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Abstract

1) Objectives: Machine learing for binary glioma grading have been
extensively used on anatomical MRI, especially using the BraTS dataset. The
relevance of radiomic criteria based on multimodal imaging, including
diffusion, perfusion and spectroscopy data is to be explored, as multimodal
datasets are scarce, and there is no common benchmark for performance
comparison.

2) Material and methods: Poitiers University Hospital provides 123
multimodal patient data. We computed 124 features and let a recursive
feature elimination algorithm (RFE) yield a relevant, reduced subset of
features. We trained a SVM classifier on this subset. We proposed a method
to adapt the BraTS dataset to allow performance comparison with the
literature. We got a performance reference point by training on anatomical
data only, and showed improvements when multimodalities were added. We
explored the feature relevance through the RFE subset. The RFE subset is
not constant and induce variability in the performances. To smooth the
variability, we applied the RFE algorithm 100 times and incremented the
selected features, resulting in a global feature ranking. We also show the best
classifier reached on these 100 trainings and its feature subset.

3) Results: The best classifier reached 86.5% accuracy, with a mean accuracy
on 100 trainings of 78.6%. The rankings shows that anatomical and perfusion
sequences are the most relevant for glioma grading, especially T1 post-
gadolinium, cerebral blood volume and flow. Intensity and texture features
are frequently selected, while anisotropic diffusion coefficient, time to peak
and mean time transit mappings seem irrelevant.

4) Conclusion: Multimodal radiomics improve the classification and are
consistent with the radiological analysis.
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1. Introduction
Gliomas are the most common type of brain
tumor, linked to a high mortality within a short

survival  range. Gliomas are highly.
heterogeneous  tumors, and optimal
treatment depends on identifying and

locating the highest-grade disease present.
This is why the quantitative analysis of images
acquired for the diagnosis and treatment of
patients with brain tumors has increased
significantly in recent years, particularly using
machine learning methods and, more
specifically, deep learning algorithms!™. The
value of imaging in patients with brain tumor
can be enhanced if pathologic data can be
estimated from imaging

input  using

predictive  models, knowing  imaging
techniques for diagnosis and treatment of
patients are often not validated against the

histopathologic criterion standard.

According to the World Health Organization
(WHO), glioma development is described by
their grade, ranging from | to IV, with low
grade gliomas (LGG) being grades I-ll and
high-grade gliomas (HGG) being grades llI-
IV, But if glioma grading using machine
learning is an active field, only a few studies
use multimodal Magnetic Resonance (MR)
data,

imaging, and

including diffusion and perfusion

magnetic resonance
spectroscopy (MRS)®L. The reference dataset
for this task is the MICCAI Brain Tumor
Segmentation (BraTS) challenge dataset!®®,
which provides 285 patients with 4 anatomical
sequences: T1, T1 contrast-enchanced (T1c),
T2 and T2 FLuid Attenuated
Recovery (FLAIR). However, this dataset is not

divided into HGG and LGG according to the

Inversion

WHO, but into High Grade Gliomas
(glioblastoma multiform, WHO-IV) and Lower
Grade Gliomas (WHO-I, II, lll). Consequently,
most works on this task are not aligned with a
WHO-defined

otherwisel”'.  |n a

system, despite claiming

previous study, we
proposed a new ground truth to align the
BraTS dataset on the WHO definition, to use
it as a reference dataset for a WHO-defined

binary grading task!"".

But anatomical data lack specificity for a
Multimodal MRI,
including perfusion, diffusion and MRS data,

robust classification!'?.

gives important information for binary
grading™. In order to create an alternative to
the BraTS dataset,

proprietary

some authors use

datasets, with their own
acquisition protocol. They provide more
sequences and more MR modalities, but with
a lack of patients. For example, Citak-Er et al.
use a dataset of 43 patients"¥ and Vamvakas
et al. use only 40 patients™. The lack of a
large and open multimodal dataset prevents
benchmark to

creating a performance

compare different publications.

Poitiers University Hospital, France, has led a

3T multimodal pre-operative acquisition
protocol with 123 histologically confirmed
glioma patients, 46 LGG and 77 HGG. Using
these data, we created a complete processing
pipeline from the acquisition to the automatic
classification.  This involves

pipeline

multimodal registration, brain and tumor
segmentation, intensity normalization, feature
extraction, feature selection and classification
[16-17]

using Support Vector Machines (SVM)

In this paper, we will review the current

performances in binary glioma grading. We
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will describe our acquisition protocol and
processing pipeline. We will train and

evaluate our classifier on the Poitiers

University Hospital multimodal dataset,
analyze the feature ranking produced by the
feature selection and link this ranking to the
conclusion  will

radiologic analysis. The

present some perspectives.

2. Material and methods
2.1. Multimodal imaging

Radiologists can reach a binary estimation of
glioma grades from anatomical datal’®,
Some visual features, such as gadolinium
enhancement, necrosis, mass effect, or FLAIR
inhomogeneity can be read as clues for a
high-grade label. Questions can be raised
about the robustness of these features, as it is
known that LGG, which are usually non-
enhancing after gadolinium injection, can
show enhancement patterns??. Therefore,
MR data can

diagnosis with complementary information''-
26]

multimodal improve the

Fitting the arterial input function on perfusion
imaging give parametric maps such as
cerebral blood volume (CBV) or cerebral
blood flow (CBF), mean transit time (MTT) and
time to peak (TTP). The ratio between the
tumor region of interest (ROI) and contro-
lateral healthy tissues give the relative CBV
(rCBV) and CBF (rCBF) values, showing hypo
or hyper-perfusion in the lesion. Diffusion

tensor imaging (DTI) generates maps of the

1

https://www.med.upenn.edu/sbia/brats2018/data
html

anisotropic  diffusion  coefficient  (ADC),
fractional anisotropy (FA) and the b1000 trace
image. Proton MRS at short (35 ms) and long
(135 ms) echo time (TE) give metabolic
concentrations such as choline (Cho), creatine
(Cr), N-acetylaspartic acid (NAA), lipids (Lip) or
(Lac),

between patients by calculating metabolic

lactates which can be compared

ratios.

2.2. Data

We used two datasets: Poitiers University
Hospital dataset and the
anatomical BraTS 2018 dataset’.

multimodal

Using Poitiers University Hospital Magnetom
3 Tesla
Erlangen, Germany), we created a dataset of
123 patients, divided in 46 LGG and 77 HGG,
confirmed by histo-molecular analysis. For

Skyra (Siemens Healthineers,

each patient, we measured the following

modalities and sequences:  anatomical
imaging with T1, T1 post-gadolinium (T1c)
and T2 FLAIR; diffusion imaging with ADC, FA
and b1000; perfusion imaging, with CBF,
CBV, MTT and TTP maps; and proton MRS for

short and long TE.

In the existing literature, most authors use the
BraTS 2018 dataset. This dataset provides 285
patients with 4 anatomical sequences: T1,
T1¢, T2 and T2 FLAIR. But this dataset is not
divided according to the WHO definition of
LGG and HGG. We proposed in a previous
study a radiological ground truth to align this
dataset on a WHO-based system and showed
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that our proposed ground truth has little
impact on the performances, despite an

important class imbalance!"".

We propose to adapt the BraTS dataset to get
a performance reference point for our study
on our multimodal data. We will train and
evaluate our classifier on the BraTS dataset
with 4 and 3 anatomical sequences, removing
T2 data that we do not have at Poitier
University Hospital. We will then use our
radiological ground truth to train on a 3
sequence WHO-aligned BraTS dataset. This
training provides a reference point to evaluate
our performances on Poitiers University
Hospital's anatomical data. Finally, we will
then train our classifier on the multimodal data
and see how multimodality impacts the

classification.

2.3. Features

We model the radiologic analysis through two
types of features: image computed features
and manual measurements. We used
Pyradiomics®! to extract image features
aligned with the imaging biomarkers

standardization initiative (ISBI)?8.

For each patient, we computed 7 shape
features, 6 histogram-based intensity features
and 5 texture features. A ROl of tumor
segmentation is needed for feature
extraction. The shape features are only
computed once per patient while the intensity
and texture features are computed on each
MR sequence. The shape features include
length of major and minor axis, maximum 3D
diameter, elongation, flatness, sphericity, and
surface area. The histogram-based intensity
skewness, kurtosis,

features are mean,

contrast, energy, and entropy. For texture
analysis we used the correlation of the gray
(GLCM),
coarseness, inverse difference moment (IDM),

level co-occurrence matrix
complexity and strength. This gives us 117

automated image features.

The manual measurements are the rCBV and
rCBF values and 5 metabolic ratios: Cho/Cr,
Cho/NAA, NAA/Cr, Lac/Cr at long echo time
(TE, 135ms) and Lip/Cr at short TE (35 ms).
Therefore, each patient is described by 124
features.

These acquisitions are time and resource
consuming. Some sequences were missing for
some patients, creating sparse data. We fix
these sparse data by assigning the mean
value of the corresponding feature.

2.4. Binary classification, current performances
Common evaluation metrics used for this task
are precision, sensitivity, and specificity. For
binary glioma grading, the accuracy ranges
from 84% to 95.5% depending on the method
and dataset used®. Deep learning methods
gives interesting results but lacks intelligibility.
We want to use a machine learning methods
to have an intelligible classifier. Computing a
large set of features increases the
dimensionality. This is why many authors use
a feature selection algorithm and train on the

resulting set.

Computing a large set of features increases
the dimensionality. Most authors use a feature
selection algorithm, like the SVM Recursive
Feature Elimination (SVM-RFE) algorithm, and
train on the resulting set®. The SVM-RFE
returns a subset of features with high
informational value and reduce

helps
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dimensionality. This algorithm gives good

results associated with a linear kernel.

2.5. Preprocessing pipeline
We designed a preprocessing pipeline for
multimodal sequences, including registration,

brain, and tumor segmentation.

Using multimodal MRI data requires the
implementation of a complete processing
pipeline. These steps include multimodal
(rigid

oversampling to a common resolution), brain

registration transformations  and
extraction, intensity normalization and tumor
segmentation. The Image Tool-Kit?=% and
FMRIB Software Library (FSL)®" give tools for
registration, brain extraction, oversampling,
and intensity normalization. Each step of our
pipeline has been visually validated by an
expert radiologist.

The rigid multimodal registration groups a
translation followed by an affine transform,
with a Powell optimizer®?. We also resampled
each image on a common resolution, aligned
with the BraTS 2018 acquisitions.

Brain segmentation is performed using the
Brain Extraction Tool (BET)®. We got the best
segmentation on T1c images and applied the
segmentation mask on the other registered
brain

sequences to get multimodal

segmentation.

The intensity normalization is computed
through histogram matching. We chose the
patient with the highest intensity amplitude of

the BraTS dataset as the reference histogram.

The features are extracted from the tumor
ROI. Good segmentation results are reached

using deep learning networks®¥, especially

with U-net based methods like Isensee et
al.B%, This method is among the best results in
the BraTS 2017 challenge with an average
Dice score of 0.896.

We have trained the U-net proposed by
Isensee et al. on the BraTS data, using only
the 3 anatomical sequences available at the
Hospital of Poitiers, i.e., T1, T1c and T2 FLAIR.
We use the 3D patches extraction proposed
by Fenneteau et al.P¥ for better memory
allocation. With one sequence less than the
original implementation by Isensee et al., we
reached an average Dice score of 0.804. Our
network gives good visual results, and these
segmentations has been validated by an
expert radiologist.

2.6. Classifier

We want to use an intelligible classifier and
analyze its performances through feature
selection and feature ranking. We used a
20\% test set and a 5-fold cross-validated
SVM-RFE for feature selection, followed by a
SVM  with grid
hyperparameters. We tested two kernels

search to optimize
(linear and radial) and 5 values of the
regularization hyperparameter ranging from
0.1to 2.

We let the SVM-RFE algorithm choose the
best number of features for training. This
exploration phase led to a high variability in
the classifier performances. We propose to
smooth this variability by doing 100

independent training and average the

performances (precision, sensitivity, and
specificity). We also show the best precision

reached on these 100 independent trainings.

5
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Each training gets its own subset of features
by the SVM-RFE. We will analyze the selection
frequency of each feature to see which feature
is relevant for our problem in a global feature
ranking.

3. Results

3.1. Performance Analysis

Training on the BraTS 2018 dataset gives a
precision of 85.8 + 4.1%, within performances
in the state of the art®. Training on 3
sequences gives similar  performances,
showing that the T2 sequence is not important
for binary grading. Using our WHO-aligned
ground truth drops slightly the accuracy. As
this ground truth has an important class
results show that our

imbalance, these

learning is robust.

We get our performance reference point by

training on the anatomical sequences
available at Poitiers Hospital. This gives a
lower precision with only 77.5 = 6.8%. The
average sensitivity stays stable with 88.5 +
6.2%, and the specificity drops to 60.2 *
14.0%. The best classifier on 100 trainings
gets an accuracy of 81.1%. We want to see
how these values change when we add

multimodality.

Adding multimodal data leads to a 1.1\% gain
in averaged accuracy, going from 77.5 + 6.8%
to 78.6 = 6.6%. The best classifier on 100
trainings reaches 86.5\% accuracy; a strong
improvement compared to anatomical data
only. We observe a slight decrease in
sensitivity, from 88.5% = 6.2% to 85.9% =
7.9%. The largest improvement is reached for
the average specificity, reaching 67.3 =

15.0%.  Multimodality ~ improves  the

classification, but these improvements are not
as important as we would expect from the
state of art, where multimodal SVM often
reached 90% accuracy. Extended results are
shown in Table 1.

4. Discussion

4.1. Feature ranking

We want to analyze the ranking produced by
the SVM-RFE. The best classifier on 100
trainings used a linear kernel and a subset of
23 features, Table 2. This ranking corresponds
to the weights of the normal vector of the SVM
hyperplane, as described by Guyon et al.?é.
We will also analyze the selection frequency of
each feature on 100 trainings. This second
ranking gives us a global ranking of all 124
features. Both rankings give information
about which features and sequences are
relevant in the classification. We will compare
the top 23 features of this frequency ranking,

Table 3, with the 23 features of Table 2.

These rankings share 14 common features,
with homogeneous ranks. Therefore, we will
read the

ranking on 100 independent

trainings as robust global alternative ranking.

Half of the features in Table 2 are anatomical
sequences, mostly T1c. In the top ranked
features, 3 out of 5 are intensity features
computed on anatomical sequences. These
results are coherent with the radiological
analysis: the T1c contrast is the top feature,
and HGG are

gadolinium enhancement next to necrotic

contrasted lesions with

regions, while LGG are homogeneous.
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Multimodal data

Groundtruth Accuracy! Sensitivity® Specificity* Best
accuracy?
BraT§ 2018 85,8 £ 4,1% | 89,5 £ 4,5% 75,4 + 9,7% 89.,5%
4 sequences
BraTS 2018 | 86,0 = 4,2% | 894 £45% | 75,9 £ 9,6% 87,7%
3 sequences
WHO-aligned
BraTS 2018 82,1 £ 4.1% | 84,0 £ 5,5% 67,1 £ 9,7% 84,2%
3 sequences
Poitiers Hospital | 77,5 £ 6,8% | 88,5 £ 6.2% | 60,2 £ 14,0% 81,1%
3 sequences
Poitiers Hospital | 78,6 = 6,6% | 85,9 £ 7.9% | 67.3% £ 15.0% 86,5%

'Mean performances on 100 trainings

2Best accuracy reached on 100 trainings

Table 1: Performances results. Each value reached on 100 independant training is given with

its standard deviation.
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Table 2: Ranking from the best classifier reached on 100 independant training

Rank Feature Sequence Modality
1 Contrast Tlc Anatomical
2 Entropy Tle Anatomical
3 rCBV CBV Perfusion
4 Skewness T1 Anatomical
5 Complexity CBV Perfusion
G sLCM correlation CBV Perfusion
7 Mean T2 FLAIR | Anatomical
8 IDM CBV Perfusion
9 DM Tle Anatomical

10 Complexity CBF Perfusion
11 sLCM correlation | T2 FLAIR | Anatomical
12 IDM T1 Anatomical
13 Skewness b1000 Diffusion
14 Mean Tle Anatomical
15 Skewness CBV Perfusion
16 Lac/Cr CSI MRS

17 Energy CBV Perfusion
18 sLCM correlation FA Diffusion
19 Kurtosis FA Diffusion
20 Kurtosis T2 FLAIR | Anatomical
21 sLCM correlation TTP Perfusion
22 Entropy b1000 Diffusion
23 Entropy T1 Anatomical
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Rank Feature Sequence Modality Frequency?
1 Contrast Tle Anatomical 99
2 rCBV CBV Perfusion 94
3 Entropy Tlc Anatomical 86
4 GLCM correlation CBV Perfusion 82
5 IDM T1 Anatomical 81
6 Lac/Cr CSI MRS 78
7 IDM Tle Anatomical 69
8 IDM CBV Perfusion 67
9 Skewness T1 Anatomical 63

10 Kurtosis Tlc Anatomical 62
11 Kurtosis CBV Perfusion 5%
12 rCBF CBF Perfusion 55
13 SLCM correlation FA Diffusion o4
14 GLCM correlation CBF Perfusion H4
15 Mean Tlc Anatomical 52
16 IDM FA Diffusion 46
17 SLCM correlation MTT Perfusion 43
18 Entropy T1 Anatomical 42
19 Skewness Tle Anatomical 41
20 Strength b 1000 Diffusion 41
21 Complexity h1000 Diffusion 40
22 Mean T2 FLAIR | Anatomical 39
23 Kurtosis FA Diffusion 32

'Number of occurence in the RFE subset on 100 independant trainings

Table 3: Ranking from 100 independant training

Perfusion features are less frequent than  the relevance of these manual measurements
anatomical features. Most of them are from  for the classification task. TTP and MTT maps
CBV and CBF maps. The rCBV value is among are only present once in both rankings, so we
the 3 best features in both rankings. The rCBF ~ can question their relevance for binary
value appears in Table 3 and has been  grading.

selected 55 times. These ranking underline

Medical Research Archives | https://esmed.org/MRA/index.php/mra/article/view/3793 9
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Regarding diffusion imaging, we note that the
ADC is absent from both rankings, which is

surprising as ADC is visually discriminative, as

shown in Figure 1.

Figure 1: ADC maps of (left) a LGG patient and (right) a HGG patient. The HGG patients

shows high intra-tumoral ADC values which are not visible for a LGG patient. Therefore,

ADC should appear as a discriminative sequence.

Most features in both rankings are intensity-
based features, followed by texture features.
No shape feature appears in both rankings.
Every type of intensity features appears,
mostly from anatomical T1c and T1 sequences,
which underlines the relevance of such
features. Dissimilarly, coarseness and strength
features are always absent. These texture

features are not interesting for binary grading.

Using 100 independent training allow us to
get a global feature ranking, as seen in Figure
2. This
occurrences of each 124 features in the SVM-

Figure shows the number of
RFE subset on 100 independent trainings.
From the shape of this histogram, we can tell

that some features were never selected and

that some others were highly solicited. The
most selected feature, T1c contrast, has been
selected 99 times out of 100. 15 features were
never selected in the SVM-RFE subset. Most
of them were texture features, namely
strength and coarseness. This result shows
very clearly that these texture features are not

interesting for glioma grading.

Two other features were never selected: the
T2 FLAIR contrast and CBV contrast. The
absence of the T2 FLAIR contrast is surprising,
as HGG can have a heterogeneous aspect in
T2 FLAIR, resulting in an increased contrast
within the lesion.
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Histogram of occurence of the RFE-selected features on 100 independant trainings

100

MNumber of occurrence

0

I

YOS DR R R RDPESTERPLAN SRR PG PSP Y

Features sorted in decreasing order of appearance

Figure 2: Features sorted in decreasing order of appearance

5. Conclusion
Using multimodal MRI data from Poitiers
University Hospital, we proposed a complete
processing pipeline ranging from the
acquisition to the automatic classification.
This pipeline includes automatic multimodal
registration,  brain

extraction, intensity

normalization, tumor segmentation, and
features computation. Two types of features
are still based on manual measurements:
metabolic ~ SRM

contralateral perfusion values.

ratios and  relative

To the best of our knowledge, our work is the
only one to use multimodal data and provide
a performance reference point with the BraTS
database, which is the most popular dataset
used in glioma grading. This allows us to
compare our classifier result with the current
show the

state-of-art and impact  of

multimodal data on our performances.

Adding multimodal data, we observed a small
gain in mean intensity compared to learning
on anatomical data only. The best impact was
on specificity. Therefore, we can say that
adding multimodal information has a positive
effect on the performances.

We proposed an analysis of our classifier
through feature ranking. We analyzed two
rankings: one produced by 100 independent
trainings and the other by the best classifier
reached on these trainings. Both rankings
produced comparable results, and we used
the analysis over 100 trainings as a global
ranking for all 124 features. This global
ranking allows us to deepen the feature
analysis, showing that strength and
coarseness are not interesting features for this
classification task. The same result appears for

ADC, MTT and TTP sequences.
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Our ranking also produced interesting result
for radiologists, as it highlights anatomical
intensity-based features, such as T1c contrast,
as relevant for binary grading. Therefore, we
showed how machine learning can be used as
an exploration tool and produce a consistent

analysis of the radiological process.

To extend this study, our current work deals
with comparison of this approach with
convolutional neural networks classification,
and by considering the explainability of the
algorithms, essential point for health datal®”.

Moreover, we now use imaging coming from

a Siemens 7Tesla MRI Scanner, intalled in
Poitiers since December 2019. Our Siemens
Magnetom 7Tesla Ultra High Field 7 Tesla
Magnetic Resonance Imaging scanner is one
of only three in France, and the lonely one for
clinical use as well as for research. Indeed,
MAGNETOM Terra is the first 7T scanner
released for clinical use in Europe and the US
and the Universitary Hospital in Poitiers, was
the first in the world, in december 2021, to
accommodate over 2000 patients for clinical
use. This is a huge opportunity to develop our
Al systems for the benefit of patients and

physicians.

12
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