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ABSTRACT 
To demonstrate thrombolytic efficacy of a tissue plasminogen 
activator (tPA)-loaded echogenic liposome (TELIP) formulation in a 
rabbit thrombotic stroke model (the most relevant animal model for 
evaluation of directed thrombolytic therapy for ischemic stroke), we 
sought to develop a means of monitoring thrombus dissolution 
quantitatively by ultrasound imaging methods.  We hypothesized that 
a gas-free ultrasound contrast agent can be incorporated into blood 
clots at a concentration that does not affect the tPA-mediated clot 
dissolution rate, while enabling quantitative assessment of the clot 
dissolution rate.  Clots were formed from a mixture of whole rabbit 
blood, 1 M calcium chloride, human thrombin and varying amounts of 
microcrystalline cellulose.  Washed clots in tubes were weighed at 30, 
60 and 90 minutes after addition of recombinant tPA (rtPA) in porcine 
plasma (100 µg/ml).  Clot echogenicity at each time point was 
assessed using a Philips HDI 5000 ultrasound system using an L12-5 
linear array probe.  Recorded Images underwent videodensitometric 
analysis that converted image reflectivity to mean gray scale values 
(MGSV).  We found that 1.12 mg/ml of microcrystalline cellulose in 
rabbit blood clots (0.2 ml) provided optimal echogenicity without 
affecting clot dissolution rates (0.3-0.6 mg/min.) caused by rtPA.  The 
clot dissolution rate measured by videodensitometric analysis of the 
echogenic clots agreed well with that determined by mass loss 
measurements (0.28% 0-time value/minute).  This method will be 
important for demonstrating in vivo efficacy with potentially 
decreased hemorrhagic effects provided by directed tPA vehicles 
relative to systemic administration of the free thrombolytic. 
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Introduction 
Stroke ranks second as a cause of death 

worldwide and third as a cause of lost disability-
adjusted life-years in high-income countries. In the 
United States, 87% of strokes are caused by focal 
cerebral ischemia due to arterial occlusion (ischemic 
stroke) 1,2 .  Ischemic stroke is the most common acute 
neurologic illness. Stroke-related costs in the United 
States came to nearly $53 billion between 2017 
and 20182.  The introduction of recombinant tissue 
plasminogen activator (rtPA, Alteplase) as a clinical 
thrombolytic agent for acute ischemic stroke (AIS) 
25 years ago was a breakthrough in the treatment 
of strokes caused by clots in the carotid and 
cerebral arteries 3-5.  However, free tPA’s 
hemorrhagic side effects and the difficulty treating 
clots in the carotid and cerebral arteries have 
limited the usefulness of free tPA in treating acute 
ischemic stroke 6-8.  Ultrasound has been found to 
improve the effectiveness of rtPA, but hemorrhagic 
side effects, which can be fatal, continue to limit 
optimization of the protocols 9.  Because rtPA 
produces low rates of complete recanalization and 
increased rates of symptomatic intracerebral 
hemorrhage (ICH), only 2-5% of acute ischemic 
stroke patients in the United States are given 
intravenous rtPA treatment 10-13.  The use of 
intracranial Doppler ultrasound treatment as an 
adjunct to intravenous rtPA was shown to increase 
recanalization (49% vs. 30% rtPA only, p = 0.03) 
within 2 hours of rtPA administration in acute 
ischemic stroke patients in the CLOTBUST study 14.  
However, the improved recanalization did not 
persist, as indicated by neurological outcome 3 
months after treatment (42 vs. 29%, p = 0.20). 
 We have developed a novel therapeutic 
carrier, intrinsically echogenic liposomes (ELIP), that 
can serve not only their original purpose as an 
ultrasound contrast agent, but also as a vehicle for 
ultrasound-triggered controlled drug release 15,16.  
In addition, we have successfully loaded rtPA into 
these carriers, creating an ultrasound-controlled 
thrombolytic drug-delivery nanotechnology 17.  
TELIP’s thrombolytic activity is comparable to that of 
free tPA and is enhanced by both continuous wave 
and pulsed Doppler ultrasound 17-19.  A preliminary 
in vivo study using a rabbit aorta clot model 
demonstrated that Doppler ultrasound enhances 
TELIP thrombolysis significantly in 15 minutes 20.  A 
follow-up study using this model showed that TELIP 
has the thrombolytic efficacy of locally delivered 
rtPA 21.  This formulation may overcome the 
longtime problems of tPA treatment of acute 
ischemic stroke and significantly improve 
thrombolytic therapy by combining the self-
targeting TELIP construct with ultrasound tPA activity 
enhancement22.   

 An appropriate approach to establishing 
the thrombolytic efficacy of TELIP, with and without 
transcranial pulsed Doppler ultrasound, relative to 
free rtPA in the treatment of acute ischemic stroke 
would be to test it in a rabbit embolic stroke model.  
This model was used to optimize rtPA therapy for 
acute ischemic stroke three decades ago 23.  
Treatment efficacy is evaluated by in situ 
measurement of thrombus dissolution rate and 
middle cerebral artery (MCA) flow rate, as well as 
behavioral measures of stroke recovery and brain 
infarct volume.  The original study employed 
radiolabeled thrombi monitored by quantitative 
scintigraphic analysis.  Magnetic resonance imaging 
(MRI) is currently the method of choice for 
monitoring the rate of in vivo thrombus dissolution in 
real time, but requires specialized instrumentation 
and experienced investigators. 
 To devise a method for monitoring 
thrombus dissolution that is relatively simple and 
inexpensive, while avoiding the use of radioactive 
materials, we aimed to demonstrate the feasibility 
of monitoring clot dissolution rates using 
quantitative ultrasound imaging techniques.  This 
was accomplished by videodensitometric analysis 
of ultrasound contrast agent-impregnated clot 
sonograms at various times.  This method has the 
additional advantage of utilizing the same 
equipment required to insonify the thrombus during 
TELIP administration. 
 
Materials and Methods 
Optimization of recombinant tPA-Mediated Clot 
Dissolution 

Clots were formed in 1.5 ml Eppendorf 
tubes (Fisher Scientific, Waltham, MA) by mixing 
100 µl whole rabbit blood with 25 µl 1 M calcium 
chloride, 50 µl 0.02 M phosphate-buffered saline, 
pH 7.4 (PBS), and 25 µl thrombin (2.5 U), and 
incubating at 37o C for 2-18 hours.  Varying 
concentrations (60, 80 or 100 µg/ml) of 
recombinant tissue plasminogen activator (rtPA; 
Alteplase, Genentech, South San Francisco, CA) in 
500 µl porcine plasma (as a source of plasminogen) 
was added to pre-weighed clots; replicate (3X) 
clots were washed with PBS and weighed with an 
OHAUS analytical balance (OHAUS Corp., Pine 
Brook, NJ) at 30, 60 and 90 minutes after addition 
of rtPA.  The rtPA concentration giving the best 
linear clot dissolution rate over 90 minutes was 
chosen for subsequent studies.  
Determination of Non-Interfering Ultrasound 
Contrast Agent Dose  
 The echogenicity of microcrystalline 
cellulose (MCC; Sigma-Aldrich, St. Louis, MO) 
suspensions was confirmed by intravascular 
ultrasound (IVUS).  Recorded images were 
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subjected to videodensitometric analysis that 
converted image reflectivity to mean gray scale 
values (MGSV) as previously described 24,25.  
Varying volumes (10-30 µl) of a 7.5 mg/ml MCC 
suspension in water were added during clot 
formation, with reduction of the PBS volume by a 
corresponding amount.  Clot echogenicity at each 
time point was assessed with a Philips HDI 5000 
ultrasound system using an L12-5 linear array 
probe 21 positioned laterally to tubes placed in an 
anechoic chamber.  Videodensitometric analysis 
was performed. Alteplase (100 µg/ml)-mediated 
clot mass loss rates were determined as described 
above.  
Determination of Clot Dissolution Rates Based on 
Echogenicity Loss  

 Clot echogenicity loss was measured as 
MGSV decrease and % reduction (using 0.225 mg 
MCC/clot), which was compared with the clot mass 
loss rate.  
Statistics 
 Linear regressions, including fit equations 
and variance analyses of the individual points, were 
performed with SigmaPlot 10.0 software (Systat 
Software, Inc., Richmond, CA). 
 
Results 
 Of the rtPA concentrations added to clots in 
500 ml porcine plasma, 100 µg/ml provided the 
best linear dissolution rate (Fig. 1), which was 
reproducible.   
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Figure 1.  Optimization of tPA concentration.  Comparison of three concentrations: circles, solid line, 60 
µg/ml; triangles, long dash line, 80 µg/ml; squares, short dash line, 100 µg/ml.  Each point is the mean of 
3 determinations; bars = SD. 
 

Two repetitions of the dissolution curve with 
100 µg/ml rtPA exhibited good linearity and were 
nearly parallel (Fig. 2). Differences between clot 

mass loss means were not significant (p > 0.1) at 
each time point.  
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Figure 2.  Reproducibility of clot mass loss rate with 100 µg/ml of rtPA.  Filled circles: y = 0.54x + 18.0, r 
= 0.838; open circles: y = 0.78x + 26.1, r = 0.999.  Each point is the mean of 3 determinations; bars = 
SD; p > 0.1 for comparison of means at each time point. 

 
Addition of varying amounts of the stock 

microcrystalline cellulose (MCC) suspension, up to 
30 µl (0.225 mg) per clot, allowed clot dissolution 
rates similar to undoped clots (Fig. 3).  Addition of 

30 µl stock MCC suspension provided suitable 
echogenicity (Fig. 4a), which decreased linearly 
after addition of tPA with time, for up to 90 minutes 
(Fig. 4b). 
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Figure 3.  Comparison of tPA-mediated clot dissolution with addition of varying amounts of MCC stock 
suspension.  Each point is the mean of 3 determinations; bars = SD.  Solid circles, solid line: 10 µl (0.075 
mg), y = 0.453x + 80.6, r = 0.929; open circles, long dash line: 20 µl (0.150 mg), y = 0.3x + 100.5, r = 
0.778; inverted solid triangles, short dash line: 30 µl (0.225 mg), y = 0.56x + 85.6, r = 0.993. 
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Figure 4.  Measurement of clot dissolution by ultrasound imaging. a. Sonogram of MCC-doped clot (0.225 
mg/clot).  b. Monitoring of tPA-induced clot dissolution by quantitative image analysis; 0.225 mg MCC, 100 
µg/ml of rtPA.  Each point is the mean of 3 determinations; bars = SD. 
 
When clot mass loss and MGSV data were 
converted to percent clot reduction as a means of 
comparison, serial videodensitometric 
measurements of tPA-treated clots yielded 
dissolution rates at 60 and 90 minutes that were 
very similar to those found by clot mass loss 
determinations (Fig. 5).   

The dissolution rate measurements of clot 
mass loss by each method were similar. Divergence 
was noted below 60 minutes for both 
measurements.  This may indicate increased 
variability at earlier stages of the clot dissolution 
process.  

a 
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Figure 5.  Clot dissolution determined by ultrasound image analysis, relative to dissolution rates measured 
by clot mass loss (CML); 0.225 mg MCC, 100 µg/ml of rtPA. Bars = Mean ± SD, n = 3.  Closed circles, solid 
line: CML1, y = 0.29 x + 43.8, r = 0.992; open circles, dashed line: CML2, y = 0.12 x + 61.4, r = 0.978; 
triangles, no line: ultrasound imaging. 

 

Discussion 
 In this study, we have shown that a) a 
soluble ultrasound contrast agent (microcrystalline 
cellulose) can be incorporated into blood clots 
without affecting the rate of tPA-induced mass loss; 
b) the MCC-doped clots can be visualized by 
conventional ultrasound imaging methods; c) tPA-
induced clot dissolution can be monitored 
quantitatively by videodensitometric techniques; 
and d) clot dissolution rates determined by US 
monitoring are similar to those determined by clot 
mass loss measurements.  Thus, we have created a 
method for monitoring tPA-induced thrombus 
dissolution suitable for real-time measurements in a 
rabbit thrombotic stroke model. 
 Clinical studies have demonstrated that use 
of focused ultrasound plus a thrombolytic agent 
improves thrombolysis for stroke and acute 
myocardial infarction 14,26,27. This may be due to 
improved diffusion that promotes transport of drugs 
into the thrombus, reformation and opening of the 
fibrin matrix that enhances drug diffusion, clearing 
of fibrin polymers that increases the surface for 
drug interaction, or direct effects on binding of the 
agent to fibrin 28.  Ultrasound produces cavitation, 
which allows large molecules and particles to 

penetrate cells (sonoporation) 29, and this property 
is actively being investigated for drug and gene 
delivery 30-34.  Addition of a contrast agent into a 
carrier as an ultrasound nucleation agent can lower 
the threshold for these ultrasound bioeffects 35,36. 

We have demonstrated that clinical 
Doppler US increases TELIP thrombolysis, both in 
vitro and in vivo 18,19.  In a preliminary study using 
a rabbit aorta thrombolysis model, we showed 
complete recanalization 15 minutes after TELIP 
administration in rabbits receiving 5.7 MHz pulsed 
Doppler ultrasound (MI = 0.43) vs. 60% mean 
recanalization in rabbits receiving TELIP only 20.  A 
follow-up study, comparing TELIP to established 
clinical thrombolytic protocols, established that 
TELIP was at least as effective as free rtPA, with 
and without Definity cavitation, in terms of maximum 
percent recanalization within a 30-minute period 
and rate of total recanalization 24.  Pulsed 
ultrasound was used in that study to extend 
previously observed thrombolytic potentiation from 
continuous wave ultrasound to clinically relevant 
conditions.   

The Zivin rabbit stroke model 23 provided 
the basis for optimization of rtPA protocols for 
clinical ischemic stroke therapy 37.  We have 
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demonstrated the efficacy of TELIP in a rabbit 
abdominal aorta thrombus model, but a 
demonstration of both efficacy and safety in a 
stroke model is a necessary next step in preclinical 
development of the formulation.  The larger vessel 
size in rabbits should provide a better projection of 
clinical TELIP efficacy than commonly used rat 
embolic stroke models, although rat ischemic stroke 
models have been sufficient to demonstrate free 
tPA efficacy38,39.   

In addition, this rabbit thrombotic stroke 
model was used to establish the kind of safety and 
efficacy information that is required for 
translational product development and was shown 
to be clinically relevant 37.  Such a study would 
provide information needed to extend these 
findings to identify safety and efficacy of our novel 
therapeutic carrier, to define our ability to utilize 
ultrasound as a therapeutic adjunct for improved 
thrombolysis without increasing cerebral 
hemorrhage, and to perform baseline trials 
allowing the TELIP formulation and protocol to be 
extended into the clinical arena.    
 To that end, we have demonstrated in this 
study that ultrasound imaging can be employed 
quantitatively to monitor clot mass loss in real time 
during plasminogen activator-induced thrombolysis.  
This method must now be validated in vivo, 
preferably in Zivin’s rabbit thrombotic stroke model.  

Such validation will add a convenient, relatively 
inexpensive option to the currently employed 
radiotracer and MRI methodologies. 
 
Conclusion 
 We have devised a method of monitoring 
thrombolytic-induced clot mass loss by ultrasound 
imaging using a non-gas containing contrast agent 
introduced into the thrombus and have shown that 
dissolution rates in the presence of tPA measured by 
this method agreed with rates determined by clot 
mass loss measurements.  This method will be useful 
in determining the efficacy of nanoparticulate tPA 
formulations in rabbit ischemic stroke models where 
MRI measurement is not available. 
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