing more complicated tree-
based models, a brief review of decision trees
is needed. A decision tree is built by
recursively splitting data into successively
These
according to predetermined conditions such
Gini

misclassification

purer subsets. splits are done

as the statistic, entropy, or

rate?®. A more statistical

approach would be to split the data using chi-

squared tests. Whatever the decision

mechanism, the searches for
subsets of the data to better predict the

response variable.

algorithm

2.6 Random Forest

One disadvantage of decision trees is that
once a split has been made, all decisions past
that point depend on that previous split. A
different set of training variables or
observations could produce a different split.
To account for this, ensembling decision trees

can provide more reliable models.

A related approach to generalizing training
data uses bootstrap samples. Here, random
samples of the dataset with replacements are
created. Replacement ensures that only a
subset of the original observations will be
present in the bootstraps. These observations
are called out-of-sample observations. Taking
many bootstrapped samples and aggregating
the resulting models (bagging) simulates
ensembling to provide a potentially better
estimate.

Random forests were proposed by Leo
Brieman in the early 2000s?”’” and are an
excellent example of bagged trees (Fig. 3a).
Many decision trees (a forest of trees) classify
or predict the response variable. In a
classification setting, each tree “votes” for the
class to which an observation belongs. In
regression, each tree provides estimated
values for an observation that are averaged

together.

Each tree in the forest is created from a subset
of observations based on the bootstrapped
samples. Each split in the tree is determined
from a random subset of predictor variables in

the dataset. In a random forest model, cross-
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validation is typically performed to optimize
the best size of the

predictor variables. Splits are determined by

random subset of

the best feature of the selected subset. One

(a)

can also tune the number of trees or the
bootstrapped sample in the forest and set
limits for when splitting can occur and how

deep each tree can grow.

(b)

Figure 3: Known (orange) and predicted (green) COVID fatalities and weekly RMSE (vertical lines) in the
US, March 11, 2020, to December 28, 2021: (a) random forest; (b) XGBoost

2.6.1 Gradient Boosting

Gradient boosted algorithms were developed
in 1996 by Freund and Schapire®. Similar to
bagging, boosting draws multiple samples
from a dataset with replacement to ensemble
multiple models. Boosted samples are not
drawn at random. Boosting assigns weights to
each sampled observation to use as a
sampling distribution.  Higher weighted
observations are more likely to be drawn.
Weights adaptively change in each round of
samples, where a weight is increased for more
Unlike

samples

difficult-to-classify ~ observations.

bagging,
sequentially to learn from mistakes in the

boosting  considers
previous model. In the first iteration, all
observations have an equal chance of being
selected using a standard decision tree.
Observations that are predicted poorly are
assigned higher weights for the following

sample in the sequence.

Gradient boosting has been shown to excel at
modeling both continuous and categorical

response variables. There are many variations
of gradient boosted algorithms: additive
boosting (AdaBoost), gradient boosted
machine (GBM), light GBM, and CatBoost for
categorical variables. One of the most
popular variations is XGBoost, developed by
Chen and Guestrin?® (Fig. 3b). Rather than
boosted data,

XGBoost uses the residuals of the previous

samples of the original
model. These models are added together to
form a final prediction.

Vi=fi() + () + -+ fn (%)
(10)

f1(X) is a function of the predictor variables to
estimate the response variable Y.f;(X),2 <
i <m does not predict Y, but instead, the
fi—1- This fitting

convergence of the

residuals from model

continues  until

predictions is achieved. Unfortunately,
XGBoost in its original form tended to overfit
the data. To help prevent this, Chen and
Guestrin?® added penalty terms to f;, revising

its structure.
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Vi = 100 + 02X + -+ nfin(X)
(11)

Table 1: XGBoost parameters and descriptions

Parameter

booster

Description

The overall structure of the model. gbtree and dart are tree-based

models applying gradient descent and tree dropout, respectively, for

optimization. gblinear uses a linear function with L1 and L2 regularization

(equivalent to LASSO and ridge regression, respectively). The default is

gbtree

n The rate the learner is allowed to learn. The learning rate is in the range

0..1, where 1 imposes no penalty, Usually, n is less than 0.3, with a

default of 0.3.
max_depth

The maximum depth limits the depth a tree can grow. Allowing trees to

grow without bounds will overfit the data. The default maximum depth is

SIX.

nrounds

The number of trees used in the final ensemble model.

There are numerous additional components
of the XGBoost algorithm that can be tuned
with
forests. Some of the most impactful options

are listed in Table 1%.

cross-validation, similar to random

2.7 Bayesian Structural Time Series

Figure 4. BSTS known (orange) and predicted
(green) COVID fatalities and weekly RMSE
(vertical lines) in the US, March 11, 2020, to
December 28, 2021

ESM was the first state space model for time

series data. Recently advances have been

introduced to better model the evolution of a
time series data set over time. Bayesian
structural time series models (BSTS) were
initially proposed by Harvey in 1989% and
further refined by Durbin and Koopman in
20023, BSTS creates a structural time series
model that captures trend and seasonality in
state equations (Fig. 4). Researchers at
Google* developed an R program that is easy
to implement and scales to large data sets.
Egn. 12 illustrates how the observed data y,
at time t is linked to the unobserved latent
state u; and 7;
Ye=He + T T €

(12)

where €, ~ N(0,0#). A transition equation is

defined for the latent state of u; and 7.
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Ut = He—q + Opq + Ut

6t = 5t—1 + Ut
S-1

Tt = _z Tt—S +Wt
s=1

(13)
where u; ~ N(0,02),v; ~ N(0,02) and w; ~
N(0,02). To fit the state space models, a
Kalman filter and Kalman smoother are used
to compute latent distributions throughout
the series®®. In addition to modeling trends
and seasonality, the algorithm developed by
Google's researcher can incorporate external
regressors.

}’t:.“t+7t+z XB + €
t

2.8 Prophet
Researchers at Facebook developed the
Prophet algorithm® to forecast a wide variety
of business problems. Prophet is similar to an
exponential smoothing or Bayesian structural
time series model, where a time series is
subdivided into separate components that are
combined.
ye=g@)+s@) +h) +e

(15)
where g(t) is a trend component, s(t) is a
periodic or seasonal component, and h(t) is a
holiday component.

The trend component uses time as a predictor
variable to develop trend lines. This trend is
broken into different neighboring subsets
using knots (change points) if needed. The
user can specify knots or allow the algorithm
to automatically choose them based on
minimizing the sum of squared errors. The

trend can be non-linear, using a logarithmic

function to generate a dampened trend

similar to exponential smoothing.

A Fourier transformation is assumed for the
seasonal component®. Fourier transformations
allow the algorithm to handle multiple
seasonal periods and lengths. By default,
Prophet assumes daily data use and includes
annual and weekly seasons. The annual

seasonal pattern uses  ten Fourier
transformation predictor variables.
2mt ] 4t 6mt
Xy = cos(5525) + 5 (555.25) + 05 (a5.23
) 20mt
Tt (365.25)

(16)

The weekly seasonal pattern uses three

Fourier transformation variables.
Xy = cos (ﬂ> + sin (ﬂ) + cos <@>

7 7 7

(17)
The 365.25 and 7 in the above equations
control the annual and weekly seasons’
lengths in days. These are only defaults and
are adjustable in the algorithm. If the data is
not seasonal, all seasonal components can be

removed.

The holiday component consists of a series of
binary intervention variables that take a value
of one on days of interest to account for
holiday effects. The Prophet algorithm has
built-in national holidays for several countries.
Users can also specify their own list of holiday
dates to be used in the model.

2.9 LSTM

Recently, the area of deep neural networks
and deep learning (DNNs and DL) have been
applied in numerous domain areas with
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noteworthy success®. Historically, deep  model has been proposed to extend CNNs
neural networks are an extension of the and RNNs using a mathematical model of

and
perceptrons from the 1940s and 50s%%.

original work on artificial neurons
Different “deep” neural network structures
contain two or more hidden layers (fully
FCNs), use

convolutional kernels to extract features at

connected networks  or
different levels of abstraction (convolutional
neural networks or CNNs), or adopt a
recursive structure to analyze sequence data
RNNs).
Generative adversarial networks (GANs) were

(recurrent neural networks or
later presented to combine two DNNs: a
generator that constructs artificial objects and
a discriminator that tries to decide whether an
object is artificial or real®. By carefully
balancing the learning rates of the DNNs, they
can act together to rapidly improve their

performance. Most recently, the transformer

0, A
(4 o)
hf 1 h(
—>
r
tanh
4
J
X

(a)

attention, the ability to encode relational
context between elements in a training

sample®.

Since time series data is an ordered sequence
of samples, RNNs are an obvious DNN to
apply. In a classic RNN, “memory” can be
maintained over a sequence of data by
providing two inputs to the deep neural
network: the current element x, in the
sequence and the hidden state h;_; of the
previous execution of the RNN (Fig. 5a). The
output o, = h; is sent in two directions. First,
o, acts as the input layer to an FCN to
calculate probabilities for predicting each
possible category. Second, h; is sent forward
to serve as the previous hidden state for the
next recurrence of the RNN.

Y

x + ’

f i t 0 .
| "4 l

o = (S [ T

(b)

Figure 5: Recurrent neural networks with previous hidden state h,_;, current sequence element x;, current

hidden state h;, previous cell state C,_;, and current cell state C;: (a) classic RNN; (b) LSTM showing the forget

gate f;, the input gate iy © C;, and the combination of long and short-term memory a(h;_1,x:) O C;

Unfortunately, there are various issues with
classic RNNs. A critical question is how far
back a classic RNN can maintain long-term
memory. Due to the vanishing gradient
problem during backpropagation of error,

classic RNNs can only “remember” a limited
number of previous steps in the input
sequence. Because of this, their memory is

often considered to be short-term only.
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LSTMs address this issue using an additional
cell state C; representing long-term memory
(Fig. 6). During each recurrence of an LSTM
RNN h;_, and x; are combined as before.
However, this result is fed through two gates:
a forget gate and an input gate. The forget
gate uses pointwise multiplication with C;_; to
determine which parts of long-term memory
to forget. The input gate uses pointwise

addition to select the parts of the current

(a)

input element to add to long-term memory
(Fig. 5b). Updated long and short-term
memory are combined using pointwise
multiplication to produce the cell’s hidden
state hy = 0(hi—1,%:) © C,. This process is
repeated over the entire input sequence,
classification error at the final step is
calculated, and the error is backpropagated
through the LSTM cell to update its weights

and biases via optimization.

(b)

Figure 6: Known (orange) and predicted (green) COVID fatalities and weekly RMSE (vertical lines) in the US,
March 11, 2020, to December 28, 2021: (a) Prophet; (b) LSTM

3 COVID Investigation
We investigate the time series algorithms by
using them to predict COVID fatalities based
on three predictors: day of the week,
confirmed COVID cases during the last week
(c1,-,€7), and the number of days since the
time series began (n). Since the day of the
week needed to be one-hot encoded to avoid
overweighting certain days, this produced a
total of fifteen exogenous variables (Table 2).
To examine the effects of different population
the

socioeconomic status, and COVID mitigation

sizes, locations throughout world,

strategies, we chose 28 separate countries for

our study.

e G7: Canada, France, Germany, ltaly,
Japan, United Kingdom, United States
e BRIC: Brazil, Russia, India, China

e African Union subset: Algeria,
Ethiopia, Egypt, Kenya, Morocco,
Niger, Nigeria, South Africa

e Asia & Oceania: Australia, New

Zealand, Philippines, South Korea
e Central America: Guatemala, Costa
Rica, Cuba

e South America: Peru, Venezuela
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Table 2: COVID fatality exogenous predictor variables
Date ‘M Tu WTh F SaSu ¢ ¢ € ¢ ¢ € € n
03/11/20‘ 0O 01 000 O O 0 0 0 0 0 0 0
03/12/20‘ 0 00 10O0O0 O 0 0 0 0 0 32 1
03/13/20‘ 0 00 010 O0 O 0 0 0 0 32 38 2
12/28/21 | 0O 1 0 0 0 0 0 1217 1229 1318 1392 1425 1476 1509 656

Daily COVID data for March 11, 2020, through
December 28, 2021, was obtained from the
John Hopkins University Center for System
Science Engineering COVID repository”*.
The data was divided into 94 weekly blocks.
We started by using the first three weeks of
data to predict fatalities for the fourth week
and compare them to known fatalities.
Average root mean squared error (RMSE) was
used to evaluate the accuracy of the
predictions. We then use the first four weeks
to predict the fifth week, the first five weeks to
predict the sixth, and so on, ending by using
the first 93 weeks to predict the 94th. This
approach produced 91 prediction weeks for
each of the 28 countries we tested.

The day of the week and n (days since March
11, 2020) were determined directly during
prediction. ¢y, ..., c; needed to be estimated,
however, since the predictions could not be
based on known case counts. To do this, we
used confirmed cases from the three weeks
prior to the prediction period to “estimate”
cases during the prediction week using
XGBoost.
accuracy and reasonable execution time for
predicting COVID fatalities. Confirmed case
predictions were needed for linear regression,
LSTM, random forest, SVR, and XGBoost?.

XGBoost was selected for its

We started our analysis by investigating
whether RMSE was significantly different
across ML methods. Since we could not
guarantee constant variance, we calculated
the more conservative Kruskal-Wallis analysis
of variance (ANOVA). For all countries
211.96 < H(8) < 527.34,p < 0.001.

this, we collapsed results across country to

Given

compute a single test for the difference in
RMSE over ML method. The result was
H(8) = 2797.12,p = 0.0. We

continued by performing post hoc pairwise

significant,

significance tests using Dunn'’s algorithm. Fig.
7 uses a heatmap to identify significant
pairwise differences. Cells are colored dark
red, light red, pink, and grey for p<
0.001,p < 0.01,p < 0.05, and p = 0.05,
respectively. The cell’s row identifies which of
the two methods outperformed the other. For
example, the pink cell with p = 0.024 occurs
in the ESM row and the BSTS column. This
indicates a significantly better RMSE for ESM
versus BSTS.
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Linear Random
BSTS ESM Regression LSTM Prophet Forest SARIMAX SVR XGBoost Significance
S’zgssg’““ 1.000 0.024 0.000 0.000 0.000
ESM (RMSE 0024 1.000 0.000

159.55)

Linear Regression

(RMSE: 2741.31) .00

0.000 0.000

LSTM (RMSE
565.05)

Prophet (RMSE
1540.64)

Random Forest
(RMSE: 957.38)

SARIMAX (RMSE
60.39)

SVR (RMSE:
4321.85)

0.000 0.000 0.000 0.000 0.000

XGBoost (RMSE
892.27)

0.000 0.000

0.000 0.000

0.000

0.003

0.000 0.001

1.000 0.000 0.690

1.000
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Figure 7: Heatmap of pairwise significant RMSE differences by ML method: red for p < 0.001, light red for

0.000

0.690 0.000 1.000

p < 0.01, pink for p < 0.05, grey for p = 0.5, the number in each cell represents Dunn'’s p-value

Examination of the heatmap shows that
SARIMAX outperformed all other methods.
ESM outperformed all methods except for
SARIMAX. LSTM also showed numerous
significant RMSE results. Since the method on
a red or pink cell’s column has a significantly
higher RMSE, we can look down the columns
to identify poor-performing techniques.
Perhaps not surprisingly, linear regression and
SVR produced significantly higher RMSEs than
all other methods. Prophet also showed

relatively poor performance.

The accuracy pattern across all countries does
not extend to individual countries verbatim.

Figures 8a-d show heatmaps for Australia,

China, New Zealand, and the United States.
Each heatmap shows a pattern that differs
from the others. For Australia, BSTS and ESM
perform best, with SARIMAX and LSTM
producing good results (Fig 8a). In China and
New Zealand, however, BSTS performs poorly
(Fig. 8b, c). Performance could be due to the
few fatalities reported in these countries. Most
average RMSEs in China and New Zealand for
each method, shown on the vertical axis, are
still comparable to Australia and the United
States. BSTS outperforms all other methods in
the United States, with SARIMAX producing
significantly better accuracy than all methods
except BSTS (Fig. 8d). ESM and LSTM also

perform well.
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Figure 8: Heatmap of pairwise significant RMSE differences by ML method: red for p < 0.01, pink for
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(d) United States

p < 0.05, grey for p = 0.5, the number in each cell represents Dunn'’s p-value; (a) Australia; (b) China;

(c) New Zealand; (d) United States

Tree-Based Prediction Patterns. A closer
inspection of the random forest and XGBoost
prediction graphs shows a weekly stair-step
pattern (Fig. 3). Both algorithms predicted
identical or nearly identical fatalities for each
prediction week, anchored at the last known
fatality value in the training set. Further
investigation revealed this is due to the type
of data in the COVID dataset, specifically the
These

monotonically over time. Because of this,

confirmed case counts. increase

known confirmed case counts in the training

set will always be lower than estimated
confirmed case counts in the test set. Since
random forest and XGBoost never saw this
level of confirmed case count during training,
they default to predicting the highest target
fatality value that was seen. Confirmed case
counts outside the training set range explain
why the seven predicted fatality values match

the highest fatality value in the training set.

Tree performance demonstrates an important

point when using ML algorithms on time
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series data. Depending on the pattern of the
data being analyzed, the direct application of
certain ML techniques may not generate
accurate results. In this case, we would need
to enforce stationarity on both the training
and test sets to improve the performance of
tree-based algorithms. However, if this was
done, it could be argued that other ML
algorithms  that already do this
(SARIMAX) or do not need this (ESM) are
better choices.

either

Outlier Prediction Accuracies. Although
both random forest and XGBoost struggled to
predict fatalities due to the monotonically
increasing nature of confirmed case counts,
this is at odds with the strong performance
shown by both algorithms for New Zealand

(a) New Zealand

and China (Fig 8b-c). Why are random forest
and XGBoost performing well for these two
countries? The answer lies in the number and
reporting pattern of their fatalities. Fig. 9a
shows New Zealand's very low COVID fatality
rate, resulting in a flat curve with only a few
upward shifts. In this environment, the flat
predicted fatality rates produced by random
forest and XGBoost match the known case
counts, producing accurate results. China also
has a relatively flat fatality rate, but it is due to
the reporting granularity and China’s “zero
COVID" policy. Again, random forest and
XGBoost predict flat fatality patterns well. This
highlights how patterns within the time
window under examination can favor certain

ML algorithms over others.

(b) China

Figure 9: Random forest known (orange) and predicted (green) COVID fatalities and weekly RMSE (vertical lines) in

(a) New Zealand; (b) China

3.1 Execution Time

The time to run each method may need to be
RMSE
accuracy. Fig. 10a shows the time to run for all
28 countries by ML (2,548
individual runs per country). The relative

balanced against the method’s

technique

differences are most important, since the

compute environment affects execution.
Times range from 11 seconds for linear
regression to 13h 1m 38s for SARIMAX, a
4263x difference. Kruskal-Wallis ANOVA and

Dunn’s post hoc test confirmed significant

16
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pairwise differences in runtime by ML method
(H(7) = 214.01,p < 0.001). Fig 10b shows
pairwise significant differences using the same
heatmap setup as before but comparing
runtimes rather than average RMSE. Red in a

46,898

method’s row shows it was faster with p <
0.001 versus the corresponding column
method. Light red and pink correspond to p <
0.01 and p < 0.05, respectively.
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Figure 10: Time in seconds for each algorithm to complete 93 predictions over 28 countries 1 : (a)

time; (b) methods with statistically significant time differences: red for much faster, light red for faster,

pink for moderately faster

For the COVID data we tested, we conclude
that ESM offers the best tradeoff between
accuracy and runtime, although ESM’s RMSE
will increase if we predict out farther than one

week.

Another question is whether longer training
sets produce more accurate results. A Dickey-
Fuller stationarity test on the sequence of
RMSEs for each country should identify this as
a non-stationary sequence due to the non-
stationary long-term mean. Follow-on linear
regression would show a negative slope for
decreasing RMSEs or a positive slope for

increasing RMSEs. Results showed no obvious

advantage to longer training sets for the
COVID data, however. Fig. 11 shows the
number of non-stationarity ML sequences for
each country we tested: red for a positive
average u, and blue for a negative average p.
For example, Russia had an overall slope for
non-stationary sequences of p = 72.78 with
six rising slopes (LSTM, linear regression,
Prophet, random forest, SVR, and XGBoost),
no falling slopes, and by inference, three
(BSTS, ESM, and

stationarity ~ slopes

SARIMAX).
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Figure 11: Stationarity by country: average slope for non-stationary ML technique u in the center of each country,

followed by the number of ML techniques with rising (up-arrow) and falling slope (down-arrow)

4 Meteorological Investigation

Following our study of COVID data, we
decided to examine time series ML algorithms
for predicting meteorological data. We chose
meteorological data for several reasons:

e To investigate the generality of our
findings for a different domain,

e to study whether a fixed training
window produced results similar to the
monotonically  increasing  training
window for the COVID data,

e to see if historical temperature trends
could be predicted with an accuracy
comparable to current temperature
trends (i.e., are the effects of climate
change visible within time series
prediction), and

to work with data, particularly
temperature data, which is a
widespread “default” used to explain
time series analysis since, at the
proper granularity, it contains well-
defined trends and seasonality.
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Figure 12: Known (orange) and predicted (green) weekly temperature medians using SARIMAX for the
United States from January 7, 1970, to August 11, 1982

Since our interest was in generality and
training set size, we focused on only one
country, the United States. Choosing the
United States also simplified data collection
since meteorological data is readily available
from the National Oceanic and Atmospheric
Administration (NOAA, https://www.noaa.gov).
We initially selected daily data, but this
with
significant noise and no apparent seasonality.

produced a temperature pattern
Because of this, we decreased the granularity
to weekly steps. The data was still noisy but
did exhibit the trend and seasonality we
wanted (Fig. 12). Weekly data had the added
allowing us to query

approximately fourteen years of data to

advantage of

generate 91 executions per ML technique,
identical to the number of executions for the

COVID data. Fourteen years provides an

extended timeframe to capture seasonal

patterns.

From this starting point, we selected two time
windows to investigate. The historical time
window runs from January 7, 1970, to August
11, 1982. The current time window contains
the most recent NOAA data, from November
16, 2009, to July 2, 2022. To study the effects
of short, fixed-length time windows, each
execution of an ML algorithm used three
weeks of data to predict the upcoming fourth
week. Constant training set length means,
unlike the COVID data, we used the first three
weeks from our dataset to predict the fourth
week’s data, weeks two through four to
predict the fifth week's data and so on,
finishing by using weeks 91 through 93 to
predict the 94th week’s results.
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We used two exogenous variables: maximum
average weekly temperature and month, to
the weekly
temperature. As with the COVID data, the
month of the year was one-hot encoded to

predict median  average

avoid overweighting months later in the year.
XGBoost was again used to generate the
predicted  maximum  average  weekly
temperature over the test window. We ran the
same ML algorithms used during the COVID
experiments, with median temperature RMSE
(in Fahrenheit) as a measure of accuracy. A

Kruskal-Wallis ANOVA showed a significant
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difference in RMSE between ML methods,
H(8) = 333.61,p < 0.001  and  H(8) =
211.63,p < 0.001 for the historical and current
time periods, respectively. Dunn’s post hoc
analysis identified pairs of methods with
significantly different RMSE. Fig. 13 shows
significance tables for historical and current
the
heatmaps (Fig. 13a, b). For comparison, the

temperature medians in top two
significance heatmap for the United States
COVID data is shown in the bottom image

(Fig. 13¢).
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Figure 13: Pairwise significance heatmaps for the United States: (a) median weekly temperatures,
January 7, 1970, to August 11, 1982; (b) median weekly temperatures, November 16, 2009, to July
2, 2022; (c) daily COVID fatalities, March 11, 2020, to December 28, 2021
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XGBoost also performed comparatively  versus current temperature predictions (Fig.
better on historical versus current data. 14a) and current versus historical temperature

SARIMAX again performed best on both

datasets. From a statistical significance
perspective, for historical data SARIMAX
performed best, SVR,

random forest, and XGBoost performed well,

linear regression,
and LSTM and Prophet performed poorly. For
data  SARIMAX

regression and
Prophet performed poorly, and the remaining

current temperature

performed best, linear
methods performed comparably.
To conclude, we conducted a statistical
performance analysis on historical versus
data. Kruskal-Wallis
difference in

current temperature
showed a  significant
RMSE, H(8) = 887.57,p ~

hoc probabilities were calculated for historical

0.00. Dunn’s post

B

st 30
-

Ee
22

vvvvv HHHHIEHHI
(a)

predictions (Fig. 14b). As before, red, light
red, and pink represent p < 0.001,p < 0.01,
and p < 0.05, respectively. For the heatmaps
in Fig. 14, the diagonal is most important
since it compares performance for the same
ML method: historical versus current in Fig.
14a and current versus historical in Fig. 14b.
All other significant pairwise results are shown
in dark grey to identify them but to reduce
their emphasis versus results along the
diagonal. Fig. 14 confirms that historical
temperature predictions were significantly
more accurate using linear regression,
random forest, SARIMAX, SVR, and XGBoost.
In no case were -current temperature
predictions significantly more accurate than

their historical counterparts.
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Figure 14: Pairwise significance heatmaps for historical versus current temperature predictions: (a)

1970 versus 2009, rows represent historical results, columns represent current results; (b) 2009 versus

1970, rows represent current results, columns represent historical results

5 Summary of Results

Results from our investigation of machine
learning techniques used for time series
prediction showed that accurate performance

could be achieved, even for short training

windows (e.g., three weeks of training to
predict one week into the future.) For the
COVID data, the average per day RMSE was
77 cases across all 28 countries tested using

SARIMAX. For  historical and current
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temperatures, the average per day RMSE for
the United States was 1.54° and 3.06° using
SARIMAX, respectively.

A summary of our results includes the
following conclusions.
1 The domain and time window within
the domain can influence the choice of
ML  prediction  algorithm  since
different algorithms are better or
worse at capturing different types of
time series patterns.

2 Certain algorithms can perform poorly
if their training set does not include
examples of exogenous variables
contained in the test set (e.g., random
forest and XGBoost).

3 Time permitting, SARIMAX produces
high-quality results across various
domains and time windows.

4 For the smooth, monotonically
increasing COVID fatality data, ESM
performed comparably to SARIMAX
but was two orders of magnitude
faster.

5 For high variance, high temporal
frequency temperature data, methods
like linear regression, SVR, random
forest, and XGBoost can produce
significantly better accuracy than
methods like LSTM and Prophet.

6 Five of the nine algorithms we tested
(linear regression, random forest,
SARIMAX,  SVR, XGBoost)

produced significantly less accurate

and

temperature predictions for current
versus historical
Although  further

needed to determine precisely why

temperatures.

investigation s

this is, it suggests more randomness in
the temperature patterns, something

no algorithm can adjust for.

6 Conclusions

An important finding from our studies is that
there is no obvious “one size fits all” method
to apply. This choice will depend on the
domain in question and the time window
within that domain since both can affect the
Different

techniques can be better or worse for certain

response  variable  patterns.
patterns. For example, ESM did well with the
smoothly changing COVID fatalities but was
high
frequency changes in the median temperature

much less accurate for temporal
values. Execution cost is also a factor. Time
permitting, SARIMAX will usually generate
high-quality results, but at the cost of
runtimes needed to

significantly longer

identify optimal input parameters.

ltems for future work are numerous, but three
are being prioritized. First, we are curious to
see if more recent supervised ML methods
like transformer-based deep learning produce
accurate time series predictions®. These new
deep learning structures are replacing RNN
LSTMs
mechanisms to choose where to focus their

since  they use self-attention
efforts over a data sequence rather than
processing items in the sequence in the order
they occur. Second, we would like to test the
ML techniques on additional domains to see
whether specific time series patterns favor
particular approaches. This is similar to how
high temporal frequency data was better
managed by the tree and linear methods

versus BSTS and ESM. Third, we plan to
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investigate further whether differences in of climate change on meteorological
prediction accuracy can be used to highlight conditions.

changes in real-world patterns, like the effects
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