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ABSTRACT 
Opium prescriptions date from the Sumerian era about 8,000 years 
ago, and they were commonly abused among wounded soldiers 
during the American Civil and Prussian French wars. With the isolation 
of morphine in 1805 by Setürner, the synthesis of morphine by Tschudi 
in 1952 and the manufacturing of synthetic derivatives called opioids, 
a new era of research began. In normal conditions, the endogenous 
opioid levels are elevated under stress conditions as a part of 

adaptive response. This mechanism implies in -endorphin release, not 
only from the hypothalamus but also by immune circulating cells as 
lymphocytes.  This system is powerful against pain, ischemic insult and 
oxidative imbalance protecting the tissues.  The recognition of opioid 
receptors, particularly the delta subtype in retinal tissue, has 
broadened the potential for clinical applications. In the eye, opioid 
receptors were demonstrated to be present in optic nerve head, 
ganglion cells and pigmented epithelium cells.  As such, studies have 
revealed that opioid receptors play a role in the pathogenesis of DR 
preserving the outer blood retinal barrier and also acting as a retinal 
neuroprotective agent. In this scenario, the modulation of the opioid 
receptor in the retina might become an attractive therapeutic target 
in the treatment of this devastating complication. Thus, this review 
assesses recent and scarce findings on this topic which deserves to be 
further investigated. 
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History of opioid receptors 
The precise beginnings of opium’s use as a drug and 
its connections to religion, mysticism or even 
recreation are uncertain, but the registration date 
has been identified as from ancient times, nearly 
5,000 years ago. It is believed that Arab traders 
brought opium to India and China, and in the 10th 
century, opium found its way from Asia to all parts 
of Europe. In 1806, Setürner achieved isolation of 
its active compound, naming it morphine in 
reference to Morpheus, the God of dreams 65.  
After the achievement of morphine synthesis more 
recently, as well as the identification of endogenous 
peptides with opioid receptor activity, more than 
20 synthetic peptides with similar activities have 
been developed, all generated from three 
precursors (proenkephalin. prodynorphin and 
proopiomelanocortin). Each of these synthetic 
peptides acts through the transmembrane G protein 
receptors (opioid receptors), distributed throughout 
the body with different affinities, and opioid 
receptors that have already been cloned include 

the delta (), mu () and kappa () receptors and 

their subtypes (1-2, 1-3 and 1-3). 
 
Physiologically, studies have shown that 
endogenous opioid levels are augmented under 
stressful conditions2,23 through the adaptive 

responses to stress involving the release of -
endorphin, a small opioid peptide that is 
proteolytically cleaved22 and that is primarily 
synthetised in the hypothalamus and pituitary4 as 
well as in immune-circulating cells 6,39,43.  
Macrophages, lymphocytes and monocytes 
represent all the components necessary for the 

synthesis, processing and release of -endorphin 53  

which interacts better with the  and  opioid 
receptors59.  
 
The increased levels of endogenous opioid peptides 
counteract with damaging inflammatory pathways, 

such as tumour necrosis factor alpha (TNF-)29 and 
nuclear kappa-light-chain-enhancer of activated B 

cells (NF-k)1. Unlike the other receptors, delta 
opioid receptors (DORs) possess unique beneficial 
antidepressant14, antioxidant58 and 
neuroprotective properties in the presence of 
cytotoxicity and hypoxia 8-9,34. Interestingly, 
endogenous opioid peptide levels are reduced in 
patients suffering from depression or other 
psychological conditions 17,64, common among 
patients with diabetes, especially those to whom 
are visually under threatening 3,25,31. 
 
Clinically, opioids are powerful analgesics, but they 
also produce a variety of non-analgesic effects, 
such as the modulation of stress responses following 

ischemia in brain9,50,80,81, heart37,45 or 
eye26,51,56,62,75. In addition, endogenous opioids 
(endorphins, enkephalins and dynorphins) act via 
specific opioid receptors distributed throughout the 
body, controlling the neuroendocrine axis, 
immunomodulation and behaviour.   
 
DORs and the eyes 
In the eyes, previous data have demonstrated the 
function of endogenous opioids and their receptors 
in the regulation of iris function, accommodative 
power, aqueous humour dynamics, corneal wound 
healing, retinal development and retinal 
neuroprotection 27,30,54,63,79. Therefore, endogenous 
opioids and their specific receptors are involved in 
a wide variety of physiological and pathological 
processes, including dry eye, retinal ischemic 
diseases, glaucoma and visual accommodation. 
However, the mechanisms of action by which opioid 
receptors elicit pharmacological actions require 
more clarification. 
 
DORs in an experimental glaucoma model 
Glaucoma, a neurodegenerative ocular disease 
that irreversibly compromises vision.  It is 
characterised by the ‘cupping’ of the optic nerve 
head (ONH) due to the loss of ganglion cells and 
axons, thus worsening the synapses in the lateral 
geniculate body. As a result, significant visual field 
loss is observed. 
 
Among the described mechanisms involved in this 
disease are inflammation and apoptosis20,60,71,82 of 
the ganglion cells, but currently, the only therapeutic 
strategy is to reduce intraocular pressure to slow 
disease progression. In the presence of 
glaucomatous injury, the astrocytes present in the 
ONH become activated, producing 
proinflammatory cytokines, chemokines, immune 
mediators, nitric oxide (NO) and reactive oxygen 
species, all of which act synergically towards 
ganglion cell death.  
 
Husain and colleagues29 demonstrated the presence 
of opioid receptors in the retina, ONH and 
astrocytes, and they demonstrated the effect of the 
systemic administration of morphine in experimental 
models of ischemia/reperfusion and ocular 
hypertension-related injury on the mitigation of 
retinal damage. Using the technique of 
electrophysiology (pattern electroretinography, 
which detects ganglion cell activity and enables 
estimation of the number of active ganglion cells), 
ocular hypertensive rats displayed a significant 
reduction in pattern electroretinogram (ERG) 
potentials in comparison to normal rats 1,29, 
indicating a significant loss of ganglion cells in the 
retinas of ocular hypertensive rats. More 
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specifically, the ocular hypertensive rats treated 
with SNC-121, a selective DOR agonist, promoted 
a sustained retinal neuroprotective effect in the 
animal model1 thus preserving ganglion cell 
function. In conclusion, the agonism of DORs in ocular 
hypertensive rats is efficient in protecting the 
ganglion cells against hypertensive ocular 
conditions. 
 

It is already known that TNF-, an inflammatory 
cytokine, is associated with several 
neurodegenerative retinal diseases, including 
glaucoma, ischemic retinal diseases and diabetic 
retinopathy (DR)13,16,19, 71,73,74,83, the major causes of 
irreversible blindness around the world70. For this 
reason, it is important to better better understand 
the molecular mechanisms involved, especially 
retinal ganglion cell toxicity and death via the TNF-
a axis. Published data have elucidated the 

presence of TNF- receptors in ganglion cells42, 
activating inflammatory signalling and 
upregulating NFK-b nuclear translocation, as well 
as several stress-induced apoptotic transcription 
factors47,33,68.  
 
Experimental studies have demonstrated that the 
specific ligand for DORs, SNC-121, is efficient in 
preventing the upregulation and phosphorylation of 
STAT 3, as well as its downstream inflammatory 

signalling (interleukin [IL]-1, IL-6 and TNF-), in a 
model of ocular hypertensive glaucoma, thus 
protecting the ganglion cells from apoptosis29. In the 
same context, Husain and colleagues showed that 
the use of the SNC-121 DOR activator, ONH 

astrocytes do not produce proinflammatory IL-1 
and IL-61.  Thus, these sets of experiments suggest 
the activation of DORs as a possible new 
neuroprotective strategy in glaucoma treatment. 
 
Blood retinal barriers  

The immune privilege of the eyes is maintained by 
the blood retinal barriers (BRBs), namely the inner 
and outer retinal barriers, both of which are 
functional and structural, maintaining retinal 
integrity. The inner BRB is comprised by endothelial 
cells, whose tight junctions are layered on the basal 
membrane and wrapped by the pericytes 5,52, 
multi-functional cells with plastic and regenerative 
potential that are pivotal in the maintenance of the 
neuro-glial-vascular functional retinal unit and that 
can dedifferentiate into myoblast or mesenchymal 
stem cells, 11, 72, thus enabling pathological 
angiogenesis15. 
 
The outer BRB is formed by monolayer retinal 
pigmented epithelium (RPE) cells with their 
intercellular tight junctions layered on Bruch’s 

membrane. Recently, the outer BRB has deserved 
more focus in the DR field, as several studies have 
demonstrated the role of RPE cells in diabetic milieu 
conditions 67,77. The RPE cells are highly specialised 
polarised cells, directing the apical polo towards 
the subretinal space and the basal side towards 
Bruch’s membrane and the choroid. 
 
Among RPE cell functions are light absorption, thus 
protecting the neuroretina from photo-oxidation 68 

and the production of growth factors, including 
pigment epithelium-derived factor (PEDF)57 , 
vascular endothelium growth factor (VEGF) 18, 

transforming growth factor beta (TGF-)36, insulin-
like growth factor-1 (IGF-1)7  and brain-derived 
neurotrophic factor (BDNF), as well as 
proinflammatory cytokines, such as inducible nitric 
oxide synthase (iNOS) 21,24,38,76. Characteristically, 
RPE cells play a central role in photoreceptor 
vitality, for which purpose they experience high 
autophagic activity as a mechanism of the recycling 
of external photoreceptor segments and the 
isomerization of the 11-cis- retinol  to trans-retinol 
exchange for the proper visual cycle functioning in 
the photoreceptors46,49. 
 
The outer BRB transports water and electrolytes 
from the neuroretina to the choriocapillaris and 
glucose, ascorbic acid and fatty acids towards the 
neuroretina. Glucose transport is dependent on the 
GLUT1 and GLUT 3 receptors, which are highly 
diminished in diabetic conditions32. This is 
significantly deleterious to neurons, including 
photoreceptors, cells with the highest energy 
demand throughout the entire body. The water 
produced during photoreceptor metabolism is 
actively transported by the sodium–potassium 
pump (Na+-K+-ATPase), located at the apical side 
of the RPE cells 44, which produces an adhesive force 
between RPE cells and photoreceptors that is 
weakened or lost in diabetic conditions11. This later 
feature of the outer BRB is central to the 
pathogenesis of diabetic macular oedema, a 
primary cause of significant visual reduction among 
DR patients. 
 
DOR blockage/activation in RPE cells under 
diabetic milieu conditions 
RPE cells express iNOS, thus producing NO in 
response to inflammatory insults20,38.  Hussain and 
collaborators28 (2011) described that the activation 

of DORs inhibits the upregulation of TNF- in the 
ONH, astrocytes and microglia from retinas using 
experimental model of ischemia/reperfusion. 
Our group demonstrated the mechanism involved in 
outer BRB breakdown in the presence of high 
glucose conditions 61.  In this study, caveolin-1 (CAV-
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1), a structural component of the caveolae having a 
lipophilic hairpin shape and embedded in the cell 
membrane, is implicated in the CAV trafficking of 
endosomes48, and drugs35, as well as in the 
regulation of tight junctions78.   In that study, Rosales 
and colleagues exposed ARPE-19 cells and primary 
porcine RPE cells to high-glucose conditions, and 
after 24 h of exposure, immunofluorescence assays 
were performed. As expected, a monolayer of 
epithelial cells, tightened by the intercellular 
junctions and adhesion proteins, was organised, and 
the presence of high glucose, mimicking diabetic 
conditions, invoked a dramatic reduction in the 
Claudin-1 and Occludin expressions, two important 
tight junction proteins, accompanied by 
augmentations of the iNOS expression and NO 
levels. To understand further the mechanism behind 
tight junction reduction, we evaluated nitrosative 
stress and the possible S-nitrosylation of Cav-1, an 
important anchoring protein of the caveolae 
membrane structure. Under diabetic conditions, 
there is internalisation of Claudin-1 and Occludin 
through post-translational modifications to S-Cav-1. 
 
As DORs agonists have been described to inhibit 
NO production via iNOS in astrocytes and 
microglial cells28 under ischemia, we investigated 
whether DORs could act in the pathogenesis of the 
outer BRB in diabetic milieu conditions. ARPE-19 
cells co-treated with the opioid receptor activator 
epicatechin, a well-known antioxidant polyphenol 
present in cocoa and green tea13,41,66 and a specific 
DOR ligand55.  The presence of epicatechin in 
retinal cells exposed to high glucose conditions 
prevented the production of NO-dependent iNOS, 
thus avoiding the S-nitrosylation of CAV-1. As a 
result, intercellular ARPE-19 tight junctions were 
maintained, either structurally and functionally, as 
evaluated using permeability and transcellular 
electrical resistance assays61.  These compelling 
data identify DORs as potential therapeutic targets 
in the treatment/maintenance of outer BRB integrity 
in diabetic conditions. 
 
DOR activation protects the retina against the 
toxicity from diabetes 
In studying experimental models of DR, our group 
demonstrated evidence that the activation of DORs 
is beneficial in preventing the early markers of DR, 
such as glial fibrillary acidic protein (GFAP) and 
VEGF, as well as in the maintenance of the outer 
BRB 40 .  For this study, we induced diabetes in 
C57BL/6JUnib mice via an intraperitoneal injection 
of streptozotocin.  After the confirmation of the 
successful of the DM induction, the mice were 
randomized to receive not oral administration of 
epicatechin in drinking water. Treatment with the 
DOR activator epicatechin was efficient in 

augmenting the DOR expression and mitigating the 
DR markers, namely increment of VEGF and GFAP 
and diminishing PEDF expressions.  In order to verify 
whether the oral administration of epicatechin had 
its beneficial effect via DOR agonism, the animals 
were submitted to an intravitreal injection of a short 
hairpin RNA (shRNA) construction for the mouse 
retinal DOR gene.  The outer BRB structure was also 
targeted by the DOR activator, preventing 
augmentation of the tight junctions Claudin-1, 
Occludin and ZO-1 to normal levels. The diabetic 
animals submitted to the intraocular transfection of 
DOR-shRNA did not exhibit the beneficial effects of 
the epicatechin as a DOR activator, meaning DOR 
activation might be considered a potential new 
therapeutic target to the treatment of DR. 
 
Because DOR presents types 1 and 2 subtypes, we 
further investigated which DOR subtype activation 
could be beneficial in the maintenance of outer BRB 
properties. ARPE-19 cells were cultured and 
exposed to diabetic milieu and co-treated with 
naltrindole, a non-specific DOR blocker, in the 
presence of the DOR-1, D-Ala(2) and D-
Leu(5)]enkephalin or DOR-2, D-Ala(2) and 
Deltorphin II activators. Only the DOR-1 activator 
was efficient in preventing the upregulation of the 
inflammatory signalling and functional properties of 
the ARPE-19 barrier under diabetic milieu co-
treated with naltrindole in high glucose conditions. 
 
To translate these experimental observations, DOR 
was immunolabeled in human retina. For the first 
time, DOR was shown to be present in RPEs and in 
the neuroretina of human retinal specimens, which is 
relevant evidence projecting DOR as a potential 
novel therapeutic strategy to treat the retinas of DR 
patients. 
 
Concluding remarks and future directions 
Nowadays, there is increasing interest in new 
therapeutic targets for the prevention and 
treatment of visual dysfunction among patients with 
diabetes. Although there are therapies available 
for diabetic eye care such as retinal laser 
photocoagulation, vitrectomy or even intraocular 
injection of anti-angiogenic drugs, diabetic vision-
threatening is still a clinical challenge. 
This review underlined the role and the possible 
beneficial effects of the delta opioid receptor in 
retinal tissue from experimental studies and 
evidences suggest that it may be relevant in human 
retinal tissue. The data available is scarce, thus 
further experimental and in vitro studies are 
needed in order to better understand how to control 
its activity in the presence of the diabetic milieu 
through specific ligands, avoiding extra-ocular 
undesirable effects. 
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