

Published: April 30, 2023

Citation: Malik P, Zergham A., et al., 2023. Utilization of Therapeutic Interventions for Coronavirus Disease-2019 (COVID-19) Hospitalized Patients and Emerging Treatment Possibilities from Clinical Trials: A Systematic Review and Meta-Analysis, Medical Research Archives, [online] 11(4). https://doi.org/10.18103/mra.v 11i4.3673

Copyright: © 2023 European Society of Medicine. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. DOI

https://doi.org/10.18103/mra.v 11i4.3673

ISSN: 2375-1924

REVIEW ARTICLE

Utilization of Therapeutic Interventions for Coronavirus Disease-2019 (COVID-19) Hospitalized Patients and Emerging Treatment Possibilities from Clinical Trials: A Systematic Review and Meta-Analysis

Preeti Malik*, Azka Zergham*, Lakshmi Saravanan, Neel Patel, Yasmeen Kerakhan, Shamima Somi, Sanchitha Nagaraj Honganur, Aelia Akbar, Pragya Jaiswal, Aran Deol, Benedict Francis, Deep Mehta, Richa Jaiswal, Janice Gabrilove, and Urvish Patel

*Equally contributing first authors

Author Affiliations:

Preeti Malik, MD, MPH, Department of Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Azka Zergham, MBBS, Department of Internal Medicine, Larkin Community Hospital, FL, USA.

Lakshmi Saravanan, MD_(c), Department of Internal Medicine, American University of Antigua, Jabberwock Rd, Osbourn, Antigua & Barbuda.

Neel Patel, MBBS, Department of Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Yasameen Kerakhan, MBBS, Department of Internal Medicine, Abrazo Central Campus, Phoenix, AZ, USA.

Shamima Somi, MD, Department of Internal Medicine, Grand Rehabilitation and Nursing Home, Great Neck, NY, USA.

Nagaraj Sanchitha Honganur, MBBS, Department of Internal Medicine and Cardiology, University of Illinois, Chicago, USA.

Aelia Akbar, MD, MPH, Department of Internal Medicine, Loyola University, Chicago, IL, USA.

Pragya Jaiswal, MD, Department of Internal Medicine, Medical University of South Carolina, Charleston, SC, USA.

Aran Deol, MD, Department of Internal Medicine, Swedish Covenant Hospital, Chicago, IL, USA.

Benedict Francis, MD, Department of Internal Medicine, Jackson Park Hospital, Chicago, IL, USA.

Deep Mehta, MD, MSCR, Department of Clinical Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Richa Jaiswal, MD, Department of Internal Medicine, Medical University of South Carolina, Charleston, SC, USA.

Janice L. Gabrilove, MD, FACP, Department of Internal Medicine and Oncological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, NY, USA,

Urvish Patel, MD, MPH, Department of Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Corresponding author:

Preeti Malik, MD, MPH Department of Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy PI, New York, NY 10029, USA. Email: <u>pmalik.ma@gmail.com</u> ORCID: <u>0000-0002-9427-0225</u>

ABSTRACT

Background and Objective: Few small observational studies have described various therapeutic interventions utilized in coronavirus disease 2019 (COVID-19) patients based on single/multi-center experiences across the globe. Understanding the utilization of available and possible treatments to curb the COVID-19 pandemic is paramount. We aimed to identify the prevalence and diseaseassociated utilization of specific therapeutic reagents in hospitalized COVID-19 patients as a function of severity status.

Methods: In systematic review and meta-analysis, extracted data on treatments utilized and severity of COVID-19 hospitalized patients from observational studies using PRISMA guidelines from December 1, 2019 to August 20, 2020. The pooled prevalence and odds of treatment utilization were obtained, and created forest plots using random-effects models.

Results: 29 studies with 8570 COVID-19-positive patients were included. Higher odds of the utilization of steroids (pooled OR:4.47; 95%Cl:3.18–6.28; p<0.0001), antibiotics (3.1;1.81–5.30; p<0.0001), and IV Immunoglobulin (IVIG) (3.76;2.11–6.72; p<0.00001) was observed in patients with severe disease. No association of remdesivir (initially administered via clinical trials and subsequently FDA-approved during this study period), lopinavir/ritonavir, or hydroxychloroquine (HCQ) treatment with the severity of disease was observed.

Conclusion: Higher utilization of steroids, lopinavir/ritonavir, antibiotics, hydroxychloroquine (HCQ), and IV Immunoglobulin (IVIG) was observed in severe COVID-19 patients. Due to limited studies on remdesivir, its accurate utilization could not be delineated. Currently, no Level A evidence favoring single-drug treatment for COVID-19 exists, and trials are needed of combination therapy to evaluate efficacy on the survival outcome.

Keywords: COVID-19, 2019-nCoV, Corticosteroids, Lopinavir/ Ritonavir, Hydroxychloroquine, Immunoglobulins, Remdesivir, and SARS-CoV-2, mortality, invasive mechanical ventilation

INTRODUCTION

The 21st century has experienced the emergence of three epidemics: severe acute respiratory syndrome coronavirus (SARS-CoV) (2003), Middle East respiratory syndrome coronavirus (MERS-CoV) (2012), and in late 2019 severe acute respiratory syndrome coronavirus (SARS-CoV-2). These viruses belong to the coronaviridae family with a positive single-stranded RNA genome ¹. After emerging in China, the Coronavirus disease 2019 (COVID-19) has spread throughout the world. It was declared a global pandemic by World Health Organization (WHO) on 11 March, 2020. As of December 29, 2020, a total of 81.9 million COVID-19 cases were reported, with 1.7 million deaths ².

The continuing spread of COVID-19 remains a public health emergency of international concern. Although measures to fight this global pandemic are underway, there is no drug with proven efficacy to cure the disease. Many antiviral reagents, which

were previously developed as treatments for outbreaks of similar viral infections such as Severe acute respiratory syndrome (SARS), Middle East Respiratory Syndrome (MERS), an Acquired immunodeficiency syndrome (AIDS), and malaria, are being used to treat COVID-19¹. Several studies report usage of individual drugs in COVID-19 affected patients. The incident use of corticosteroids ranges from 18.4 to 86.8%, antivirals not limited to remdesivir/lopinavirritonavir ranges from 35-99%, antibiotics from 58-100%, IVIG from 13.1 to **38.5**% ³⁻⁷. Hydroxychloroquine was reportedly used in 73.6-85.6% of patients in some studies ^{4, 8, 9}. However, for all potentially fatal viral infections, including COVID-19, single therapies do not demonstrate efficacy alone in trials, and we can expect that drugs used in combination would offer the only hope of demonstrating efficacy for the outcome of mortality.

We attempted to describe and delineate current therapeutic approaches employed and the clinical context in which they are utilized to treat COVID-19, including antivirals, anti-inflammatory medications, antimalarial drugs, and antibiotics. The current literature, in particular, does not provide an in-depth systematic report on the utilization of all therapeutic interventions, both clinically available and those under investigation, employed in COVID-19 hospitalized patients. In the absence of established prescribed guidelines, such a resource could serve as a reference and framework for the healthcare community at large. For clinically available reagents, we conducted a meta-analysis to evaluate their utilization in the treatment of COVID-19 and the severity of the disease in which they were utilized. For reagents under active investigation, we conducted a comprehensive review of clinical trials underway to evaluate the safety and efficacy of novel treatment interventions for COVID-19.

METHODS

Primary Aim

The aim was to evaluate the severity-based prevalence and odds of specific therapeutic reagent utilization in hospitalized COVID-19 patients. COVID-19 was confirmed in individual studies by reverse transcription PCR, antibody testing, and symptoms.

We defined the severity of the disease as invasive mechanical ventilation (IMV) utilization, oxygen saturation<90%, intensive care unit (ICU) admission, and in-hospital mortality.

Search strategy and selection criteria

We followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement ¹⁰ and MOOSE checklist ¹¹ from December 1, 2019 to August 20, 2020. The search engine used were PubMed, Web of Science, Scopus, and medRxiv for observational studies that Figure 1: Flow diagram of literature search and study selection process of COVID-19 disease severity and treatment Utilization. described the treatment and severity of COVID-19 patients following keyword/MESH terms: (COVID-19) OR coronavirus OR SARS-CoV-2 OR 2019nCoV. We included studies which have reported on both treatment and severity of COVID-19 hospitalized patients. Studies only reporting treatment utilization for individual patients employing descriptive statistics were specifically not included. Case reports, case series, and non-English literature were excluded. Figure 1 describes the literature search and study selection process.

Study selection and Data Collection

Articles were initially screened by titles and abstracts to assess for relevance, and those articles with information on the treatment and severity of COVID-19 patients were retrieved. Studies reporting disease severity were selected for quantitative analysis. Preeti Malik (PM) and Deep Mehta (DM) screened all identified studies independently, and eligibility was decided bases on full-texts assessments to decide eligibility. Any disagreement was resolved through consensus with a third author, Urvish Patel (UP).

From the included studies, we extracted steroids, antibiotics, lopinavir-ritonavir, remdesivir, Hydroxychloroquine (HCQ), intravenous immunoalobulin (IVIG) and disease severity. Details on disease severity like, IMV vs no-IMV use, oxygen saturation <90% vs >90%, ICU vs. non-ICU admission, in-hospital mortality vs discharged alive and severe vs non-severe disease were collected in excel sheet by two authors (PM and DM) in consensus with a third author (UP). Table 1 describes individual study characteristics including the following details: first author's last name, publication month and year, country of origin, sample size, study design, disease severity and treatments.

Figure 1: Flow diagram of literature search and study selection process of COVID-19 disease severity and treatment utilization.

Table 1: Study characteristics, outcomes and Therapeutic Interventions used in individual study.

Study	Country	Sample size (N)	Mean/Me dian age (years)	Males n (%)	Study design	Outcomes	Drugs
Huang et al., Jan 2020 ³²	China	41	49	30 (73.2)	Prospective single-center	ICU vs. Non- ICU	Steroids Antibiotics
Guan et al., Feb 2020 ³³	China	1099	47	637 (58)	Retrospective multi-center	Severe vs. Non-severe*	Steroids Antibiotics IVIG

Medical Research Archives

Utilization of Therapeutic Interventions for Coronavirus Disease-2019 (COVID-19) Hospitalized Patients and Emerging Treatment Possibilities from Clinical Trials

Wang et al., Feb 2020 ³⁴	China	138	56	75 (54.3)	Retrospective single-center	ICU vs. Non- ICU	Steroids
Yang et al., Feb 2020 ³⁵	China	52	59.7	35 (67.3)	Retrospective single-center	Survivor vs. Non-survivor	Steroids Antibiotics IVIG
Mo et al., Mar 2020 ³⁶	China	155	54	86 (55.5)	Retrospective single-center	General vs. Refractory ^{##}	Steroids IVIG
Ruan et al., Mar 2020 ³⁷	China	150	67 (died) 50(dischar ged)	102 (68)	Retrospective multi-center	Died vs. Discharged	Steroids Antibiotics
Wang et al., Mar 2020 ³⁸	China	69	42	32 (46.4)	Retrospective single-center	SpO2<90 vs. SpO2>=90	Steroids Antibiotics
Wu et al., Mar 2020 ³⁹	China	201	51	128 (63.7)	Retrospective single center	Without ARDS vs. With ARDS	Steroids Antibiotics
Zhou et al., Mar 2020 ⁴⁰	China	191	56	119 (62.3)	Retrospective multi-center cohort	Survivor vs. Non-survivor	Steroids Lopinavir- ritonavir Antibiotics IVIG
Chen et al., Mar 2020 41	China	21	56	17 (80.9)	Retrospective single-center	Severe vs. Moderate**	Steroids Antibiotics IVIG
Colaneri et al., Apr 2020 42	ltaly	44	67.5	28 (63.6)	Retrospective single-center	Severe vs. Mild***	Antibiotics
Zhao et al, Apr 2020 ⁴³	China	91	46	49 (53.8)	Retrospective single-center	Severe vs. Mild¶	Steroids Lopinavir- ritonavir Antibiotics IVIG
Goyal et al., Apr 2020 ⁹	USA	393	62.2	238 (60.6)	Retrospective multi-center	IMV vs. No IMV	Steroids Lopinavir- ritonavir HCQ Remdesivir
Wan et al., Apr 2020 ⁴⁴	China	135	47	72 (53.3)	Retrospective single-center	Severe vs. Mild ^{**}	Steroids Antibiotics
Zheng et al., May 2020 ⁴⁵	China	34	66	23 (67.6)	Retrospective single-center	IMV vs. No IMV ¶¶	Steroids Antibiotics IVIG
Hong et al., May 2020 ⁴	South Korea	98	55.4	38 (38.8)	Retrospective single-center	ICU vs. Non- ICU	Steroids Lopinavir- ritonavir HCQ
Huang et. al., May 2020 ⁷	China	202	44	116 (57.4)	Retrospective multi-center	Severe vs. Non-severe**	Steroids Lopinavir- ritonavir

							Antibiotics IVIG
Cao et al., Jun 2020 ⁴⁶	China	80	53	38 (47.5)	Retrospective single-center	Severe vs. Non-severe**	Steroids
Deng et al ., Jun 2020 ⁴⁷	China	65	32.5(Seve re+Critical), 35 (Moderate)	36 (55.4)	Retrospective cohort study	(Severe+Critic al) vs. Moderate**	Steroids Antibiotics IVIG
Mikami et al., Jun 2020 ⁸	USA	2820	62(survivo r), 76(Non- survivor)	1611 (41.2)	Retrospective multi-center cohort	Survivor vs. Non-survivor	Steroids Lopinavir- ritonavir HCQ Remdesivir
Shahriarirad et al., Jun 2020 ⁴⁸	Iran	113	53.75	71 (62.8)	Retrospective multi-center	Severe vs non- severe*	Steroids Antibiotics
Wang et al., Jun 2020 ⁵	China	275	49	128 (46.5)	Retrospective single-center	Severe vs non- severe**	Steroids
Zhang et al., Jun 2020 ⁴⁹	China	221	55	108 (48.9)	Retrospective single-center	Severe vs non- severe**	Steroids
Gregoriano et al., Jun 2020 ⁵⁰	Switzerl and	99	67	62 (62.6)	Retrospective cohort study	Severe vs non- severe**	Lopinavir- ritonavir Antibiotics HCQ
Li et al., Jul 2020 51	China	548	60	279 (50.9)	Retrospective single-center	Severe vs non- severe**	Steroids Lopinavir- ritonavir IVIG
Xu et al., Jul 2020 ⁵²	China	239	62.5	143 (59.8)	Retrospective multi-center	Survivor vs. Non-survivor	Steroids Lopinavir- ritonavir Antibiotics IVIG
Zhang et al., Jul 2020 ⁵³	China	788	55(Severe),70(Critic al), 37.5(Mild)	407 (51.6)	Retrospective multi-center	(Severe+Critic al) vs. Mild	Lopinavir- ritonavir IVIG
Ferguson et al., Aug 2020 ⁵⁴	USA	72	60.4	38 (52.8)	Retrospective multi-center	ICU vs. Non- ICU	Steroids Lopinavir- ritonavir Antibiotics HCQ Remdesvir
Yang et al., Aug 2020 ⁵⁵	China	136	56	66 (48.5)	Retrospective multi-center	(Severe+Critic al) vs. Mild	Steroids Lopinavir- ritonavir

Total 8570 * Using the American Thoracic Society guidelines for community-acquired pneumonia; **World Health Organization and the National Health Commission of China interim guidelines defined disease								
* Using the American Thoracic Society guidelines for community-acquired pneumonia; **World Health Organization and the National Health Commission of China interim guidelines defined disease								
Total 8570 * Using the American Thoracic Society guidelines for community-acquired pneumonia; ***World Health Organization and the National Health Commission of China interim guidelines defined disease severity and improvement as follows: Mild cases: The mild clinical symptoms and no pneumonia in imaging. Moderate cases: symptoms like fever and respiratory tract symptoms, etc., and pneumonia can be seen in imaging. Severe cases: Meeting any of the following — respiratory distress, respiratory rate ≥ 30 breaths/min; SpO2 ≤ 93% at rest; and PaO2/FIO2 ≤ 300. Patients with >50% lesion progression within 24 to 48 hours. Critical/extremely severe cases: if they have one of the following: respiratory failure requiring mechanical ventilation, shock, and other organ failure requiring ICU treatment. ***Patients were included in the mild disease group if they did not need high-flow oxygen support and in the severe disease group if they were provided with high-flow oxygen support; #Severe disease was defined as a composite outcome of acute respiratory distress syndrome (ARDS), intensive care unit care, or death. ARDS was diagnosed according to the Berlin definition.9 SARS-CoV-2 infection was confirmed by real-time reverse transcription polymerase chain reaction assay of nose and/or throat swab samples. ##General COVID-19 was defined according to following criteria:(i) obvious alleviation of respiratory symptoms (e.g., cough, chest distress and breath shortness) after treatment; (ii) maintenance of normal body temperature for ≥3 days without the use of criticosteroid or antipyretics; (iii) improvement in radiological abnormalities on chest CT o								

HCQ: Hydroxychloroquine

Statistical Analysis

We have used Review Manager version 5.4 (The Nordic Cochrane Centre. The Cochrane Collaboration, Copenhagen, Denmark) for the meta-analysis. The pooled prevalence of available reagents was calculated. The Mantel-Haenszel formula was used for obtaining odds ratios (ORs) and its 95% confidence intervals (95%CI) for the treatment utilization based on the severity of COVID-19 patients in each study, irrespective of heterogeneity. The I² statistic was used to assess statistical heterogeneity, and a value >50% was considered significant heterogeneity. A 2-tailed pvalue of < 0.05 was considered statistically significant. Publication bias was assessed visually using funnel plots. We used The Newcastle-Ottawa Scale (NOS) to assess the quality and bias in the which rates included studies, selection, comparability, and outcome 12 (Table 3). Most studies were assessed to be of moderate quality.

Sensitivity analysis was performed to assess the effect of publication bias and heterogeneity by excluding outlying studies on the funnel plot.

Secondary Aim

To conduct a comprehensive review of clinical trials underway in different phases being evaluated for their efficacy and safety in the treatment of COVID-19 patients.

We searched for COVID-19 therapeutic trials using the clinical trials.gov repository. We identified and categorized the trials into completed, actively recruiting, active- but not recruiting (closed to enrollment), terminated, and suspended categories. The information on the trial identification number, country, phase, drug details, outcomes measured, and current status of the trial as of October 15, 2020 have been collected and tabulated.

Table 2 describes the trial identification number,country, phase, drug details, outcomes measured,and current status of trial as of October 15, 2020of all the completed trials.

Tuble 2. D	ogs in piper		vicica cililical illais) illeoleili	
ClinicalTri als.go∨ Identifier	Country	Phase	Drug name	Outcome measured
NCT0432 1421	Italy	N/A	Hyperimmune plasma	Death time to extubation length of intensive care unit stay time to CPAP weaning viral load immune response
NCT0454 2694	Russia	Phase 3	Favipiravir Drug: Standard of care	Time to clinical improvement Rate of clinical status improvement
NCT0434 3768	Iran	Phase 2	HCQ Lopinavir/Ritonavir Interferon Beta-1A Interferon Beta-1B	Time to clinical improvement Mortality SpO2 Improvement Incidence of new mechanical ventilation use Duration of hospitalization
NCT0428 0705	USA	Phase 3	Placebo Remdesivir	Time to Recovery
NCT0438 1884	Argentina	Phase 2	lvermectin plus standard care standard care.	Reduction in SARS-CoV-2 viral load
NCT0431 5298	USA	Phase 2 Phase 3	Sarilumab vs. Placebo	Percent change in C-reactive protein (CRP) levels in patients with serum IL-6 level greater than the upper limit of normal
NCT0438 0519	Russia	Phase 2 Phase 3	Biological: RPH-104 80 mg Drug: Olokizumab 64 mg Drug: Placebo	Changes of patients' clinical status on a 6 points ordinal scale over time
NCT0456 9188	ltaly	Phase 2	Biological: Convalescent plasma	Death Viral load
NCT0430 4053	Spain	Phase 3	HCQ Standard Public Health measures	Clinical and virological outcome in exposed contacts.
NCT0439 2414	Russia	Phase 2	COVID-19 convalescent plasma Standard plasma	The proportion of patients with the normal body temperature (37.2C) at the day 1, 2, 3, 4, 5, 6, 7 after the start of therapy.
NCT0433 1795	USA	Phase 2	Tocilizumab	Clinical response Overall survival Survival to hospital discharge Progression of COVID-19 pneumonitis
NCT0429 2899	USA	Phase 3	Remdesivir Standard of Care	The OR for Improvement on a 7-point Ordinal Scale: Day 14.
NCT0429 2730	USA	Phase 3	Remdesivir Standard of Care	The OR for Improvement on a 7-point Ordinal Scale: Day 11.
NCT0424 4591	China	Phase 2 Phase 3	methylprednisolone therapy Standard care	Lower Murray lung injury score The difference of PaO2/FiO2 between two groups Lower Sequential Organ Failure Assessment (SOFA) score
NCT0432 0615	USA	Phase 3	Tocilizumab (TCZ) Placebo	Time to clinical improvement assessed Using a 7- Category Ordinal Scale.
NCT0436 3736	USA	Phase 2	Tocilizumab	Serum Concentration of interleukin-6 (IL-6), Ferritin and CRP Following Administration of 4 &8 mg/kg IV TCZ.

Medical Research Archives

Utilization of Therapeutic Interventions for Coronavirus Disease-2019 (COVID-19) Hospitalized Patients and Emerging Treatment Possibilities from Clinical Trials

NCT0435 4870	USA	Phase 2	Hydroxychloroquine	Frequency of seroconversion to SARS-CoV-2 Incidence of COVID-19 symptoms in the 4 weeks preceding seroconversion	
NCT0435 6534	Bahrain	N/A	Convalescent plasma standard of care	Requirement for invasive ventilation Change in viral clearance.	
NCT0434 9241	Egypt	Phase 3	favipiravir Standard of care therapy	Viral clearance Clinical improvement Radiological Improvement	
NCT0435 8068	USA	Phase 2	HCQ AZT Placebo for HCQ Placebo for AZT	Proportion of participants who died from any cause, or were hospitalized, or had an urgent visit to emergency room or clinic	
NCT0438 9944	Switzerla nd	N/A	convalescent plasma	SAE and Virologic clearance	
NCT0453 0422	Egypt	Phase 3	Sofosbuvir plus Ledipasvir	Therapeutic success (cured) 28 days in hospital mortality Percentage of clinical failure of treatments.	
NCT0435 8081	USA	Phase 3	HCQ HCQ+AZT Placebo	Percentage of participants who achieve clinical response Percentage of Participants with Viral Clearance	
NCT0440 8456	India	Phase 3	HCQ Standard therapy	Incidence confirmed or probable case of COVID-19 .	
NCT0452 3831	Banglade sh	Phase 3	lvermectin and Doxycycline	Early and Late clinical improvement of the patients.	
NCT0427 3321	China	N/A	Methylprednisolone	Incidence of treatment failure in 14 days .	
NCT0444 6104	Singapor e	Phase 3	HCQ Ivermectin Zinc Povidone-lodine Vitamin C	Incidence of laboratory-confirmed COVID-19 Rate of hospitalization for COVID-19 and non-COVID-19.	
NCT0455 1781	Egypt	N/A	20 Mg Prednisone control	Resolution of CT chest infiltrates as evaluated by radiologist on a score of no infiltrates, <5%, 5-25% and >25 % infiltrates	
NCT0434 5276	China	Phase 4	Danoprevir+Ritonavir	Adverse outcomes Time to recovery Rate of no fever, no cough, no dyspnea, no requiring supplemental oxygen Rate of undetectable new coronavirus pathogen nucleic acid.	
NCT0429 1729	China	Phase 4	Ganovo+ritonavir/- Interferon nebulization	Adverse outcomes Time to recovery Rate of no fever, no cough, no dyspnea, no requiring supplemental oxygen Rate of undetectable new coronavirus pathogen nucleic acid.	
NCT0438 3535	Argentina	N/A	Other: Convalescent SARS COVID-19 plasma Placebo	Clinical status during follow-up at 7th, 14th and 30th day time until hospital discharge (days), ICU discharge (days) time to death.	
NCT0455 4979	Egypt	N/A	Hydroxychloroquine	COVID-19 disease spectrum and duration GIT manifestations among COVID-19 patients	
NCT0426 1517	China	Phase 3	Hydroxychloroquine	The virological clearance rate of throat swabs, sputum, a lower respiratory tract secretions at day 3, day 5, and day 7.	

NCT0434 6446	India	Phase 2	Convalescent Plasma Supportive Care Random Donor Plasma	Proportion of patients remaining free of mechanical ventilation in both groups mortality in both groups Improvement in Pa02/Fi02 ratio in both groups.	
NCT0437 5098	Chile	Phase 2	Convalescent plasma	Percentage Mechanical Ventilation, hospitalization longer than 14 days or death during hospitalization.	
NCT0449 1994	Pakistan	Phase 3	Hydroxychloroquine	Number of Participants with Progression Viral Clearance	
NCT0435 8614	Italy	Phase 2 Phase 3	Baricitinib	To evaluate the impact of baricitinib in terms of serious or non-serious adverse events incidence rate.	
NCT0434 3092	lraq	Phase 1	Ivermectin (IVM)	Number of cured patients and Mean time to cure of the COVID-19 patients	
NCT0434 9410	USA	Phase 2 Phase 3	AZT HCQ Remdesivir Toc ilizumab Methylprednisolo ne Interferon-Alpha 2B Losartan Convalescent Serum	Improvement in FMTVDM Measurement with nuclear imaging Ventilator status Survival status	
NCT0442 2561	Egypt	Phase 2 Phase 3	lvermectin	Development of Symptoms (Fever, Cough, Sore Throat, Myalgia, Diarrhea, Shortness of Breath) Development of COVID	
NCT0437 4071	USA	N/A	Methylprednisolone	Transfer to ICU Need for Mechanical Ventilation Mortality Development and Severity of ARDS Length of hospital stay.	
NCT0447 5588	India	Phase 2	Itolizumab IV infusion Best supportive care.	One-month mortality rate between the two arms.	
NCT0434 3261	USA	Phase 2	Convalescent Plasma	Mortality Viral Load Serum Antibody Titers	
NCT0449 2501	Pakistan	N/A	Therapeutic Plasma exchange Convalescent Plasma Tocilizumab Remdesivir Mesenchymal stem cell therapy	Survival duration of hospitalization Time to resolution of cytokine release storm Time of viral clearance Complications	
NCT0443 4144	Banglade sh	N/A	lvermectin + Doxycycline HCQ+ Azithromycin	Number of participants with "treatment success" determined by a negative RT PCR for COVID19. Number of participants with "adverse effects" determined by the existence of the pharmacological side effects of drug given.	
NCT0433 2991	USA	Phase 3	Hydroxychloroquine Placebo	COVID Ordinal Outcomes Scale on Day 15 all-cause mortality assessed on day 15 and 29.	
NCT0435 0281	Hong Kong	Phase 2	Interferon Beta-1B Hydroxychloroquine	Time to negative NPS viral load, NEWS 0 Length of Hospitalization Adverse events Mortality Inflammatory markers changes	
NCT0438 4380	Taiwan	N/A	Hydroxychloroquine Sulfate 200 MG [Plaquenil]	Time to negatively RT-PCR Virologic assessment Number of participants with treatment-related adverse events as assessed by CTCAE v4.0	

Utilization of Therapeutic Interventions for Coronavirus Disease-2019 (COVID-19) Hospitalized Patients and Emerging Treatment Possibilities from Clinical Trials

NCT0437 6814	Iran	N/A	Favipiravir : HCQ Lopinavir / Ritonavir	Mortality, Length of hospitalization Laboratory Treatment Response (Blood cell count and CRP).		
NCT0433 2380	Colombia	Phase 2	Plasma	Change in Viral Load, Immunoglobulin M COVID-19 antibodies Titers, and Immunoglobulin G COVID-19 antibodies Titers.		
NCT0440 7208	Indonesia	Phase 1	Convalescent plasma	Plaque reduction neutralization test (PNRT) D-dimer C- Reactive Protein (CRP) International Normalized Ratio (INR) Oxygenation Index.		
NCT0434 2650	Brazil	Phase 2	Chloroquine Diphosphate Placebo	Proportion of patients with onset of SARS, 7days after randomization Incidence of cardiac lesions and Cardiac dysfunctions		
NCT0427 5414	China	Phase 2	Bevacizumab Injection	Partial arterial oxygen pressure (PaO2) to fraction of inspiration O2 (FiO2) ratio at 24 hours and 7days.		
NCT0448 5169	Pakistan	N/A	Therapeutic Plasma Exchange	Survival Duration of Hospitalization Timing of PCR negativity Time to CRS resolution Complications		
NCT0432 3592	Italy	N/A	Methylprednisolone standard care	Composite Primary End-point: Admission to ICU, Need for MV, or All-cause Death by Day 28 In-hospital Death Within 28 Days Admission to ICU Endotracheal Intubation.		
NCT0444 5506	USA	N/A	Dexamethasone	Effect on transfers to ICU and escalation of care needin mechanical ventilation effect on length of stay Chang in CRP levels		
NCT0432 7388	Argentina	Phase 3	Sarilumab SAR153191 Placebo	Time to improvement of 2 points in clinical status assessment from baseline using the 7-point ordinal scale Percent of patients alive at Day 29 Proportion of patients with one-point improvement at days 4, 7, 15, 21, 29.		
NCT0444 1424	lraq	N/A	Convalescent plasma HCQ+AZT	Death versus survival of treated patients The length of stay in hospitals		
NCT0432 1278	Brazil	Phase 3	HCQ+AZT Drug: HCQ	Evaluation of the clinical status All-cause mortality Number of days free from mechanical ventilation Duration of mechanical ventilation and hospitalization		
NCT0451 9385	Egypt	N/A	Tocilizumab Dexamethasone	Participants with Overall Survival at 14 days Fio2/Pao2		
NCT0438 9320	Egypt	N/A	Hydroxychloroquine	Immunoglobulin measurement		
NCT0432 3527	Brazil	Phase 2	Chloroquine diphosphate	50% Mortality rate reduction by day 28 Absolute mortality on days 7 and 14.		
NCT0439 2219	UK	Phase 1	Drug: EIDD-2801 Drug: Placebo	Safety and Tolerability of Single and multiple Ascending Dose (SAD) of EIDD-2801 (Part 1 and 3). Pharmacokinetics (PK) of EIDD-2801 when given as Single Doses (Part 2)		
NCT0444 2958	Turkey	N/A	Convalescent Immune Plasma	Plasma ferritin level, Lymphocyte count, D-Dimer level, CRP level, Plasma procalcitonin and Plasma fibrinogen level.		

Utilization of Therapeutic Interventions for Coronavirus Disease-2019 (COVID-19) Hospitalized Patients and Emerging Treatment Possibilities from Clinical Trials

NCT0427 6688	Hong Kong	Phase 2	Lopinavir/ritonavir Ribavirin Interferon Beta-1B	Time to negative NPS, negative saliva and clinical improvement Hospitalization Mortality Immune reaction,
NCT0430 8668	USA Canada	Phase 3	Hydroxychloroquine Placebo	Incidence of COVID19 disease and Overall change in disease severity among those who are asymptomatic at baseline.
NCT0444 4986	Turkey	Phase 1	FAVIR AVIGAN	AUC0-tlast Cmax AUC0-inf of favipiravir.
NCT0440 6194	Turkey	Phase 1	FAVICOVIR AVIGAN	AUC0-tlast Cmax AUC0-inf of favipiravir
NCT0440 0682	Turkey	Phase 1	FAVIRA AVIGAN	AUC0-tlast Cmax AUC0-inf of favipiravir
NCT0440 7000	Turkey	Phase 1	Favipiravir (LOQULAR) Favipiravir (Avigan)	Primary PK End Points AUCO-tlast and Cmax.

N/A- not applicable; HCQ- hydroxychloroquine; AZT- Azithromycin; RDV- Remdesivir; SARS-CoV-2- Severe acute respiratory syndrome coronavirus 2; RT-qPCR- real-time quantitative polymerase chain reaction; ECMO- extracorporeal membrane oxygenation; ICU- intensive care unit; NEWS-National Early Warning Score; SOFA- Sequential Organ Failure Assessment; convP- convalescent plasma; BCG- Bacille Calmette-Guarin

Table 3: Risk of bias of included studies (NOS) Study.

	Overall risk of bias			
	Selection	Comparability	Exposure	
Huang et al., Jan 2020	**	*	**	High
Guan et al., Feb 2020	***	*	*	Low
Wang et al., Feb 2020	***	*	**	Moderate
Yang et al., Feb 2020	**	*	**	High
Chen et al., Mar 2020	***	*	**	Moderate
Mo et al., Mar 2020	**	*	*	High
Ruan et al., Mar 2020	***	*	**	Moderate
Wang et al., Mar 2020	***	*	*	Low
Wu et al., Mar 2020	**	*	**	High
Zhao et al, Mar 2020	***	*	**	Moderate
Colaneri et al., Apr 2020	**	*	*	High
Zhao et al., Apr 2020	****	*	*	Low
Goyal et al., Apr 2020	***	*	*	Low
Wan et al., Apr 2020	***	*	**	Moderate
Zheng et al., Apr 2020	***	*	**	Moderate
Hong et al., May 2020	***	*	*	Low
Huang et. al., May 2020	**	*	**	High
Cao et al., May 2020	**	*	*	High
Deng et al., Jun 2020	**	*	*	High
Mikami et al., Jun 2020	****	*	*	Low
Shahriarirad et al., Jun 2020	***	*	**	Moderate
Wang et al., Jun 2020	**	*	*	High
Zhang et al., Jun 2020	***	*	*	Low

Gregoriano et al., Jun 2020	**	*	*	High
Li et al., Jul 2020	***	*	**	Moderate
Xu et al., Jul 2020	***	*	*	Low

Table 3: Risk of bias of included studies (NOS) Study.

	Overall risk of bias			
	Selection	Comparability	Exposure	
Huang et al., Jan 2020	**	*	**	High
Guan et al., Feb 2020	***	*	*	Low
Wang et al., Feb 2020	***	*	**	Moderate
Yang et al., Feb 2020	**	*	**	High
Chen et al., Mar 2020	***	*	**	Moderate
Mo et al., Mar 2020	**	*	*	High
Ruan et al., Mar 2020	***	*	**	Moderate
Wang et al., Mar 2020	***	*	*	Low
Wu et al., Mar 2020	**	*	**	High
Zhao et al, Mar 2020	***	*	**	Moderate
Colaneri et al., Apr 2020	**	*	*	High
Zhao et al., Apr 2020	****	*	*	Low
Goyal et al., Apr 2020	***	*	*	Low
Wan et al., Apr 2020	***	*	**	Moderate
Zheng et al., Apr 2020	***	*	**	Moderate
Hong et al., May 2020	***	*	*	Low
Huang et. al., May 2020	**	*	**	High
Cao et al., May 2020	**	*	*	High
Deng et al., Jun 2020	**	*	*	High
Mikami et al., Jun 2020	****	*	*	Low
Shahriarirad et al., Jun 2020	***	*	**	Moderate
Wang et al., Jun 2020	**	*	*	High
Zhang et al., Jun 2020	***	*	*	Low
Gregoriano et al., Jun 2020	**	*	*	High
Li et al., Jul 2020	***	*	**	Moderate
Xu et al., Jul 2020	***	*	*	Low

RESULTS

We found 200 articles eligible for the study, after detailed assessment and considering strict inclusion and exclusion criteria; as of August 20, 2020 we included 29 observational studies with 8570 COVID-19-positive patients (Figure 1). Of 29 studies, 22 are from China, 3 from USA, 1 each from Italy, Switzerland, and South Korea. These studies provided information regarding the utilization of steroids, Lopinavir-ritonavir, remdesivir, antibiotics, hydroxychloroquine, and IVIG. Of note, our specific inclusion criteria for our systematic review did not uncover any studies to enable evaluation severity-based of the

prevalence of biologics or immune modulates such as anti-interleukin-6 (IL-6) approaches.

Steroids: Twenty-six studies reported data on the use of steroids and disease severity, providing a total sample size of 7637 COVID-19 patients for evaluation. The prevalence of steroid use was 40% in patients with severe disease [40% (902/2245) vs. 15.6% (841/5392)]. Meta-analysis of 26 studies showed that steroids had 4.47-fold higher odds of utilization in patients with severe disease (pooled OR:4.47; 95%CI:3.18–6.28; p<0.00001). 77% between-study heterogeneity was identified (p<0.00001) (**Figure 2**). Sensitivity analysis was conducted by eliminating the seven outlying studies

on the funnel plot in order to account for heterogeneity. Results after sensitivity analysis also showed a significant pooled OR of 3.87 (3.304.55; p < 0.00001) with 38% heterogeneity in the data (p = 0.05).

rigure 2: rorest plot of sterolds unitzation and outcome in COVID-19 hospitalized patients.									
	Severe Disease Non-Severe Disease Odds Ratio		Odds Ratio	Odds Ratio					
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Rand	lom, 95% Cl	
Chen et al. (China, Mar 2020)	11	11	10	10		Not estimable			
Yang et al. (China, Feb 2020)	16	32	14	20	3.5%	0.43 [0.13, 1.40]		+	
Zhao et al. (China, Apr 2020)	25	30	54	61	3.4%	0.65 [0.19, 2.24]			
Xu et al. (China, Jul 2020)	118	147	71	92	5.1%	1.20 [0.64, 2.27]			
Ferguson et al. (USA, Aug 2020)	2	21	3	51	2.2%	1.68 [0.26, 10.89]			
Ruan et al. (China, Mar 2020)	31	68	22	82	5.0%	2.29 [1.15, 4.52]			
Li et al. (China, Jul 2020)	196	269	145	279	5.8%	2.48 [1.74, 3.55]		_ _ 	
Zheng et al. (China, May 2020)	15	15	18	19	0.9%	2.51 [0.10, 66.20]		· · ·	
Mikami et al. (USA, Jun 2020)	35	806	29	2014	5.5%	3.11 [1.89, 5.12]			
Zhou et al. (China, Mar 2020)	26	54	31	137	5.0%	3.18 [1.63, 6.19]			
Zhang et al. (China, Jun 2020)	40	55	75	166	5.0%	3.24 [1.66, 6.31]			
Mo et al. (China, Mar 2020)	55	85	24	70	5.0%	3.51 [1.81, 6.83]			
Wang et al. (China, Mar 2020)	4	12	6	55	2.9%	4.08 [0.94, 17.75]			_
Wang et al. (China, Feb 2020)	26	36	36	102	4.5%	4.77 [2.07, 10.98]			
Guan et al. (China, Feb 2020)	77	173	127	926	5.8%	5.05 [3.54, 7.19]			
Goyal et al. (USA, Apr 2020)	32	130	14	263	5.0%	5.81 [2.97, 11.35]			
Wan et al. (China, Apr 2020)	21	40	15	95	4.5%	5.89 [2.57, 13.52]			
Huang et al. (China, Jan 2020)	6	13	3	28	2.6%	7.14 [1.41, 36.08]		· · · · ·	
Shahriarirad et al. (Iran, Jun 2020)	2	11	3	102	2.1%	7.33 [1.08, 49.77]		·	→
Cao et al. (China, Jun 2020)	14	27	5	53	3.5%	10.34 [3.14, 34.01]			
Huang et al. (China, May 2020)	18	23	46	179	3.9%	10.41 [3.66, 29.63]			
Yang et al. (China, Aug 2020)	27	33	28	103	4.1%	12.05 [4.50, 32.29]			→
Wu et al. (China, Mar 2020)	50	84	12	117	4.8%	12.87 [6.14, 26.95]			
Deng et al. (China, Jun 2020)	10	12	13	53	2.5%	15.38 [2.98, 79.47]			>
Wang et al. (China, June 2020)	35	45	29	230	4.6%	24.26 [10.86, 54.17]			→
Hong et al. (South Korea, May 2020)	10	13	8	85	2.8%	32.08 [7.29, 141.15]			
Total (95% CI)		2245		5392	100.0%	4.47 [3.18, 6.28]		•	
Total events	902		841						
Heterogeneity: Tau ² = 0.49; Chi ² = 102.44, df = 24 (P < 0.00001); i ² = 77%									
Test for overall effect: Z = 8.63 (P < 0.00001)						U.US U.Z	I 5 Utilization in Severe	20	
							ounzation III Non-Severe	ounzation III Severe	

Figure 2: Forest plot of steroids utilization and outcome in COVID-19 hospitalized patients.

Lopinavir-ritonavir: 9 studies with a sample size of 1734 patient's association between lopinavirritonavir and disease severity were identified. The prevalence of lopinavir-ritonavir use was higher in patients with the non-severe disease [44% (463/1052) vs. 28.3% (193/682)]. Meta-analysis of all 9 studies showed that utilization of lopinavirritonavir was not significantly associated with the severity of COVID-19 patients with pooled OR of 1.15 (0.56–2.34; p=0.71), with a 77% betweenstudy heterogeneity (p <0.0001) (**Figure 3**). We performed a sensitivity analysis by eliminating the outlying studies on funnel plot (Yang et al.), which also showed no significant association between lopinavir-ritonavir use and disease severity with pooled OR of 0.78 (0.56-1.11; p=0.17) with 14% heterogeneity in the data (p =0.32).

	Severe Disease		Non-Severe Disease			Odds Ratio	Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl		
Zhao et al. (China, Apr 2020)	16	30	48	61	13.8%	0.31 [0.12, 0.80]			
Zhang et al. (China, Jul 2020)	3	78	5	52	10.2%	0.38 [0.09, 1.65]			
Hong et al. (South Korea, May 2020)	13	13	84	85	3.8%	0.48 [0.02, 12.38]	• • •		
Li et al. (China, Jul 2020)	73	269	91	279	17.3%	0.77 [0.53, 1.11]			
Zhou et al. (China, Mar 2020)	12	54	29	137	15.0%	1.06 [0.50, 2.28]	_		
Xu et al. (China, Jul 2020)	24	147	14	92	15.3%	1.09 [0.53, 2.23]			
Gregoriano et al. (Switzerland, Jul 2020)	1	35	1	64	4.8%	1.85 [0.11, 30.56]			
Huang et al. (China, May 2020)	22	23	158	179	7.2%	2.92 [0.37, 22.83]			
Yang et al. (China, Aug 2020)	29	33	33	103	12.5%	15.38 [5.00, 47.34]	_		
Total (95% CI)		682		1052	100.0%	1.15 [0.56, 2.34]			
Total events	193		463						
Heterogeneity: Tau ² = 0.73; Chi ² = 34.13, d	lf = 8 (P < 0.0	001); P	= 77%						
Test for overall effect: Z = 0.37 (P = 0.71)							U.05 U.2 I 5 20 Utilization in Non-Severe Utilization in Severe		

Remdesivir: 3 studies reported data on remdesivir, including 3285 patients for evaluation. The prevalence of remdesivir use was higher in patients with severe disease compared to non-severe disease [2.5% (24/957) vs. 1.6% (37/2328)]. In a

meta-analysis of all three studies, we found that remdesivir use was not significantly associated with the severity of COVID-19 patients with pooled OR of 1.63 (95%Cl:0.34–7.87; p=0.54), with 80% heterogeneity (p =0.007) (**Figure 4**).

Figure 4: Forest plot of remdesivir utilization and outcome in COVID-19 hospitalized patients.

Medical Research Archives

Utilization of Therapeutic Interventions for Coronavirus Disease-2019 (COVID-19) Hospitalized Patients and Emerging Treatment Possibilities from Clinical Trials

Antibiotics: A total of 20 studies reported data on antibiotics use with disease severity giving a total sample size of 3150 COVID-19 patients for evaluation. The prevalence of antibiotic use was higher in patients with severe disease [90.5% (764/844) vs. 68.5% (1579/2306)]. Metaanalysis of all 20 studies showed that antibiotics had 3.10-fold higher odds of being used in patients with severe disease compared to non-severe disease (95%Cl:1.81-5.30; p<0.0001) with 58% heterogeneity identified between studies (p=0.001) (**Figure 5**). Sensitivity analysis results after eliminating two outlying studies on funnel plot (Gregoriano et al. and Wan et al.) also showed significant pooled OR of 2.36 (95%Cl:1.47-3.78; p=0.0004) with 31% heterogeneity (p=0.11).

Figure 5: Forest plot of antibiotics utilization an	d outcome in COVID-19 hospitalized _l	patients.
---	---	-----------

Footnotes

(2) Movifloxacin/Flurequinciones

(3) Piperacillin/tazobactam and doxycycline

Hydroxychloroquine (HCQ): The prevalence of HCQ use was higher in patients with severe disease [73.2% (736/1005) vs. 69.6% (1725/2477)]. In our meta-analysis of 5 studies, we found that HCQ use was not significantly associated with the severity of COVID-19 patients with pooled OR of 3.14 (95%CI:0.71–13.90; p=0.13), with 93%

heterogeneity between studies (p <0.00001) (Figure 6). Sensitivity analysis was performed by eliminating Goyal et al. on the funnel plot. Results after sensitivity analysis also showed no significant association between HCQ use and disease severity (OR: 1.04; 95%CI:0.66-1.63; p=0.86) with 28 % heterogeneity (p =0.25).

Figure 6: Forest plot of hydroxychloroquine utilization and outcome in COVID-19 hospitalized patients.

⁽¹⁾ Movifloxocin/Fluroquinolones

Utilization of Therapeutic Interventions for Coronavirus Disease-2019 (COVID-19) Hospitalized Patients and Emerging Treatment Possibilities from Clinical Trials

IVIG: We found 13 studies with data on IVIG and a total sample size of 2963 patients for evaluation. The prevalence of IVIG use was higher in patients with severe disease [45.4% (437/962) vs. 17.5% (351/2001)]. Meta-analysis of all 13 studies showed that IVIG had 3.76-fold higher odds to be used in patients with severe disease compared to non-severe disease (95%Cl:2.11–6.72; p<0.00001) (Figure 7) with 84% heterogeneity (p<0.00001). Sensitivity analysis was conducted by eliminating the three outlying studies on funnel plot (Xu et al., Li et al., and Zhou et al.). Results after sensitivity analysis also showed a significant pooled OR of 3.92 (95%CI:2.52-6.10; p<0.00001) with 38% heterogeneity in the data (p=0.10).

	Severe Disease Non-Severe Disease			Odds Ratio	Odds Ratio		
Study or Subgroup	Events 1	otal	Events Tot	al Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl	
Chen et al. (China, Mar 2020)	7	11	7 1	0 5.3%	0.75 [0.12, 4.66]		
Li et al. (China, Jul 2020)	110	269	103 27	9 10.7%	1.18 [0.84, 1.67]	- -	
Yang et al. (China, Feb 2020)	19	32	9 2	0 7.8%	1.79 [0.58, 5.52]		
Xu et al. (China, Jul 2020)	94	147	44 9	2 10.2%	1.93 [1.14, 3.29]	_ _	
Zhao et al. (China, Apr 2020)	16	30	19 6	1 8.8%	2.53 [1.03, 6.21]		
Deng et al. (China, Jun 2020)	4	12	8 5	3 6.7%	2.81 [0.68, 11.59]		
Mo et al. (China, Mar 2020)	7	85	2 7	0 6.0%	3.05 [0.61, 15.19]		
Guan et al. (China, Feb 2020)	59	173	86 92	6 10.6%	5.06 [3.44, 7.43]		
Huang et al. (China, May 2020)	10	23	21 17	9 8.6%	5.79 [2.26, 14.84]		
Yang et al. (China, Aug 2020)	23	33	29 10	3 9.0%	5.87 [2.49, 13.84]		
Zheng et al. (China, May 2020)	14	15	13 1	9 4.2%	6.46 [0.68, 61.16]		
Zhou et al. (China, Mar 2020)	36	54	10 13	7 9.0%	25.40 [10.78, 59.85]	\longrightarrow	
Zhang et al. (China, Jul 2020)	38	78	0 5	2 3.1%	99.81 [5.95, 1674.08]		
Total (95% CI)		962	200	1 100.0%	3.76 [2.11, 6.72]		
Total events	437		351				
Heterogeneity: Tau ² = 0.79; Chi ² =	= 75.15, df = 12						
Test for overall effect: Z = 4.47 (P	< 0.00001)					Utilization in Non-Severe Utilization in Severe	
Tang et al. (China, Jeb 2020) Xu et al. (China, Jul 2020) Zhao et al. (China, Jul 2020) Mo et al. (China, Mar 2020) Mo et al. (China, Mar 2020) Huang et al. (China, May 2020) Yang et al. (China, May 2020) Zhong et al. (China, May 2020) Zhou et al. (China, Jul 2020) Total (95% CI) Total events Heterogeneity: Tau ² = 0.79; Chi ² = Test for overall effect: Z = 4.47 (P	94 16 4 7 59 10 23 14 36 38 437 ≤ 75.15, df = 12 < 0.00001)	32 147 30 12 85 173 23 33 15 54 78 962 (P <	3 44 19 8 2 2 21 17 29 10 13 10 13 10 13 0 5 200 351 0.00001); F= 84%	1 7.8% 2 10.2% 1 8.8% 3 6.7% 0 6.0% 6 10.6% 9 8.6% 9 8.6% 9 8.6% 9 8.6% 9 8.6% 1 00.0% 1 100.0%	1.75 (0.38, 0.52) 1.93 (1.14, 3.29) 2.53 (1.03, 6.21) 2.81 (0.68, 11.59) 3.05 (0.61, 15.19) 5.06 (3.44, 7.43) 5.79 (2.26, 14.84) 5.87 (2.49, 13.84) 6.46 (0.68, 61.16) 25.40 (10.78, 59.85) 99.81 (5.95, 1674.08) 3.76 (2.11, 6.72)	0.02 0.1 10 50 Utilization in Non-Severe	

Review of Clinical trials of reagents under investigation.

As of October 15, 2020, there were 2108 interventional clinical trials on COVID-19 treatments being carried out worldwide, and 133/2108 (6.3%) have been completed. Most trials are ongoing in the USA (594), followed by France (180) and China (92). However, we are awaiting the results of these completed trials to understand the role of reagents in COVID-19 as a function of severity and their incorporation into treatment algorithms for COVID-19.

As of the date of our review, clinical trials evaluating specific therapeutics for COVID-19 included: convalescent plasma (12%), HCQ (13%), steroids (3%), favipiravir (3%), tocilizumab (3%), and interferon (3%), remdesivir (2%), lopinavir/ritonavir (2%), azithromycin (2%), ivermectin (2%) and 55% other reagents (**Table 2**).

DISCUSSION

SARS-CoV-2 is the newly emerging virus responsible for the current global pandemic of

COVID-19. At the time of our study, there was no proven effective treatment for patients with severe coronavirus disease 2019 (COVID-19). Our metaanalysis, including the literature published from December 1, 2019 to August 20, 2020, found that utilization of steroids, antibiotics, and IVIG was higher in COVID-19 patients with severe disease compared to non-severe disease. Additionally, there was no significant association with the utilization of antiviral drugs such as remdesivir, lopinavir/ritonavir, or HCQ and severity in hospitalized COVID-19 patients.

Corticosteroids have anti-inflammatory, antifibrotic, and vasoconstrictive effects. Over the past few decades, the utility of corticosteroids in critically ill patients with pneumonia, septic shock, or Acute Respiratory Distress syndrome (ARDS) was tested by clinical trials ¹³. Furthermore, meta-analyses of these recent clinical trials showed that the use of corticosteroids was associated with immediate resolution of shock and mechanical ventilation = reducing mortality in both septic shock and ARDS ¹⁴. However, many clinicians are still hesitant to

prescribe steroids for these conditions due to inconsistent findings across studies explained by limited sample size, variable dosing, and underreported or unmeasured adverse effects in these clinical trials. A prospective meta-analysis from the WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group pooled data from 7 trials (RECOVERY, REMAP-CAP, CoDEX, CAPE COVID, and 3 additional trials) including 1703 patients, of which 59% were from the RECOVERY trial ¹⁵. The 28-day mortality was lower in patients randomized to corticosteroids: (OR:0.66 [95% Cl, 0.53, -0.82]; p < 0.001), with little heterogeneity across studies ¹⁵. Also, there was no difference in the association between corticosteroids and reduced mortality among dexamethasone and hydrocortisone, and not specific to any particular corticosteroid ¹⁵. This meta-analysis suggests that the use of steroids is often employed among critically ill COVID-19 patients, although the exact threshold at which an individual patient should be prescribed corticosteroids remains unclear. These studies meta-analysis derived further extend our observations of higher utilization of steroids in COVID-19 patients with the severe disease by healthcare professionals.

second-generation The antiretroviral drug combination lopinavir/ritonavir inhibits viral protease, And recent research on SARS-CoV and MERS-CoV carried out in vitro and in vivo has shown its inhibitory effect on both viruses ^{16, 17}. Our metaanalysis showed no severity-based prevalence of utilization of lopinavir in COVID-19 hospitalized patients. This pattern of treatment utilization likely reflects the incorporation of findings from Cao et al., ¹⁸ which demonstrated that lopinavir-ritonavir treatment did not significantly accelerate clinical improvement, reduce mortality, or reduce viral RNA detectability in patients with serious COVID-19. Although additional clinical trials of lopinavir/ritonavir are ongoing, the current data suggest a limited role for lopinavir/ritonavir in COVID-19 treatment.

Remdesivir, a nucleoside analog prodrug that inhibits viral RNA polymerases, has shown some in against vitro activity pathogenic human coronaviruses, including SARS-CoV-2, and inhibits MERS, SARS-CoV-1, and SARS-CoV-2 replication in animal models ¹⁹. The US Food and Drug Administration, in May 2020, granted Emergency Use Authorization to the experimental antiviral drug remdesivir (manufactured by Gilead) for severe COVID-19 hospitalized patients²⁰. Soon after, the demand for remdesivir increased, and many clinical trials were launched. A double-blinded randomized

clinical trial by Beigel et al. reported with an ongoing trial that Remdesivir was superior to placebo in shortening the time to recovery in COVID-19 hospitalized patients and evidence of lower respiratory tract infection ²¹. In our metaanalysis, we also noted no severity-based prevalence of remdesivir utilization. In addition, only three studies reporting the use of remdesivir from the USA met our inclusion criteria; hence we cannot provide enough evidence of association of remdesivir utilization with disease severity. Many additional clinical trials are underway which will hopefully further delineate the utility and proper setting for the use of remdesivir in COVID-19 patients.

Chloroquine and hydroxychloroquine are used for the treatment of malaria with a good tolerability profile. Various studies have demonstrated chloroquine activity in vitro and animal models against SARS-CoV 22, 23. Their antiviral mechanisms of action include increasing endosomal pH which is necessary for fusion between the virus and the host cell and also interfere with the ACE2 cell receptor and having immunomodulatory activity. Our metaanalysis found higher utilization of HCQ in patients with severe COVID-19. This likely reflects the initial belief, in the early stages of the pandemic, that HCQ might be of clinical benefit for patients with COVID-19 and emergency use authorization by regulatory authorities, enabling providers to prescribe this medication. Subsequent studies, starting from June 2020 and with a final analysis in November 2020, have shown that treatment with HCQ does not provide any benefits to hospitalized patients. Consequently, HCQ is no lonaer prescribed for COVID-19 treatment. ²⁴.

Many studies showed the role of active immunization through the administration of interferon and passive immunotherapy by convalescent plasma or synthesized monoclonal and polyclonal antibodies in the management of COVID-19²⁵. The IVIG is a pooled human blood product that gives passive immunity and regulates immune function. IVIG has anti-inflammatory and immunomodulatory effects on different immune cells, but the specific molecular mechanisms and role of the effectiveness of IVIG treatment in COVID-19 are still unclear ²⁶. Studies done in China showed that high doses of intravenous immunoglobulins (IVIG) could be effective in severely and critically ill COVID-19 patients ²⁷. Our meta-analysis with the majority of studies from China also found higher utilization of IVIG in COVID-19 patients with severe disease. Clinical trials also showed that IVIG is well tolerated, but side effects like aseptic meningitis, renal impairment, and thrombosis have been Medical Research Archives

reported ²⁸. Very few clinical studies on the use of a high dose of IVIG for the management of COVID-19 have been reported, but still, we need strong evidence to delineate the use of IVIG in COVID-19 treatment ²⁶.

Strength and Limitations

The most important limitation is the heterogeneity of the included studies, which might be due to variability among studies in regard to the definition of disease severity and outcomes. Furthermore, all the included studies were retrospective, as at the time of analysis, there were no prospective studies describing treatment and severity. Most of our studies included in the analysis are from China and may not be representative of the general population in other countries. Also, we had only three studies reporting the use of Remdesivir from the USA, which met our inclusion criteria; hence we cannot provide enough evidence of the association of remdesivir utilization with disease severity. Furthermore, we don't have enough evidence to prove that these drugs were administered in the early or late phase of the disease due to the different methodologies of the observational studies included in the meta-analysis. Also, our meta-analysis studies have only reported inhospital treatment, and the lack of pre-hospital treatment led to a biased population with more severe and untreated diseases. Few studies have reported an 85% reduction in hospitalization and death with the use of multiple drugs in pre-hospital treatment ²⁹⁻³¹. Despite these limitations, a metaanalysis of 8570 confirmed COVID-19 patients suggests that the use of steroids, antibiotics, and IVIG was higher in COVID-19 patients with severe disease compared to non-severe disease. Additionally, our meta-analysis did not find any significant association of antiviral utilization, such as remdesivir, lopinavir/ritonavir, or hydroxychloroquine, with the severity of COVID-19 hospitalized patients. Our study provides a comprehensive description of the disease severity prevalence of treatments utilized in the management of hospitalized COVID-19 patients, reported in the literature through August 2020. These findings may serve to educate the broader healthcare community to comprehend better the range of treatment approaches that have been pursued in an effort to control this devastating disease.

CONCLUSION

Our meta-analysis revealed that hospitalized COVID-19 patients with severe disease were more frequently treated with steroids, antibiotics, and intravenous immunoglobulin (IVIG). However, we found no significant association between disease severity and the use of lopinavir/ritonavir, remdesivir, or hydroxychloroquine in COVID-19 hospitalization. Currently, new therapeutic strategies, including mRNA vaccines, viral vector vaccines, and protein subunit vaccines, are rapidly emerging. It has significant potential to alter the course and impact of this global pandemic and will significantly add to our therapeutic armamentarium against this disease.

REFERENCES

1. Tu YF, Chien CS, Yarmishyn AA, et al. A Review of SARS-CoV-2 and the Ongoing Clinical Trials. *Int J Mol Sci* 2020; 21 2020/04/16. DOI: 10.3390/ijms21072657.

2. COVID-19 CORONAVIRUS PANDEMIC, https://www.worldometers.info/coronavirus/#coun tries (2020, accessed March 20 2021).

3. Guan W-j, Liang W-h, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. *Eur Respir J* 2020; 55: 2000547. DOI: 10.1183/13993003.00547-2020.

4. Hong KS, Lee KH, Chung JH, et al. Clinical Features and Outcomes of 98 Patients Hospitalized with SARS-CoV-2 Infection in Daegu, South Korea: A Brief Descriptive Study. Yonsei Med J 2020; 61: 431-437. 2020/05/12. DOI: 10.3349/ymj.2020.61.5.431.

5. Wang Y, Liao B, Guo Y, et al. Clinical Characteristics of Patients Infected With the Novel 2019 Coronavirus (SARS-Cov-2) in Guangzhou, China. Open Forum Infectious Diseases 2020; 7. DOI: 10.1093/ofid/ofaa187.

6. Zhao D, Yao F, Wang L, et al. A comparative study on the clinical features of COVID-19 pneumonia to other pneumonias. *Clin Infect Dis* 2020. DOI: 10.1093/cid/ciaa247.

7. Huang R, Zhu L, Xue L, et al. Clinical findings of patients with coronavirus disease 2019 in Jiangsu province, China: A retrospective, multi-center study. *PLoS Negl Trop Dis* 2020; 14: e0008280. 2020/05/10. DOI:

10.1371/journal.pntd.0008280.

8. Mikami T, Miyashita H, Yamada T, et al. Risk Factors for Mortality in Patients with COVID-19 in New York City. J Gen Intern Med 2020. DOI: 10.1007/s11606-020-05983-z.

9. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical Characteristics of Covid-19 in New York City. *N Engl J Med* 2020; 382: 2372-2374. DOI: 10.1056/NEJMc2010419.

10. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med* 2009; 6: e1000097. 2009/07/22. DOI: 10.1371/journal.pmed.1000097.

11. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Metaanalysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000; 283: 2008-2012. 2000/05/02. DOI: 10.1001/jama.283.15.2008.

12. GA Wells, B Shea, D O'Connell, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses, http://www.ohri.ca/programs/clinical_epidemiolo gy/oxford.asp (2020).

13. Prescott HC and Rice TW. Corticosteroids in COVID-19 ARDS: Evidence and Hope During the Pandemic. JAMA 2020; 324: 1292-1295. DOI: 10.1001/jama.2020.16747.

14. Fang F, Zhang Y, Tang J, et al. Association of Corticosteroid Treatment With Outcomes in Adult Patients With Sepsis: A Systematic Review and Meta-analysis. JAMA Internal Medicine 2019; 179: 213-223. DOI:

10.1001/jamainternmed.2018.5849.

15. Group TWREAFC-TW. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically III Patients With COVID-19: A Meta-analysis. *JAMA* 2020; 324: 1330-1341. DOI: 10.1001/jama.2020.17023.

16. Chan KS, Lai ST, Chu CM, et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. *Hong Kong Med J* 2003; 9: 399-406. 2003/12/09.

17. Yao T-T, Qian J-D, Zhu W-Y, et al. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus—A possible reference for coronavirus disease-19 treatment option. J Med Virol 2020; 92: 556-563. DOI: https://doi.org/10.1002/jmv.25729.

18. Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. *N Engl J Med* 2020; 382: 1787-1799. DOI: 10.1056/NEJMoa2001282.

19. Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. *The Lancet* 2020; 395: 1569-1578. DOI: 10.1016/S0140-6736(20)31022-9.

20. (FDA) FaDA. Coronavirus (COVID-19) Update: FDA Issues Emergency Use Authorization for Potential COVID-19 Treatment., https://www.fda.gov/news-events/press-

announcements/coronavirus-covid-19-update-fdaissues-emergency-use-authorization-potential-

<u>covid-19-treatment</u> (2020, accessed October 30 2020).

21. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 — Final Report. *N Engl J Med* 2020; 383: 1813-1826. DOI: 10.1056/NEJMoa2007764.

22. Savarino A, Di Trani L, Donatelli I, et al. New insights into the antiviral effects of chloroquine. Lancet Infect Dis 2006; 6: 67-69. 2006/01/28. DOI: 10.1016/s1473-3099(06)70361-9.

23. Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. *Virol J* 2005; 2: 69. DOI: 10.1186/1743-422X-2-69.

24. Self WH, Semler MW, Leither LM, et al. Effect of Hydroxychloroquine on Clinical Status at 14 Days in Hospitalized Patients With COVID-19: A Randomized Clinical Trial. JAMA 2020; 324: 2165-2176. DOI: 10.1001/jama.2020.22240.

25. Owji H, Negahdaripour M and Hajighahramani N. Immunotherapeutic approaches to curtail COVID-19. Int Immunopharmacol 2020; 88: 106924. 2020/09/03. DOI: 10.1016/j.intimp.2020.106924.

26. Liu X, Cao W and Li T. High-Dose Intravenous Immunoglobulins in the Treatment of Severe Acute Viral Pneumonia: The Known Mechanisms and Clinical Effects. *Front Immunol* 2020; 11: 1660. 2020/08/08. DOI: 10.3389/fimmu.2020.01660.

27. Cao W, Liu X, Bai T, et al. High-Dose Intravenous Immunoglobulin as a Therapeutic Option for Deteriorating Patients With Coronavirus Disease 2019. Open Forum Infectious Diseases 2020; 7. DOI: 10.1093/ofid/ofaa102.

28. Guo Y, Tian X, Wang X, et al. Adverse Effects of Immunoglobulin Therapy. *Front Immunol* 2018; 9: 1299. 2018/06/29. DOI: 10.3389/fimmu.2018.01299.

29. McCullough PA, Alexander PE, Armstrong R, et al. Multifaceted highly targeted sequential multidrug treatment of early ambulatory high-risk SARS-CoV-2 infection (COVID-19). *Rev Cardiovasc Med* 2020; 21: 517-530. 2021/01/04. DOI: 10.31083/j.rcm.2020.04.264.

30. Derwand R, Scholz M and Zelenko V. COVID-19 outpatients: early risk-stratified treatment with zinc plus low-dose hydroxychloroquine and azithromycin: a retrospective case series study. Int J Antimicrob Agents 2020; 56: 106214-106214. 2020/10/26. DOI: 10.1016/j.ijantimicag.2020.106214.

31. Procter MDBC, Aprn FNPCCRMSN, Pa-C MVP, et al. Early Ambulatory Multidrug Therapy Reduces Hospitalization and Death in High-Risk Patients with SARS-CoV-2 (COVID-19). International Journal of Innovative Research in Medical Science 2021; 6: 219 - 221. DOI: 10.23958/ijirms/vol06-i03/1100.

32. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet* 2020; 395: 497-506. 2020/01/28. DOI: 10.1016/s0140-6736(20)30183-5.

33. Guan W-j, Ni Z-y, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020. DOI: 10.1056/NEJMoa2002032. 34. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 2020; 323: 1061-1069. DOI: 10.1001/jama.2020.1585.

35. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. *Lancet Respir* Med 2020 2020/02/28. DOI: 10.1016/s2213-2600(20)30079-5.

36. Mo P, Xing Y, Xiao Y, et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. *Clin Infect Dis* 2020 2020/03/17. DOI: 10.1093/cid/ciaa270.

37. Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020; 46: 846-848. 2020/03/04. DOI: 10.1007/s00134-020-05991-x.

38. Wang Z, Yang B, Li Q, et al. Clinical Features of 69 Cases with Coronavirus Disease 2019 in Wuhan, China. *Clin Infect Dis* 2020 2020/03/17. DOI: 10.1093/cid/ciaa272.

39. Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med 2020 2020/03/14. DOI: 10.1001/jamainternmed.2020.0994.

40. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet 2020; 395: 1054-1062. DOI: https://doi.org/10.1016/S0140-

6736(20)30566-3.

41. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. The Journal of Clinical Investigation 2020; 130: 2620-2629. DOI: 10.1172/JCl137244.

42. Colaneri M, Sacchi P, Zuccaro V, et al. Clinical characteristics of coronavirus disease (COVID-19) early findings from a teaching hospital in Pavia, North Italy, 21 to 28 February 2020. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 2020; 25: 2000460. DOI: 10.2807/1560-7917.ES.2020.25.16.2000460.

43. Zhao X-Y, Xu X-X, Yin H-S, et al. Clinical characteristics of patients with 2019 coronavirus disease in a non-Wuhan area of Hubei Province, China: a retrospective study. *BMC Infect Dis* 2020; 20: 311. DOI: 10.1186/s12879-020-05010-w.

44. Wan S, Xiang Y, Fang W, et al. Clinical features and treatment of COVID-19 patients in northeast Chongqing. *J Med Virol* 2020; 92: 797-806. 2020/03/22. DOI: 10.1002/jmv.25783.

45. Zheng Y, Sun L-J, Xu M, et al. Clinical characteristics of 34 COVID-19 patients admitted to intensive care unit in Hangzhou, China. *Journal of Zhejiang University Science B* 2020; 21: 378-387. DOI: 10.1631/jzus.B2000174.

46. Cao Z, Li T, Liang L, et al. Clinical characteristics of Coronavirus Disease 2019 patients in Beijing, China. *PLoS One* 2020; 15: e0234764. 2020/06/20. DOI: 10.1371/journal.pone.0234764.

47. Deng M, Qi Y, Deng L, et al. Obesity as a Potential Predictor of Disease Severity in Young COVID-19 Patients: A Retrospective Study. Obesity (Silver Spring, Md) 2020 2020/07/01. DOI: 10.1002/oby.22943.

48. Shahriarirad R, Khodamoradi Z, Erfani A, et al. Epidemiological and clinical features of 2019 novel coronavirus diseases (COVID-19) in the South of Iran. *BMC Infect Dis* 2020; 20: 427. DOI: 10.1186/s12879-020-05128-x.

49. Zhang G, Hu C, Luo L, et al. Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. J Clin Virol 2020; 127: 104364. 2020/04/21. DOI: 10.1016/j.jcv.2020.104364.

50. Gregoriano C, Koch D, Haubitz S, et al. Characteristics, predictors and outcomes among 99 patients hospitalised with COVID-19 in a tertiary care centre in Switzerland: an observational analysis. Swiss Med Wkly 2020; 150: w20316. 2020/07/16. DOI: 10.4414/smw.2020.20316.

51. Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol 2020; 146: 110-118. 2020/04/16. DOI: 10.1016/j.jaci.2020.04.006.

52. Xu J, Yang X, Yang L, et al. Clinical course and predictors of 60-day mortality in 239 critically ill patients with COVID-19: a multi-center retrospective study from Wuhan, China. *Crit Care* 2020; 24: 394. 2020/07/08. DOI: 10.1186/s13054-020-03098-9.

53. Zhang SY, Lian JS, Hu JH, et al. Clinical characteristics of different subtypes and risk factors for the severity of illness in patients with COVID-19 in Zhejiang, China. *Infectious diseases of poverty* 2020; 9: 85. 2020/07/10. DOI: 10.1186/s40249-020-00710-6.

54. Ferguson J, Rosser JI, Quintero O, et al. Characteristics and Outcomes of Coronavirus Disease Patients under Nonsurge Conditions, Northern California, USA, March-April 2020. Emerg Infect Dis 2020; 26: 1679-1685. 2020/05/15. DOI: 10.3201/eid2608.201776.

55. Yang Q, Xie L, Zhang W, et al. Analysis of the clinical characteristics, drug treatments and prognoses of 136 patients with coronavirus disease 2019. J Clin Pharm Ther 2020; 45: 609-616. 2020/05/26. DOI: 10.1111/jcpt.13170.