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ABSTRACT 

 
Alpha-fetoprotein is an oncofetal protein the embryo 

produces during fetal development. The protein serves two critical 
functions simultaneously: it delivers nutrients to growing embryo cells 
and immature myeloid-derived suppressor cells, so the mother’s 
immune system doesn’t attack the embryo. The protein is present in 
minuscule amounts in adults and elevated alpha-fetoprotein levels 
serve as pregnancy or tumor markers. Exogenous alpha-fetoprotein 
has a new application as an immunotherapy drug. It can deliver drugs 
in a natural shuttle manner to myeloid-derived suppressor cells and 
stimulate them to calm the hyperactive immune response during many 
physiological and pathological conditions. On the other hand, alpha-
fetoprotein loaded with toxins kills myeloid-derived suppressor cells 
and unleashes natural killer cells and cytotoxic lymphocytes to erase 
cancer. Most cancers have cells that specifically bind alpha-
fetoprotein, and this protein targets chemotherapy to them also. So, 
alpha-fetoprotein with toxins combines both potent cancer 
immunotherapy and targeted chemotherapy activities. Alpha-
fetoprotein can be chemically conjugated with or bind toxins non-
covalently. Both preparations have demonstrated superior efficacy 
and safety compared to chemotherapy alone. Alpha-fetoprotein-
toxin immuno/chemotherapy is not personalized. There is no need to 
preselect patients for cancer treatments as they have elevated 
myeloid-derived suppressor cell levels. The anti-cancer efficacy of 
porcine alpha-fetoprotein non-covalent complexes with selected 
toxins administered orally is a remarkable discovery that needs 
research. Cancer treatment and prevention are different issues, and 
they could need different approaches. Alpha-fetoprotein 
administration with drugs or toxins could be as effective in early 
cancer and metastasis prevention as mifepristone pills in pregnancy 
prevention. 
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Introduction 
Alpha-fetoprotein (AFP) is a major plasma 

protein produced by the yolk sac and the liver 
during embryo and fetal life. The protein is thought 
to be the fetal counterpart of serum albumin, and 
the AFP and albumin genes are present in tandem 
in the same transcriptional orientation on 
chromosome 4. AFP stimulates cell divisions and 
differentiation by transporting molecules in a shuttle 
manner intracellularly via the AFP receptor (AFPR). 
AFP controls and enhances the genetic program 
realization by up-regulating the expression of the 
proteins in the AFP-binding cells and dramatically 
influences their functional activity and metabolism.1–

3 AFPR is a glycosylated protein, it is maximally 
expressed in immature, undifferentiated fetal cells 
and tissues, as well as in most cancer cells.4 A 
putative 65 kDa AFPR was isolated5, although it 
remains uncharacterized. The AFP theme is well-
covered in the literature.6–10 

Mothers’ myeloid-derived suppressor cells 
(MDSCs) are AFPR-positive. MDSCs are small 
heterogeneous cell populations of immature 
myeloid cells that profoundly suppress natural killer 
(NK) cell– and T cell–mediated antitumor immunity 
and exert robust immunosuppressive functions. 
MDSCs consist of two major subsets: monocytic 
MDSCs (M-MDSCs), and granulocytic MDSCs (G-
MDSCs).11 MDSCs in pregnancy play a critical role 
in a balanced immune system at the feto-maternal 
interface.12 They facilitate maternal-fetal immune 
tolerance.13 Regulatory T cells (Tregs) also have a 
tolerogenic function in pregnancy and cancer.14 
Nevertheless, Tregs are subordinated to 
monocytes/macrophages, which are more potent 
than lymphocytes in immune suppression. 

MDSCs play an orchestrating role in 
pregnancy, cancer as well as in disease settings such 
as autoimmunity, transplantation, bacterial, viral, 
and parasitic infections, sepsis, obesity, trauma, 
stress, vaccination, and aging which elevate MDSCs 
levels.15,16 

The immune response can be adjusted by 
three major players: MDSCs, AFP, and AFP-binding 
drugs. AFP with an anti-inflammatory drug is 
beneficial in settings where cellular immunity is 
hyperactive. On the other hand, AFP-toxin 
complexes or AFP-toxin conjugates serve as 
targeted chemotherapy and targeting MDSCs - as 
cancer immunotherapy. Cancer immunotherapy 
harnesses the power of the immune system to 
recognize and attack cancer cells. Immunotherapy 
is better tolerated than chemotherapy and 
radiation therapy. It provides long-term protection 
due to the immune system memory that allows it to 
recognize and attack metastasis. 

MDSCs are naturally generated in the bone 
marrow from hematopoietic stem cells or can be of 
exogenous origin. They are being exploited as 
therapeutic agents to reduce damaging cellular 
immunity. Potent AFP-binding drugs are available. 
Recombinant AFP is going to be a revolutionary 
immunotherapy drug registered soon. All can be 
used for the treatment of autoimmune diseases 
(ADs) and cancer.17 

 
Alpha-fetoprotein 

With a minimal amount (< 0.2 µg/mL), AFP 
normalizes immune system responses so the mother’s 
immune cells don’t attack the embryo. It is most 
surprising when the embryo is an alien to the 
surrogate mother. The power of the immune 
response is regulated by monocytes/macrophages. 
AFP did selectively induce a rapid downregulation 
of the MHC class II antigens of monocytes.2 AFP 
suppresses immune responses via intrinsic factors 
(e.g., the abundance of different isoforms, 
glycosylation patterns, etc.), as well as extrinsic 
factors such as binding ligands (e.g., various 
hormones, prostaglandins, fatty acids).18 

Nutrient delivery from the mother to the 
embryo is another AFP critical function. 

AFP has several glycosylated isoforms. In 
contrast, porcine AFP (pAFP), which is close to but 
not identical to human AFP with a high homology of 
the amino acid structure and similar immunologic 
properties, has no micro-heterogeneity.19 Mono-
type glycosylated pAFP has both 
immunosuppressive and nutrient delivery activity. 
AFP has at least two faces combining 
immunosuppressive and delivery functions (Fig. 1).  

 

 
Figure 1. Yanus statue with two faces (Wikipedia). 

 
Though AFP has intrinsic immunosuppressive 

activity, the numerous ligands, rather than the AFP 
itself, suppress immune system activity in pigs and 
humans. 

An AFP-mediated supply of essential 
nutrients elevates the activity of MDSCs. For 
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example, the administration of polyunsaturated 
fatty acids (PUFAs) strikingly enhances both the 
expansion and suppressive activity of mouse G-
MDSCs.20 AFP binds PUFAs metabolites like steroid 
hormones, leukotrienes, prostaglandins, etc., while 
prostaglandin E2, a principal mediator of 
inflammation, is implicated in the promotion of many 
types of cancer. 

Myeloid cells represent the dominant driver 
of response or resistance to cancer therapy. MDSCs 
stand out as promising targets for the development 
of novel immunotherapeutic regimens with superior 
efficacy. They prevent both innate and adaptive 
immunity to erase cancer. It is important to find the 
most efficacious treatment regimens and their 
combinations.21-23 Myeloid cell targeting can 
become a key foundational approach to an overall 
strategy for improving tumor responses to 
immunotherapy.24 

Adjusting the MDSCs activity in cancer and 
other immune disorders/diseases without unduly 
comprising any normal physiological function can be 
done with AFP or AFP with AFP-binding drugs.  
 
AFP as a shuttle 

AFP enters the maternal bloodstream and 
picks from albumin essential nutrients needed by a 

rapidly growing embryo. AFP (69 kDa) shuttles 
dozens of ligands (<2 kDa) during its five days of 
half-life and an hour to unload a ligand in the cell.25 
Monocytes26 and cancer cells can secrete and 
absorb AFP-ligand complexes.27 AFP found in 
monomeric as well as dimeric and trimeric forms. 
There are three separate and distinct binding 
regions for a) retinoids, b) PUFAs and estrogens, 
and c) dyes, metals, and tryptophan methyl esters.28 
AFP binds a compendium of different ligands by 
these sites.29 

Albumin is in a massive excess in the 
mother’s blood (35–55 mg/mL) compared to AFP 
(<200 ng/mL), and both delivery proteins compete 
for the surface-bound ligands. The PUFA-binding 
site is a hydrophobic cavity (Fig. 2) that serves as a 
natural nano-container hiding inside 1-2 
hydrophobic ligands. Albumin cannot extract the 
ligand from the hydrophobic cavity because of the 
neutral pH in the blood. Unlike natural estradiol and 
estrone, AFP strongly binds the synthetic estrogen 
diethylstilbestrol (DES), which fits the AFP 
hydrophobic cavity.30 DES with AFP can cross the 
placenta and become an embryo toxin/teratogen. 
Cortisol and dehydroepiandrosterone may bind 
AFP and adjust the activity of monocytes/ 
macrophages.31 

A B C 
 

Figure 2. Serum albumin (A), human (B), and porcine (C) AFP 3D structures.32 The hydrophobic cavity is in the 
middle of the AFP protein. 

 
Like oxygen binding changes the 

hemoglobin conformation, PUFAs change AFP 
conformation33 and isoelectric point from 5.3 to 4.7 
leading to higher complex stability.34,35 The outside-
binding metals can additionally stabilize AFP-
ligand complex.36 However, zinc-binding does not 
lead to global changes in the AFP structure and 
stability.37 

Like hemoglobin, AFP releases the payload 
inside the cell compartment with an acidic pH and 
returns for the next delivery round. 

AFP bound with a PUFA's metabolite (N-
AAP) in a reversible non-covalent complex affected 
the immune response to sheep erythrocytes in mice. 
Neither N-AAP itself nor AFP has no such effect.38 
 
AFP elevated levels 

An AFP level between 0 ng/mL to 40 
ng/mL is considered normal for adults. Any level 
above 40 is considered high, and any level above 
400 is considered extremely high, which increases 
the likelihood of a cancer diagnosis 

https://esmed.org/MRA/index.php/mra/article/view/4125
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(hepatocarcinoma, teratoma, and gastric cancer).39 
Some other cancers such as lymphoma, and renal 
cell carcinoma might also result in high AFP levels. 

AFP is intrinsically involved in the overall 
process of cancer progression from carcinogenesis 
to metastasis. A single AFP injection into intact mice 
activated MDSCs and has led to a 20% reduction 
of NK cells activity. MDSC activity increased when 
tumor cells were inoculated three days after an AFP 
injection. In the AFP-treated mice, the tumor mass at 
day 14 was 60% larger than in the untreated 
mice.40 

Recombinant AFP (ACT-101, Alpha Cancer 
Technologies Inc.) injections did not accelerate tumor 
growth in immune-compromised animals, but they 
slightly reduced survival compared to control.41 

Hepatocellular carcinoma (HCC) is a 
prevalent disease with a progression that is 
modulated by the immune system.42 The 5-year 
HCC-specific survival of patients not receiving 
surgery was 14.7% for AFP-negative patients 
versus 6.1% for AFP-positive patients.43 

AFP is not just a biomarker for HCC, but 
also an ardent promoter of liver cancer growth and 
progression. AFP promotes HCC cell invasion and 
metastasis via up-regulating the expression of 
metastasis-related proteins. A high serum 
concentration of AFP correlated with the metastasis 
of HCC cells in clinical patients.44 Elevated AFP 
levels significantly worse prognosis in fibrolamellar 
carcinoma patients.45 

AFP inhibits the apoptosis of AFP-binding 
tumors, macrophages, and other cells.46 AFP <0.2 
µM concentrations are observed physiologically, 
while 5–7 µM can induce the apoptosis of cancer 
cells in vitro.47 

Hereditary persistence of AFP may be 
found in individuals with no obvious pathology. 
Elevated AFP levels were stable without liver injury 
or cancer development. Thus, asymptomatic healthy 
adults with elevated serum AFP levels (>7 ng/mL) 
may play a role in expressing a protective 
phenotype against hepatic steatosis, myosteatosis, 
and sarcopenia.48 

During pregnancy, AFP in the mother’s 
blood does not cause cancer, and the cancer risk in 
pregnant and non-pregnant women is the same. 
Moreover, in one anecdotal case, early-stage 
cancer growing in a lady’s womb disappeared due 
to her pregnancy. The pregnancy hormones were 
inferred to cause this miracle and made the tumor 
disintegrate.49 Nevertheless, it could be the synergy 
action of AFP, AFP-binding pregnancy prevention 
drugs, or moderate toxins from the food/spices the 
lady took at that time. 

 
 

Natural AFP as a drug 
Symptoms of ADs: rheumatoid arthritis (RA), 

inflammatory bowel disease (IBD), Hashimoto 
disease, multiple sclerosis (MS), myasthenia gravis, 
and others go into remission during pregnancy. It 
correlates very well with the rise and fall of the AFP. 

AFP purified from the umbilical cord and 
abortion blood was registered and used as an 
immune modulation drug in the Russian Federation 
until it was withdrawn from the market for ethical 
reasons. Injections of 75±15 µg AFP50 imitate its 
blood concentration during pregnancy (75 µg/5 
liters of blood = 15 ng/mL). Clinical applications in 
hundreds of patients demonstrated excellent drug 
safety without serious adverse events. AFP was used 
to treat chronic obstructive pulmonary disease, IBD, 
Hashimoto's disease, hepatitis, and others. Although 
AFP injections lead to considerable relief from ADs 
symptoms as in pregnancy, the treatments are 
conducted in conjunction with other drugs, 
medications, or supplements. Thus, the doses of 
corticosteroids were reduced several times, pointing 
to a positive drug interaction. Or AFP could 
considerably increase muscle strength in mice due to 
interaction with steroids naturally existing in the 
blood. AFP is acclaimed not as an immune 
suppressor but as an immune regulator.8 AFP can 
normalize immune system parameters through M-
MDSCs51 and effector T cells subpopulations ratio.52 

AFP with rimantadine (173.9 Da) was used 
to treat patients with hepatitis C.53 The AFP-
rimantadine complex could decrease MDSCs levels 
which are elevated in chronic hepatitis C virus 
patients.54 AFP synergy with interferons was 
beneficial in hepatitis A55, B, C56, D57, and AIDS 
treatments.56 

58 patients with stage III-IV malignancies of 
different localizations were treated with AFP (4 
µg/kg/day, IV injections) for 4-8 weeks. No effect 
on neoplastic processes was registered in poorly 
differentiated cell tumors, nor was any antitumor 
activation of the immune system. On the other hand, 
in moderately- and high-differentiated cell tumors, 
several foci of acute immune inflammation were 
induced. AFP was assumed to induce tumor cell 
“apoptosis by freeing antigenic determinants from 
shielding antibodies” via the elimination of 
immunological enhancement of tumor growth.58 

There is an alternative to tumor cells’ 
apoptosis explanation for their elimination. AFP 
monotherapy could only worsen the disease. For the 
cancer patients’ benefit, the treatments conducted 
with chemo- and other therapies. The high response 
in patients with high-differentiated cancer cells is a 
result of AFP synergy with the chemotherapy used 
in complex therapy. Chemotherapy has a direct 
cytotoxic effect on cancer cells, and AFP-binding 
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chemotherapy depletes MDSCs, unleashing both 
innate and adaptive immunity to erase cancer cells. 

The low differentiated tumor cells can 
secrete/absorb tumor AFP (tAFP), which prevails 
over injected AFP. Both glycoproteins require PUFAs 
to potentiate the immunosuppression of monocytes 
and dendritic cells (DCs). Besides, tAFP serves as a 
shuttle for immunosuppressive hydrophilic low 
molecular weight (<3 kDa) ligands and directly 
drives NK cell death.59 In patients with low 
differentiated tumor cells, the poor outcome of the 
treatment determined by MDSCs, tAFP, AFP, and 
their hydrophobic and hydrophilic ligands and 
drugs in the tumor microenvironment (TME). 
 
Recombinant AFP as a drug 

AFP is a glycosylated protein with 16 
disulfide bridges required to make it functional. 
MM-093 is a non-glycosylated, recombinant 
version of human AFP that differs from naturally 
occurring human AFP only in one amino acid 
substitution at position 233 (glutamine for 
asparagine). MM-093 (now ACT-101) is simple in 
design, biodegradable, not immunogenic in humans, 
and has shown an excellent safety profile at doses 
much higher than the AFP concentrations in serum 
during pregnancy. Like the natural AFP, it binds 1-
2 hydrophobic molecules and delivers them into the 
AFPR-positive cells. The recombinant protein 
bioequivalence allows its use instead of the natural 
AFP to treat the same diseases.60 

AFP61 and MDSCs62 are crucial players in 
ADs and have therapeutic potential in those and 
other therapies. RA tends to remit during 
pregnancy, with more patients achieving remission 
in the third trimester, coinciding with an increase in 
levels of AFP. During the treatment of patients with 
MM-093 in several Phase I and II clinical trials (RA, 
psoriasis, and uveitis) no safety-related issues have 
been observed. 12 patients with RA, who had active 
disease and were on stable doses of methotrexate, 
received subcutaneous injections of placebo or 21 
mg/week of MM-093 (serum levels 1.3 µg/mL) for 
12 weeks and were followed for an additional four 
weeks.63 Unfortunately, MM-093 did not show any 
efficacy in Phase II clinical trials for RA. One of the 
reasons can be the wrong supporting drug. The 
patients received methotrexate, which depletes 
MDSCs64, while to suppress RA MDSCs should be 
stimulated. MDSCs reciprocally regulate 
Th17/Tregs and attenuate inflammatory arthritis 
via interleukin-10 (IL-10) in mice. MDSCs might be 
promising therapeutics for ADs including RA.65 
Increasing the population of MDSCs and 
manipulating their plasticity with microenvironment 
ligands can become a therapeutic approach for RA 
treatment.66 Like in cases with natural AFP, AFP-

binding drugs indomethacin or glucocorticoids 
(dexamethasone, prednisolone) could be used 
instead of methotrexate. AFP binds indomethacin 
potentiating its anti-inflammatory activity.67 
Amelioration of RA during pregnancy has a strong 
hormonal basis.68 Dexamethasone with its anti-
inflammatory and immunosuppressive effects, 
potentiates MDSCs to achieve immune tolerance in 
organ transplantation.69 MDSC numbers were 
positively correlated with serum IL-6 levels and the 
glucocorticoid administration index. IL-6 and 
methylprednisolone enhanced the differentiation of 
bone marrow cells to MDSCs in vitro, and MDSCs 
may regulate acute transplant rejection.70 
Glucocorticoids promote MDSCs expansion induced 
by trauma in the spleen, peripheral blood, and 
bone marrow in a murine trauma model, and 
MDSCs may be beneficial for the trauma host.71 

MDSCs play a positive and negative role 
in regulating the progression of RA, MS, IBD, and 
systemic lupus erythematosus. In certain 
pathological conditions, MDSCs act as a “double-
edged sword”, either favoring disease outcome or 
exacerbating disease progression. MDSCs promote 
T cells proliferation and increase the number of 
Th17 cells, eventually leading to immune imbalance. 
On the other hand, MDSCs increase the number of 
Tregs and B cells, thus maintaining immune 
tolerance.72 The desired balance can be adjusted 
by drug delivery to MDSCs by AFP. AFP with 
glucocorticoids or indomethacin stimulate MDSCs’ 
activity. That establishes MDSC as a potential 
therapeutic target for immune suppression during 
ADs, transplantation, trauma, septic shock73, and 
other conditions. 

AFP or AFP with drugs can normalize the 
immune response through MDSCs which are “here, 
there, and everywhere”. For example, MDSCs can 
be pro- and anti-inflammatory in COVID-19. The 
immunomodulatory activities of MDSCs are 
governed by the ongoing inflammatory process, 
and while early MDSCs are pro-inflammatory, late 
MDSCs may exert tolerogenic effects and 
contribute to the reduction of inflammation.74 The 
good and the paradox of MDSCs75 activities during 
COVID-19 could be adjusted by AFP and 
glucocorticoids or AFP-toxins depending on the 
stage and severity of the disease. 

AFP has a spectrum of activities and a 
multifactorial mechanism of action. Strong efficacy 
signals were observed in IBD in animal models as 
well as in a placebo-controlled Phase II study with 
AFP.76 The additional feeding of mice with PUFAs 
did not increase AFP efficacy. The potent anti-
inflammatory drug could be used instead of PUFAs. 
AFP was proposed as a novel therapeutic agent for 
IBD.77 
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AFP is the third ligand to the neonatal Fc 
receptor (FcRn)78, the key regulator of IgG 
levels.79,80 AFP has the potential to interfere with the 
IgG binding to this receptor, but this is possibly not 
the major effect because of the IgG and albumin 
excesses over ACT-101 in the blood (8-18 mg/mL, 
35–55 mg/mL, and 1.3 µg/mL, respectively). 

AFP should be combined with other 
therapies as it is safer than standard 
immunosuppressive therapies and has many 
mechanisms of action. It can help where steroid-
sparing therapy is desired. 

So, AFP or AFP-drug is a new potent 
immunotherapy. 

The 125I - labeled AFP is absorbed by 
tumors in a specific way and can reach 6% of the 
inoculated amount per 1 g of tumor.81 AFP 
conjugates with radioactive isotopes could be 
helpful in cancer diagnosis (89Zr-ACT-101) and 
treatment (177Lu-ACT-101), respectively.60 

 
AFP-toxin covalent conjugates in cancer 
treatment 

Apoptosis is the first defense mechanism 
against cancer cells, but it is damaged in cancer 
patients’ cells. To restore the programmed death, 
AFP can deliver apoptosis inducers inside the cancer 
cells. AFPR is re-expressed on over 80% of cancers 
(including colorectal, ovarian, breast, prostate, lung, 
lymphoma, melanoma, etc.). Differentiated cells 
have no AFPR. Hence, it is the perfect target for 
AFP-toxin preparations. 

The AFP-toxin drug overcomes multiple 
drug resistance of cancer cells. While albumin 
brings the payload to the lysosome for 
degradation, AFP-toxin is transported directly to 
the cell’s perinuclear compartment, allowing toxins 
loaded into AFP to bypass the pumps that can move 
substrates out of cells. This way, AFP-doxorubicin 
(Dox) conjugate overcomes the multiple drug 
resistance of cancer cells.82 

The AFP-toxin conjugates targeted 
chemotherapy is well-covered in the literature.83-87 

The immune system is external to the cancer 
cells defense mechanism. MDSCs are “more equal 
than others” as they orchestrate innate and 
adaptive immune systems cells. They are the 
“diamonds” of cancer therapy.88 Myeloid cells are 
compromised in cancer patients and should be 
eliminated.89,90  

MDSCs are recruited by solid tumors to 
shield them from recognition and attack by the 
immune system like they protect the embryo during 
pregnancy. The depletion of MDSCs may cause 
pregnancy loss via upregulating the cytotoxicity of 
decidual NK cells.91 Similarly, MDCSs’ depletion can 
erase cancer. 

MDSCs are the major tumor-induced 
negative regulators of cancer immunity.92 AFP-
daunorubicin conjugate has shown a 50% reduction 
of MDSCs in vitro. The conjugate also selectively 
eliminates MDSCs and inhibits tumor growth in mice 
model.93 Depleting MDSCs activates the immune 
system and increases the efficacy of targeted 
chemotherapy. Thus, the depletion of MDSCs and 
tumor cells for cancer chemoimmunotherapy94 
overcomes Tregs-depleting for cancer 
immunotherapy because it not only causes apoptosis 
of cancer cells but also regulates the TME to 
ultimately enhance the antitumor effect of cytotoxic 
lymphocytes (CTLs) through MDSCs depletion.95 
AFP-toxin selectively destroys MDSCs and cancer 
cells while sparing normal cells. It is the perfect 
combination of the most potent cancer 
immunotherapy with the best-targeted 
chemotherapy.96 The result is a dual-pronged 
therapy with targeted lethality. 

Immunotherapy overcomes targeted 
chemotherapy in efficacy. Thus, vaccination with 
AFP and other oncofetal proteins demonstrated a 
77.1% 5-year and a 65.4% 10-year survival rate 
in cancer patients.97 While targeted chemotherapy 
is supposed to kill 100% of cancer cells, depletion 
of only a fraction of MDSCs unleashes numerous NK 
cells and CTLs that effectively erase cancer cells 
and generate memory cells. 

AFP-maytansine (1:5.96) conjugate (ACT-
903) demonstrated 100% survival in immune-
deficient NCr-nu/nu mice tumor xenograft models. 
A significant reduction of tumor burden compared 
to control was achieved in the 40 and 50 mg/kg 
dose groups. Maytansine is 1000-fold more potent 
than Dox and has been clinically validated, 
including the approved antibody-drug conjugate 
Kadcyla®. The conjugate is stable in circulation with 
no signs of toxicity.41 Observed efficacy and 
excellent tolerability of ACT-903 in the ovarian 
xenograft models, consistent with prior research 
using colorectal xenograft models, support 
advancing its development toward clinical use. The 
NCr-nu/nu mice have no adaptive immune system. 
In non-immunocompromised cancer patients, the 
treatment efficacy is expected to be even more 
impressive with 3-10 times lower doses of ACT-903. 

On the other hand, immunotherapy with 
AFP-toxin should be cautious of agranulocytosis.  

 
AFP-toxin non-covalent complexes in cancer 
treatment 

AFP could worsen cancer, so conjugates of 
AFP and its derivatives with toxins are assumed to 
be preferable in cancer therapy.98 Nevertheless, 
the delivery of drugs in a way that is right for the 
patient––safe, painless, reliable, targeted, 
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efficient, and cost-effective––can be completed 
with a full-length AFP. AFP can serve as a natural 
shuttle delivery vehicle.99 

The MCF-7 human breast cancer cells have 
2,000 AFPRs with high binding affinity and 
135,000 with low binding on their surface. The AFP 
binding was inhibited by 50% in the presence of a 
5,000-fold excess of albumin. Competition by other 
serum proteins was not significant. At 37°C, AFP 
was endocytosed, and the uptake curve reached a 
plateau after 3-4 hours of incubation.100 

The AFP’s natural ability to shuttle PUFAs to 
AFPR-positive cells has been used to treat 
hepatoma-bearing rats. Conjugated with 
daunomycin (daunorubicin), PUFA retains a strong 
AFP-binding ability. Like Dox, daunomycin does not 
bind AFP, so it was first conjugated with PUFA. Mice 
with AFP-producing hepatoma cells were injected 
with PUFA-daunomycin conjugate. AFP bound 
conjugate in the blood, delivered it to hepatoma 
cells, and demonstrated a high anti-cancer 
activity.101 

AFP binds streptomycin and phenytoin and 
does not bind acetazolamide, tetracycline, and 
amethopterin.102 Cyclophosphamide, Dox, 5-FU, 
bleomycin, vincristine, and etoposide do not bind 
AFP and may be given safely to a woman in need 
during any trimester of pregnancy, as they do not 
hurt the child or the mother.103 On the other hand, 
prescribed drugs with embryo-toxic or teratogenic 
properties can be repurposed for cancer 
treatments. A registered drug-data package can 
shortcut the clinical trials of AFP with those drugs 
and accelerate regulatory approval.104 

The drugs be preferably potent toxins with 
known mechanisms of action, as well as non-
mutagenic, non-carcinogenic, chemically stable, with 
analytical assay developed, and cheap, etc. DES or 
dioxin105 are mutagens and carcinogens; hence, 
they are not recommended. 

The HPLC of the AFP-thapsigargin (TG) 
(1:2) complex and the elution times of some of the 
drugs, toxins, and PUFAs are in Fig. 3 (unpublished). 

 

 
Figure 3. Reverse-phase HPLC of the AFP-thapsigargin (1:2) complex (peaks 4 and 7, respectively). The 
numbers mark the positions of hydrophobic agents in similar HPLC conditions106: 1) atractyloside, 2) ajoene, 
3) amphotericin B, 5) paclitaxel, 6) rotenone, 8) betulinic acid, 9) PUFAs (docosahexaenoic acid, 
eicosapentaenoic acid). 

 
An anti-fungal polyene antibiotic 

amphotericin B can bind AFP before and after the 
injection. It has a half-life time of 48 h in the blood, 
and it was injected in excess to be shuttled by AFP 
during cancer treatments. 1–2 µg/kg AFP and <15 
mg of amphotericin B in a course of ten infusions 
(one in three days) lead to the tumor and 
metastases mass decrease rate that significantly 
exceeded the known effects of conventional poly-

chemotherapy. Infusions were accompanied by a 
chill and a fever, which were counteracted by 
medication in thirty minutes. AFP and amphotericin 
B infusions demonstrate response in six out of eight 
cancer patients and increase the quality of life for 
patients with a distributed tumor process.107 AFP-
amphotericin B could not have directly affected a 
lot of cancer cells. First, because of the low AFP 
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dose, and second, poor toxin (IC50 = 1 mM) 
amphotericin B.  

AFP-toxin plays a dual role in cancer 
treatment: first and mainly, as MDSC-depleting 
immunotherapy and, second, as cancer cell-
targeted chemotherapy. The supporting facts are a) 
the treatment with AFP-amphotericin B decreased 
the blood population of monocytes, which was 
restored with GM-CSF injections later; b) a chill and 
a fever are the results of the cytokine-release 
syndrome. The cytokines release enables the 
immune system to fight cancer108; c) the response 
lasts up to three months after one month of 
treatment, which is the continuing activity of the 
immune system. 

Paclitaxel in low non-cytotoxic 
concentrations (1 mg/kg weekly × 3) decreased the 
accumulation and immunosuppressive activities of 
MDSCs in mice. It has also reversed 
immunosuppression and chronic inflammation.109 In 
the complex with AFP, paclitaxel becomes soluble. 
It also obtains a longer lifetime in blood circulation 
and can be delivered mainly to AFP-binding 
cells.110 AFP with paclitaxel has higher anti-cancer 
activity than paclitaxel alone. 

Relatively low doses of chemotherapy 
induce the depletion of MDSCs.111 These 
chemotherapies diminish MDSC-related immune 
suppression and promote the efficacy of other 
therapies. Cancer immunotherapy with paclitaxel, 
5-FU, tadalafil, gemcitabine, cisplatin, and other 
substances have been proposed in clinics.112 Water-
soluble methotrexate, 5-FU113, and Dox114 can 
deplete MDSC. They do not bind, but in synergy 
with AFP demonstrate anti-cancer activity. Thus, a 
single injection of AFP and Dox demonstrated a 
significant enhancement of the survival rate and 
effectiveness in mice, resulting in complete remission 
in >40% of animals compared to monotherapy with 
Dox.115 

An AFP-toxin complex (1:2) or AFP can be 
injected, while AFP-binding toxins can be 
administered through injection, orally, or by other 
methods. AFP delivers 1-2 hydrophobic drugs first 
and as an “oncoshuttle”116 - dozens next. In 
summary, AFP will deliver more than 1-6 toxins 
carried by AFP conjugate. 

The lack of overall toxicity, immunity 
depression, hemopoiesis suppression, and fast tumor 
and metastases reduction indicated good 
perspectives for AFP with AFP-binding toxins 
therapy. 

 
AFP-toxin non-covalent complexes versus AFP-
toxin conjugates 

AFP is a low immunogenic protein, 
especially in physiological concentrations. The 

immunogenicity of the AFP-toxin complex remains 
as low as that of the AFP itself. A hydrophobic drug 
makes the tertiary structure of AFP rigid and 
stabilizes their complex in the bloodstream. AFP 
positively alters the pharmacokinetic profile of a 
drug which does not change the natural 
pharmacokinetic profile of AFP. Complex hide 1-2 
drugs in the hydrophobic cavity, making drugs 
invisible to the immune system while conjugate 
exposes drugs on the AFP surface. Conjugate 
delivers a maximum of 6 drugs/run, while AFP can 
shuttle dozens of them, like PUFAs in pregnancy. 
Complex does not need sophisticated linkers, 
making manufacturing cheap and straightforward. 

On the other hand, a conjugate is stable all 
the way, while complex can dissociate in the acidic 
TME. Nevertheless, complex depletes MDSCs in the 
blood and can prevent early cancers and 
metastases where TME is not established yet. 

 
Oral porcine AFP-toxin complexes 

Oral drug administration has advantages 
over injectables, but it is not often feasible because 
the bioavailability of protein pharmaceuticals is 
very low.117 AFP is resistant to blood proteases, and 
it is somewhat resistant to trypsin proteolysis. AFP 
was manufactured in pills118, but without supporting 
drugs any effects are questionable. 

Porcine protein is more affordable than 
human one. PAFP is a better delivery protein than 
AFP as it delivers nutrients through six cell layers of 
the porcine epitheliochorial placenta. AFP must cross 
only three cell layers (trophoblast, embryonic 
connective tissue, and embryonic capillary 
endothelium) in the human hemochorial placenta. 
Interestingly, the AFP-prostaglandin E2 complex 
with a compact structure moves faster than smaller 
albumin (66.5 kDa) during electrophoresis in 12% 
PAAG. 

Natural products isolated from plants are 
an important source of chemotherapeutics against 
cancer. However, natural substances cannot be used 
directly as drugs, either because they have low 
solubility or fast metabolism. Genistein, curcumin, 
artemisinin, and resveratrol administered in oil 
forms for better absorption had a stronger anti-
cancer potency.119 Optimization of the properties 
of natural phytochemicals can be done by binding 
them with AFP. Thus, injections with curcumin and 
genistein have demonstrated elevated anti-cancer 
properties after binding with AFP.115 AFP 
potentiates the anti-cancer effect of 
acetoxychavicol acetate.120 The excess of agents 
could enhance the anti-cancer effect safely. 

Oral pAFP-toxins were used in cancer 
treatments instead of injections. Mice with tumor 
xenografts were gavage with pAFP bound in a 1:2 
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molar ratio with atractyloside (ATR), TG, betulinic 
acid, rotenone, ajoene, tocotrienol, cholecalciferol, 
isotretinoin, resveratrol, or PAC-1.121 

Zinc-finger proteins are involved in all the 
principal pathways of cancer progression, from 
carcinogenesis to metastasis formation.122 PAC-1 

(EC50 = 0.22 μM) grabs zinc ions from caspase 3 

and induces apoptosis.123 On the opposite, AFP with 
fifteen suitable binding sites for zinc ions can bring 
them into the cell, prevent caspase 3-dependent 
apoptosis induced by PAC-1, and stimulate zinc-
finger proteins. Possibly that is why the pAFP-PAC-
1 complex did not demonstrate anti-cancer activity 
in mice. 

Mitochondria-hitting drugs activate 
apoptosis. For example, chemically modified 
lonidamine mitigates lung tumorigenesis and brain 
metastasis.124 An alternative way is to bind 
hydrophobic lonidamine with pAFP. 

Rotenone (IC50 = 0.8-4.0 nM) acts on 
mitochondrion and induces oxidative stress and 
apoptosis.125 In addition, rotenone, like paclitaxel, 
inhibits microtubule assembly by binding to tubulin 
leading to the inhibition of cell proliferation. 
Rotenone is an AFP-binding teratogen that has 
shown anti-carcinogenic activity in several 
studies.126 Mice gavage with pAFP-rotenone 
complex (1:2) inhibited tumor growth. The 
treatment, combined with injections of cisplatin, 
increased mortality in mice. 

TG is a potent cytotoxin isolated from 
traditional medicine Thapsia garganica over forty 
years ago. TG induces apoptosis in a proliferation-
independent manner by releasing Ca2+ from the 
ER stores into the cytoplasm. In the NCI 60 Cancer 

Cell Line screen, TG has a GI50 = 10−10 M, beating 

paclitaxel (10−8 M) and Dox (10−7 M) in this assay. 
A barrier preventing the direct usage of TG as an 
anticancer agent is its lack of selectivity since TG 
kills not only cancer but also normal cells. Several 
TG conjugates through chemical modifications 
became an anti-cancer drug.127 An alternative 
approach is AFP-TG (1:2) non-covalent complex 
(ACT-902). 

ACT-902 is more stable than AFP-
paclitaxel complex due to TG’s higher 
hydrophobicity (Fig. 3). ACT-902 depletes MDSCs 
and tumor-associated macrophages in vitro. 5 out 
of 6 tumors treated with ACT-902 show complete 
regression of tumors by day 7 of treatment. The 
ACT-902 injections (0.15 mg/kg) demonstrated 
superior efficacy and safety compared to 
chemotherapy alone.60 

PAFP-TG (1:2) non-covalent complex 
administered orally have demonstrated tumor 
inhibition in mice121 and humans (unpublished). So, 

the outcome of the ACT-902 treatment could be 
enhanced by an additional TG or other toxins for 
AFP shuttling. The daily oral dose of TG in mice, 
which at 30 ng is a fraction of the reported oral (in 
PCT WO2003/049717) or parenteral doses given 
to mice, was used for the treatment of virus infection 
without the inherent problem of drug resistance.128 

The efficacy of the tumor growth inhibition 
with AFP-toxin (1:2) gavage in mice models 
correlated with the dose and the toxin potency: TG, 
ATR, rotenone>betulinic acid, ajoene>others. The 
addition of betulinic acid or ajoene leads to 
stronger tumor growth inhibition.121 

An oral traditional medicine Impila contains 
a potent mitochondrion toxin and apoptosis inducer 
ATR.129 Sixteen patients with colon, stomach, breast, 
and liver tumors took two capsules/day of 0.3 mg 
pAFP-0.006 mg ATR for one month. At the end of 
their treatment, the Karnofsky Index (improved 
quality of life, pain reduction, increased mobility, 
and stopped weight loss) rose on average to 20%. 
No significant side effects were registered.121 

Twelve patients with liver metastatic 
colorectal cancer (mCRC) received two capsules 
(0.3 mg pAFP-0.006 mg ATR)/day as a 
monotherapy. CT scans before and after eight 
weeks of treatments with suboptimal doses of pAFP-
ATR showed a response to the treatment in six 
patients. Two of these six patients had a full 
reduction of small metastases, one patient had a 
73% reduction in the size of his metastases, and 
three patients stabilized. Two patients have been 
alive for more than five years after treatment, while 
the median survival rate for mCRC patients is nine 
months. PAFP-ATR improves the quality and the 
longevity of lives of cancer patients.130 

An ovarian stage IV cancer woman took 
daily capsules with 6.0 mg pAFP-0.12 mg ATR in 
several courses and survived for over 15 years. 

Gavage with pAFP-isotretinoin has shown 
uncertain anti-cancer activity, and pAFP with 
methotrexate leads to visible tumor growth 
inhibition in mice but also increased mortality. 

Oral administration dilutes and prolongs 
pAFP-toxin absorption resulting in mild consequent 
reactions. Nevertheless, an investigation conducted 
has shown the pAFP or pAFP-rotenone (1:2) 
absence in both the free form and in the complex 
with a toxin in the blood after mice gavage.132 
Rotenone is believed to be moderately toxic to 
humans with an oral lethal dose estimated from 300 
to 500 mg/kg. In safe doses, it could be possibly 
added to pAFP-rotenone (1:2) oral administration. 

Unlike injectable, the oral pAFP-drugs 
administration cannot provide a direct cytotoxic 
effect, either on MDSCs or cancer cells. Besides, 
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MDSCs are rare in the intestinal lymphatic system 
compared to blood.133 

Some stomach, colon cancers, and gastric 
carcinomas produce AFP134, while a high level of 
AFPR has been detected in gastric cancers.135,136 
Therefore, oral AFP-toxin formulations can treat at 
least AFPR-positive cancers in the gut. 

FcRn is also a promising target for the oral 
delivery of CRC therapeutics.137 An adult human gut 
contains FcRn-positive enterocytes which specifically 
bind three delivery proteins: IgG, albumin, and AFP. 
AFP has a higher than albumin binding affinity to 
PUFAs138 and FcRn. IgG-antigen, albumin-nutrient, 
and possibly AFP-toxin complexes could cross the 
intestines without dissociation due to FcRn-mediated 
transcytosis. This way, AFP with toxins can be 
delivered to monocytes/macrophages in the lymph 
nodes. 

In peripheral lymphoid organs, M-MDSCs 
differentiate into macrophages and dendritic cells 
(DCs).139 FcRn is mainly present in DCs but 
expressed by monocytes, macrophages, and 
neutrophils.140,141 Due to immature cell plasticity, 
they can also transform into each other. Like MDSCs 
depletion in the blood, AFP-toxin can deplete FcRn-
positive DCs and macrophages in the lymph nodes. 
It works as an immunotherapy, eventually leading 
to the destruction of distant cancer. The efficacy of 
porcine alpha-fetoprotein with selected toxins 
administered orally is a remarkable discovery that 
needs research. Interestingly, FcRn is elevated in 
MDSCs, monocyte, and DCs in pancreatic cancer 
ductal adenocarcinoma.142 

 
Cancer prophylactics can be as simple as 
pregnancy prevention. 

Cancer treatment and prevention are 
different issues, and they could need different 
approaches. A healthy lifestyle can prevent cancer 
incidence partly only, while cancer prevention 
needs everyone. Early cancer prevention could not 
need early cancer diagnostics. 

Cancer can be viewed as a reversal to an 
embryonic state. In ancient Rome and Greece, 
women used an oral contraceptive called silphium 
to prevent pregnancy. This valuable herb is seen on 
a coin with a crab that once was a cancer disease 
name (Fig. 4). It speculated that silphium prevented 
or treated cancer also.143 

 

 
Figure. 4. A coin of Magas of Cyrene c. 300–
282/75 BC. Reverse: silphium and small crab 
symbols. 

 
Like many traditional medicines, silphium 

could contain a toxin. More importantly, toxin 
bound in the blood with AFP is potentiated a 
hundred times and targeted to MDSCs and embryo 
cells. MDSCs depletion activates the immune system 
to prevent early implantation, reject the embryo, 
and kill embryo cells. Immunology of pregnancy 
and cancer is similar97, and this mechanism involving 
MDSCs, AFP, and AFP-binding toxins can prevent 
early-stage cancer and metastases.144 

Currently, mifepristone (RU486) pills 
substitute an extinct silphium in the early termination 
of pregnancy. The drug exerts the 
immunomodulatory, anti-glucocorticoid, and 
antiprogestin actions. Mifepristone may directly 
interfere with embryogenesis in addition to 
endometrial receptivity and embryonic 
implantation.145  

Mifepristone regulates macrophage-
mediated NK cell function in the decidua. The NK 
cells' cytotoxicity and migration ability significantly 
increased by macrophages pre-treated with 
mifepristone in a dose-dependent manner.146 NK 
cells attack low-differentiated embryos, stem, 
cancer cells, and cancer stem cells.147 These 
“spontaneous cytotoxic cells” can erase early 
cancers and metastases. 

Low differentiated cancer stem cells which 
are close to embryo cells and are responsible for 
cancer recurrence and metastasis found in many 
cancers. Mifepristone decreases the growth of 
cancer stem cells by increasing the miRNA-153 
levels.148 Mifepristone decreases the level of anti-
apoptotic protein Bcl-2 and increases the levels of 
pro-apoptotic protein Bax leading to apoptosis in 
high-grade gliomas.149 Mifepristone therapy may 
provide a method to halt metastatic lung cancer 
positive for the PD-L1 marker when check-point 
inhibitors are no longer effective.150 

Mifepristone can be repurposed to treat 
breast cancer151, metastatic ovarian cancer152, 
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uveal melanoma cells153, prostate cancer154, etc. It 
is considered a safe drug that, even with prolonged 
use, has relatively mild adverse effects. 
Mifepristone is recommended to be used together 
with other drugs, and AFP should be one of them. A 
hydrophobic mifepristone (429.6 Da) has a half-life 
of 18 hours, it binds albumin and should bind 
AFP/pAFP too. Mifepristone meets the requirements 
named earlier: it is non-mutagenic, non-
carcinogenic, apoptosis inducer, have several 
mechanisms of action, chemically stable, with 
analytical assay developed, and cheap. 

PAFP-ATR or pAFP-TG capsules were most 
effective in patients with small metastases. AFP 
being pre-bound, injected separately, or taken 
orally (pAFP) with mifepristone is expected to be as 
effective in early cancer and metastasis prevention 
as mifepristone pills in pregnancy prevention. PAFP 
does not need high purity making manufacturing 
cheap and pAFP-mifepristone capsules affordable 
for all in need. Early cancer and metastasis 
prophylactics with oral AFP/pAFP- drugs or toxins 
(mifepristone, TG, ATR, rotenone, etc.) could be 
elegantly simple and very close at hand. 

Cancer patients have elevated MDSCs 
levels, and AFP-binding cells are present in most 
solid and liquid cancers. Hence, AFP-toxin 
immuno/chemotherapy is not personalized, and 
there is no need to preselect patients for cancer 
treatment or prophylactics. 

 
Conclusions 

AFP is an immune suppressor and delivery 
protein that embryo cells secrete to cancel the 
mother’s immune attack. Delivering nutrients, AFP 
“corrupts” the top regulatory myeloid cells, which 
suppress both innate and adaptive immunity. This 
mechanism works not only during pregnancy, but 
also in cancer, and many other physiological and 
pathological conditions. For that reason, MDSC is 
the efficient target for different immunotherapies. 

MDSCs play a positive and negative role 
in regulating the immune response. In certain 
pathological conditions, MDSCs act as a “double-
edged sword”, either favoring disease outcome or 
exacerbating disease progression. The activity or 
viability of MDSCs can be adjusted by drugs. AFP 
becomes a revolutionary immunotherapy drug by 
delivering definite drugs to MDSCs. Thus, AFP with 
AFP-binding anti-inflammatory drugs can suppress 
immune reactions in settings where they are 
hyperactive. 

On the other hand, AFP with AFP-binding 
toxin can treat cancer (Fig. 5). 

 
 

Figure. 5. AFP binds the drug or toxin and stimulate 
MDSCs for immune suppression or deplete them and 
unleash NK cells for cancer immunotherapy. 

 
Cancer patients have elevated MDSCs 

levels, and AFP-binding cells are present in most 
solid and liquid cancers. For that reason, AFP-toxin 
is the powerful synergy of the potent cancer 
immunotherapy with the targeted chemotherapy. 
The result is a dual-pronged therapy with targeted 
lethality. AFP-toxin immuno/chemotherapy is not 
personalized, and there is no need to preselect 
patients for treatment. 

AFP-toxin conjugates are promising anti-
cancer drugs. They selectively destroy MDSCs and 
cancer cells while sparing normal cells. 

The discovery of the anti-cancer mechanism 
of action of pAFP with toxins non-covalent 
complexes administered orally needs research. 
Immunotherapy action prevails over AFP-toxin 
chemotherapy one because the available targets 
for complexes are dendritic cells and macrophages 
in the lymph nodes, not distant cancer cells. 

Cancer treatment and early cancer and 
metastasis prevention are different issues, and they 
could use different approaches. Cancer is a kind of 
reversal to an embryonic state with a similar immune 
system adjustment. Mifepristone pills are currently 
used to prevent early pregnancy. It is inferred that 
oral formulations of pAFP-mifepristone or 
mifepristone pills plus AFP injections could prevent 
early cancer and metastasis. Cancer prophylactics 
become available to everyone. 
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