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ABSTRACT

The early detection of atherosclerosis has been the interest of researchers in
order to prevent diseases progression. And, most of cases diagnosed with
atherosclerosis in late stages resulted of subjective ways of diagnosis in the
healthcare sector.

Consequently, in order to help cardiologists diagnose atherosclerosis in
early stages with an objective, fast and accurate way, we are proposing a
based on autoencoders that enables

machine learning model

atherosclerosis detection from MRl images of murine subjects.

This novel way of automated system consists of applying various image
processing techniques on the input MRl images. Then, after training, testing
and validation it will be capable of classifying the images as atherosclerotic
or not based on a specific threshold for the reconstruction error calculated
from the autoencoders' output.

An autoencoder is a feed-forward neural network that has its input neurons
equal to the output neuron. The classification works by comparing the
reconstructed images to the original input images and evaluating loss
between them. Since the autoencoder is trained on healthy images,
reconstruction error of the healthy images would be low while that of
atherosclerotic subjects would be higher. By setting a threshold for the loss,
we can classify the images as healthy or atherosclerotic.

The pre-processing of these images was made using a Block Matching 3D
(BM3D) filter to remove the noise in the images prior to application of a
Contrast Limited Adaptive Histogram Equalization (CLAHE) to enhance the
contrast. The next step included introducing the dataset into the
autoencoder to start training on the healthy images, after increasing the
images number with augmentation.

The results showed a reconstruction loss of 0.018 while using the stacked
architecture of the autoencoder and 0.0366 when using the convolutional
autoencoder architecture.

Keywords: Atherosclerosis, Autoencoder, MRI, Deep Learning, anomaly
detection, pattern recognition.
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|. Introduction

Cardiovascular  diseases pose significant
challenges in healthcare. These conditions
can have a profound impact on individuals
and their overall well-being. The primary focus
in managing these diseases is to detect them
at an early stage, allowing for timely
intervention and prevention of associated
complications. Atherosclerosis is a common
and significant problem in cardiovascular
disease, characterized by the buildup of
plaque in the arterial walls’. The condition
involves the gradual thickening and hardening
of arteries, which can lead to restricted blood
flow to organs and tissues throughout the
body'?. The plaque consists of fats, cholesterol,
and other substances that accumulate in and
on the artery walls'. Over time, the plaque can
cause narrowing of the arteries, potentially
leading to blockages and reduced blood
flow'2. One of the main challenges posed by
is the

symptoms in its

lack of noticeable
stages®. Mild
atherosclerosis usually does not present any
it difficult to detect

intervention.’

atherosclerosis
early
symptoms, making
without medical Symptoms
typically manifest when an artery becomes
severely narrowed or completely blocked,
preventing adequate blood supply to vital
organs and tissues’. The specific symptoms
experienced depend on the location of the
affected arteries'2. For example, atherosclerosis
in the heart arteries may result in chest pain or
pressure (angina), while blockages in the
arteries leading to the brain can lead to
numbness, weakness, speech difficulties, or
temporary vision loss'2. Atherosclerosis in the
arteries of the arms and legs may cause
symptoms such as leg pain when walking or

decreased blood pressure in the affected

limb'. Additionally, atherosclerosis in the
arteries leading to the kidneys can contribute
to high blood pressure or kidney failure.' The
underlying causes of atherosclerosis are
multifactorial, with various risk factors
contributing to its development’??. These risk
factors include high blood pressure, high
cholesterol, high triglycerides, smoking,
diabetes, obesity, inflammation, and certain
autoimmune diseases'?. Damage to the inner
layer of the artery, often caused by these risk
factors, triggers the accumulation of substances
and the formation of plaque’”. Atherosclerosis
is a progressive disease that can begin in
childhood and worsen over time if left
untreated’. Early diagnosis is crucial to prevent
the progression of atherosclerosis and mitigate
the risk of complications such as heart attacks,

strokes, and other cardiovascular emergencies'?.

Monitoring atherosclerosis development is
essential for many reasons, including early
identification, cardiovascular event prediction,
therapy effectiveness assessment, and
personalized risk assessment. First, early
detection of atherosclerosis facilitates the
identification of people with subclinical
disease, enabling rapid intervention and
reduction of risk factors®. This is crucial for
stopping disease development and lowering
the risk of cardiovascular events. Second,
monitoring atherosclerosis helps forecast the
likelihood of future cardiovascular events such
as heart attacks and strokes, by assessing the
extent and severity of plaque buildup in the
arteries®. Third, monitoring the development
of  atherosclerosis  provides  valuable
information on the effectiveness of the
treatment approaches and therapies. The
effect of lifestyle modifications, medications,

or other interventions can be assessed by
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tracking changes in plaque characteristics®.
This is particularly useful for people with
existing atherosclerosis or those who are at
high risk for cardiovascular illnesses. Finally,
monitoring atherosclerosis enables customized
management strategies based on unique risk
profiles and treatment outcomes, which
facilitates personalized medicine and risk
assessment. Integrating molecular imaging
techniques with clinical risk scores can

improve  risk  assessment and  guide

personalized treatment decisions’.

Moreover, invasive ultrasonic methods, like
(IVUS),
detailed insights into atherosclerotic lesions

intravascular  ultrasound provide
by inserting an ultrasound catheter into
arteries. IVUS vyields high-resolution cross-
sectional images, assessing plaque burden,
composition, and distribution for

interventional  procedures  like  stent
placement®. Additionally, virtual histology
IVUS (VH-IVUS) classifies plaque components

for high-risk plaque identification’.

Non-invasive ultrasound techniques are
pivotal in atherosclerosis monitoring. B-mode
ultrasound visualizes plaque morphology and
(IMT)'.

ultrasound assesses blood flow characteristics,

intima-media  thickness Doppler

while contrast-enhanced ultrasound (CEUS)
enhances plaque vascularity visualization''2.
Shear wave elastography (SWE) measures
plaque These

techniques are safe, cost-effective, and widely

stiffness'™. non-invasive
available, allowing for repetitive assessments
over time and facilitating risk assessment,
treatment monitoring, and disease progression

tracking in atherosclerosis patients.

Coronary angiography is an invasive

technique that visualizes coronary arteries and

assesses atherosclerotic lesions. Using a
contrast dye injected into coronary arteries
and X-ray images, it identifies blockages or
narrowed areas in vessel walls'. This provides
detailed information about atherosclerotic
plagues, aiding in coronary artery disease

(CAD) diagnosis and management.

Quantitative Coronary Angiography (QCA) is
a computer-assisted method that measures
coronary artery stenosis. It involves analyzing
angiographic images to determine arterial
lumen diameter at specific reference points™.
QCA accurately quantifies plaque burden,
facilitating disease progression assessment
and treatment outcome evaluation.

The combination of coronary angiography
with additional techniques enhances diagnostic
capabilities. Intravascular ultrasound (IVUS)
offers cross-sectional vessel wall images,
assessing plaque burden, composition, and
distribution. Integrating IVUS with coronary
angiography provides detailed morphology
and vulnerability insights into atherosclerotic
plaques. Optical coherence tomography (OCT)
achieves high-resolution images using near-
infrared light. This allows precise measurements
of plaque thickness, fibrous cap thickness, and
thrombus presence'. Combining OCT with
coronary angiography yields valuable plaque
characteristic insights, aiding risk stratification

and therapeutic guidance.

Computed Tomography (CT) scan is a non-
invasive imaging modality extensively used
for atherosclerosis assessment. A specific
application of CT, CT angiography (CTA),
delivers detailed images of coronary arteries,
enabling visualization and evaluation of
atherosclerotic plaques'™. During CTA, a

contrast dye is injected into the bloodstream,
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followed by X-ray images to construct a three-

dimensional reconstruction of coronary

arteries. CT scan offers rapid image
acquisition, high spatial resolution, and the
ability to assess both calcified and non-

calcified plagque components.

Coronary CT angiography (CCTA) has
emerged as a valuable non-invasive tool for
detecting and characterizing coronary artery
disease (CAD). CCTA identifies and quantifies
atherosclerotic plaques, evaluates stenosis
severity, and assesses plaque composition. By
categorizing plaques based on characteristics
like calcification, non-calcified plaque burden,
and plaque remodeling, CCTA supports risk

stratification and treatment guidance™’.

Advancements in CT technology, such as
dual-source CT and third-generation scanners,
have further improved image quality while
reducing radiation exposure. Additionally,
novel techniques like coronary artery calcium
scoring (CACS) offer quantitative assessment
of coronary artery calcification, a key marker
of atherosclerotic burden and cardiovascular
risk?®. However, it's important to acknowledge
limitations. Motion artifacts, blooming effects
from calcifications, and challenges in detecting
non-calcified plaques can affect image quality
and interpretation. Moreover, CT scans
involve ionizing radiation and contrast agents,
raising potential risks and considerations for

certain patient populations?'.

(MRI) has

emerged as a powerful non-invasive imaging

Magnetic Resonance Imaging
technique for the detection, quantification,
and monitoring of atherosclerosis. MRI offers
several advantages over other imaging
modalities, making it the most important tool

in atherosclerosis assessment. Its unique

capabilities provide comprehensive information
on plague morphology, composition, and
functional parameters?. By employing various
MRl sequences, such as T1-weighted, T2-
weighted, and proton-density-weighted
imaging, different plaque components, including
lipid-rich  necrotic cores, fibrous tissue,
calcifications, and intraplaque hemorrhage,
can be visualized?”. This enables accurate
characterization of plaques and identification
of vulnerable lesions, which is crucial for risk

stratification and guiding treatment decisions.

Moreover, MRI provides excellent soft tissue
contrast and high spatial resolution, allowing
for detailed imaging of the vessel wall and
accurate measurement of plaque burden®.
Quantitative parameters, such as plaque
volume, plaque surface area, and the degree
of stenosis, can be precisely evaluated using
MRI techniques®. Additionally, advanced MRI
techniques, such as diffusion-weighted imaging
and dynamic contrast-enhanced imaging,
offer insights into plague microstructure,
inflammation, and angiogenesis, enhancing
the understanding of  atherosclerosis
pathophysiology. Furthermore, MRI enables
functional assessment through techniques like
arterial spin labeling and phase-contrast
imaging, allowing evaluation of blood flow,
wall shear stress, and endothelial function in
affected vessels?. These functional parameters
are crucial for assessing the hemodynamic
consequences of atherosclerosis and its

impact on cardiovascular health.

Il. Background information

A. DIAGNOSIS OF ATHEROSCLEROSIS:
Numerous imaging techniques have been
explored to detect plagque volume and
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constituents for better clinical indicators of
plaque While
ultrasound can distinguish plaque constituents,

vulnerability. intravascular
it is invasive and not suitable for serial studies.
B-mode ultrasound has been utilized to assess
stenotic severity, plaque volume, and plaque
constituents in the carotid artery, but its ability
to measure plaque volume and visualize
intraplaque features is limited by the plane of
acquisition and incident angle of the
ultrasound. Three-dimensional ultrasound can
help measure plaque volume and detect
ulcerations on the lumen surface but cannot
characterize internal plaque composition. X-
ray computed tomography has been used to
identify and quantify coronary calcium, but it
has not been tested for identifying non-

calcified lesion components?.

In contrast, MRl plays a critical role in

detecting atherosclerosis, enabling the
detection of the disease at an early stage,
before symptoms appear, and allowing for
early intervention to

improve  patient

outcomes. Moreover, MRI provides a
comprehensive evaluation of the artery wall
and can assess plaque burden and identify
plaque constituents. The primary objective of
atherosclerosis MRl is to quantify plaque
burden based on plaque volume. Achieving

an adequate spatial resolution is crucial to

visualizing lesion ~ components  and
synchronizing MR imaging with
electrocardiogram (ECG) and respiratory

signals is preferred to reduce signal

interference and obtain a clear image?.

B. DIAGNOSING ATHEROSCLERQOSIS USING
ML TECHNIQUES:
In recent years, there has been a growing

interest in the use of machine learning

algorithms for the accurate and efficient

diagnosis  of  cardiovascular  diseases,
including atherosclerosis. Machine learning
techniques have the potential to increase the
accuracy of disease diagnosis and avoid false
positives and negatives. Recent studies have
explored the wuse of machine learning
techniques in the diagnosis of cardiovascular
diseases, with a particular focus on
atherosclerosis. In one such study, researchers
extracted features from ECG and respiratory
signals of 10 murine subjects to classify
atherosclerosis using a random forest
classifier. The features included average heart
rate, R-R interval, R amplitude, isovolumetric
contraction duration, inspiration and
expiration peak, inspiratory and expiratory
phases, and respiratory rate. The model

achieved an accuracy of 98.18% on testing
data®.

Another recent study proposed the use of
networks (ANNs) for the
classification of atherosclerosis in a dataset

artificial neural
consisting of 270 subjects. The dataset
included features such as age, gender, blood
pressure, serum cholesterol, resting ECG,
maximum heart rate, and others. After training
the ANN on these features, the model
achieved an accuracy of 96% in classifying
atherosclerosis”. These studies suggest that
machine learning techniques can significantly
increase the accuracy of atherosclerosis
diagnosis  and  classification,  thereby
improving patient outcomes. The use of non-
invasive and automated methods, such as
those enabled by machine learning, can
provide valuable insights into disease
diagnosis and management. Further research
in this area can help refine these methods and

improve their clinical utility.
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I1l. Autoencoders: an introduction

to unsupervised deep learning

Autoencoders (AEs) are a type of neural
network that belong to the class of
unsupervised deep learning models. Unlike
supervised learning methods, which require
labeled data to

make  predictions,

unsupervised methods can automatically
learn the underlying structure of data without
any prior knowledge or labels. Autoencoders
consist of two main components: an encoder
network and a decoder network. As seen in
Figure 1, the encoder network takes an input
and maps it to a lower-dimensional latent
representation, while the decoder network
takes this latent representation and maps it
back to the original input space. The encoder
and decoder networks are trained jointly to
minimize the difference between the input
and output data, which is known as the
reconstruction loss®®. During training, the
input data is fed through the encoder
network, and the resulting lower-dimensional
latent representation is fed through the
decoder network. The output of the decoder
network is then compared to the original input
data to compute the reconstruction loss. The
goal is to minimize the reconstruction loss,
which encourages the autoencoder to learn a
compressed representation of the input data
that captures its essential features. Once the
autoencoder is trained, it can be used for
various downstream tasks by utilizing the
encoder network to generate a lower-
dimensional latent representation of new
input data. One of the most common uses of
autoencoders is for data compression. By
compressing the input data into a lower

dimensional latent space, using the encoder

network, the amount of storage required to
store the data is significantly reduced. The
decoder network can then be used to
reconstruct the original data from the
compressed representation. Another application
of AEs is feature extraction. By training the
autoencoder on a large dataset, the encoder
network can learn to extract useful features
from the input data. These features can then
be used as input to a supervised learning
algorithm, such as a classifier. This can be
particularly useful in situations where manual
feature engineering is difficult or time-
consuming. Autoencoders can also be used
for anomaly detection, where the goal is to
identify data points that deviate significantly
from the norm. By training the autoencoder
on a dataset of normal data, the model can
learn to reconstruct normal data with low
reconstruction error, while introducing high
reconstruction error for anomalous data.
Once the model is trained, it can be used to
identify anomalous data points by computing
their reconstruction error and comparing it to
a threshold value. For example, in the context
of medical imaging, the latent representation
can be used for anomaly detection, disease
classification, or image segmentation. One of
the key advantages of autoencoders is their
ability to learn meaningful representations of
the input data in an unsupervised manner,
without requiring labeled data. This makes
them particularly useful in scenarios where
labeled data is scarce or expensive to obtain.
Additionally, autoencoders can be adapted to
different types of data, including images, text,
and time series data, making them a versatile

tool for a wide range of applications.
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Reconstructed
Image

Input Image
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Representation

1

Encoder Bottleneck Decoder

Figure 1: Architecture of Autoencoder

A. AUTOENCODERS FOR ANOMALY
DETECTION IN MEDICAL IMAGING

Autoencoders have shown to be effective for
anomaly detection, where the goal is to
identify data points that deviate significantly
from the norm. In the context of medical
imaging, anomaly detection can be used to
detect abnormalities or diseases in images
that may not be apparent to the human eye.
Autoencoders can be used for anomaly
detection by training the model on a dataset
of normal data, and then using it to identify
data points that deviate significantly from this
norm. During training, the autoencoder learns
to reconstruct normal data with low
reconstruction error, while introducing high
reconstruction error for anomalous data.
Once the model is trained, it can be used to
identify anomalous data points by computing
their reconstruction error and comparing it to
a threshold value®'. One of the advantages of
using autoencoders for anomaly detection is
that they can learn to capture the underlying
data,

explicitly modeling anomalies. This allows the

distribution of the normal without

model to generalize to new types of
anomalies that were not present in the
training data. Additionally, autoencoders can
handle data,

medical images, and can learn to extract

high-dimensional such as

meaningful features that are relevant for
anomaly detection. To use AEs for anomaly
detection in medical images, a dataset of
normal images is first collected and used for
training. During training, the autoencoder
learns to reconstruct the normal images with
low reconstruction error, while introducing
high reconstruction error for anomalous
images. Once the model is trained, it can be
used to detect anomalous images by
computing their reconstruction error and
comparing it to a threshold value. Images with
reconstruction error above the threshold
value are considered anomalous and can be
flagged for further inspection. In the context
of atherosclerosis detection using MRI
identify

anomalous arterial wall plaque that may not

images, AEs can be used to
be visible to the human eye. By training the
autoencoder on a dataset of healthy arteries,
the model can learn to reconstruct healthy
images with low reconstruction error, while
introducing high reconstruction error for
images with anomalous plaque. This allows
the model to identify arteries that are likely to
be affected by atherosclerosis and can help in
early  diagnosis and  treatment  of
cardiovascular disease. Autoencoders can
handle high-dimensional medical images,
such as MRl images, and can learn to extract
meaningful features that are relevant for
anomaly detection. This is achieved by the
encoder part of the autoencoder, which
compresses the input image into a low-
dimensional representation, and the decoder
part, which reconstructs the image from the
compressed representation. The compressed
representation can be used as a feature vector
to train a separate anomaly detection model,

such as a support vector machine or a random
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forest, for improved performance. Overall,
AEs have shown to be a powerful tool for
anomaly detection in medical imaging,
particularly for early detection of diseases
such as atherosclerosis. By leveraging the
power of deep learning, AEs can identify
subtle abnormalities in medical images that
may go unnoticed by human experts, leading

to better diagnosis and treatment of diseases.

B REVIEW OF AUTOENCODER
ARCHITECTURES FOR UNSUPERVISED DEEP
LEARNING

Autoencoder architecture plays a crucial role
in the performance of autoencoder-based
models for unsupervised deep learning. Over
the years, several autoencoder architectures
have been proposed in the literature, each
with its strengths and weaknesses.

1) Standard Autoencoder: A standard
autoencoder is a type of neural network that
learns to reconstruct its input data. It is an
unsupervised learning algorithm that can be
used for feature extraction, data compression,
and anomaly detection. The architecture of a
standard autoencoder consists of an encoder
network that compresses the input data into a
low-dimensional latent space, and a decoder
network that reconstructs the input data from
the compressed representation®®.  The
encoder network maps the input data to a
lower dimensional latent space representation.
The number of hidden layers and the size of
the latent space can be adjusted to suit the
needs of the application. The output of the
encoder network is a  compressed
representation of the input data, often
referred to as the bottleneck. The decoder
network takes the bottleneck representation

and maps it back to the original input space.

The decoder network is designed to be
symmetrical to the encoder network, so that it
mirrors the operations of the encoder. The
output of the decoder network is the
reconstructed input data, which should be as
close as possible to the original input data.
During training, the autoencoder is optimized
to minimize the difference between the input
data and its reconstructed output. This is
typically done by minimizing the mean
squared error (MSE) between the input data
and the reconstructed output. The weights
and biases of the network are adjusted during
training to minimize the MSE loss.

2) Convolutional Autoencoder: Convolutional
autoencoders (CAE) are a specific type of
autoencoder that is commonly used for image
Unlike a  standard

consists of fully

tasks.
which
connected layers, a convolutional autoencoder

processing
autoencoder,

consists of convolutional layers in the encoder
and decoder networks®?. As seen in Figure 2,
the encoder network of a CAE typically
consists of multiple convolutional layers
followed by a pooling layer. The convolutional
layers apply a set of filters to the input image,
which capture local patterns and features. The
pooling layer then downsamples the feature
maps to reduce their size, while preserving the
most important information. The decoder
network of a CAE consists of upconvolutional
layers, also known as deconvolutional layers,
and convolutional layers. The upconvolutional
layers perform the opposite operation of the
pooling layers, by upsampling the feature
maps to increase their size. The convolutional
layers then apply a set of filters to the
upsampled feature maps, to reconstruct the
original image. One advantage of using CAE
for image processing tasks is that they can
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learn to extract spatially meaningful features
from the input image, which can be used for
various downstream tasks such as image
classification, segmentation, and
Additionally,

autoencoders can handle high-dimensional

object
detection. convolutional
data, such as medical images, and can learn
to extract features that are relevant for specific
tasks. To train a CAE, the same principles as a
standard autoencoder are applied. The model
is trained on a dataset of input images, with
the goal of minimizing the reconstruction error
between the original and reconstructed images.
Once the model is trained, it can be used for
various tasks such as image compression,
feature extraction, and anomaly detection.

3) Variational Autoencoders: Variational
autoencoders (VAEs) are a type of generative
model that are capable of learning a low-
dimensional representation of data, while
simultaneously generating new data samples
that resemble the original data. VAEs are a
type of probabilistic autoencoder, where the
encoder maps the input data to a probability
distribution in the latent space, and the
decoder maps samples from the latent space
to a probability distribution over the input
data.?® Unlike standard autoencoders, VAEs
are trained using a variational inference
approach, where the objective is to minimize
the difference between the true posterior
distribution over the latent variables and a
distribution.  The

approximate posterior distribution is typically

tractable approximate
modeled as a Gaussian distribution with mean
and variance parameters, which are output by
the encoder network. The latent variable
samples are then generated by sampling from
this Gaussian distribution. The objective

function for a VAE includes two terms: the

reconstruction loss, which measures the ability
of the model to reconstruct the input data,
and the Kullback-Leibler (KL) divergence
between the approximate posterior
distribution and the prior distribution over the
latent variables. The KL divergence term
encourages the approximate posterior
distribution to match the prior distribution,
which is typically modeled as a unit Gaussian
distribution. By minimizing the KL divergence
term, the VAE encourages the encoder
network to learn a compact and disentangled
representation of the input data in the latent
space (Figure 3). One of the advantages of
VAEs is that they can generate new data
samples by sampling from the learned latent
space. By sampling from the prior distribution
over the latent variables, the decoder network
can generate new samples that resemble the
original data. This makes VAEs useful for tasks
such as data generation, data augmentation,
and transfer learning. In the context of
medical imaging, VAEs have been used for a
variety of tasks, such as image denoising,
image reconstruction, and image synthesis.
For example, VAEs can be used to generate
synthetic medical images that can be used to
augment training data for supervised learning
algorithms. Additionally, VAEs can be used to
generate new medical images that can be
used for

diagnostic purposes, such as

identifying abnormalities or diseases. In

summary, autoencoders are  powerful
unsupervised deep learning models that can
be used for a variety of tasks, including data
compression, feature extraction, anomaly
detection, and image generation. They work
by learning a compressed representation of
the input data, which can be used for various

downstream tasks. Over the years, various

Medical Research Archives | https://esmed.org/MRA/index.php/mra/article/view/4350

9



https://esmed.org/MRA/index.php/mra/article/view/4350
https://esmed.org/MRA/mra

Medical
Research
Archives

Atherosclerosis Detection using Autoencoders Applied to MR Images

architectures of autoencoders have been
proposed, each with its own strengths and
weaknesses. Some of the most popular
architectures include the standard autoencoder,
convolutional autoencoder, and variational
autoencoder. It is important to carefully select
the architecture of the autoencoder based on
the task at hand and the nature of the data. In
addition,

number of layers, neurons, and learning rate

hyperparameters such as the

should also be optimized to ensure optimal
autoencoders have
the field of
unsupervised deep learning and are expected

performance. Overall,

shown great promise in

to play an increasingly important role in future

research and applications.

FUCO0st DREOOEL

Figure 2: CAE Architecture3.

Encoder 'ﬁ /“ o — Decoder
X . -

s (ze) ‘ﬂ m.pw e (2]2)
Latent

Vector

Figure 3: CAE Architecture®.

IV. Transfer learning

A. OVERVIEW

Transfer learning is a technique in machine
learning that enables a model to leverage
knowledge gained from one task to improve
its performance on another related task. In the
context of deep learning, transfer learning
involves reusing the learned weights of a pre-
trained neural network as a starting point for

training a new network for a different task®.
One of the main advantages of transfer
learning is that it enables us to train models
with much smaller datasets. By using a pre-
trained model, we can leverage the knowledge
gained from a large dataset to improve the
performance of a model trained on a smaller
dataset. Additionally, transfer learning can
reduce the time and computational resources
required for training a new model from
scratch. There are several different types of
transfer learning techniques, including fine-
tuning, feature extraction, and domain
adaptation. Fine-tuning involves taking a pre-
trained model and re-training it on a new
dataset with a different set of output classes.
hand,

involves freezing the weights of the pre-

Feature extraction, on the other
trained model and using it as a fixed feature
extractor for a new dataset. Finally, domain
adaptation involves adapting a pre-trained
model to a new domain with different
characteristics, such as a different data
distribution.

great success in many applications, including

Transfer learning has shown

image classification, object detection, natural
language processing, and speech recognition.
In the context of medical applications, transfer
learning has been used to improve the
performance of deep learning models for a
range of tasks, such as disease diagnosis,
and medical

lesion segmentation, image

classification. One of the challenges of
transfer learning in medical applications is the
need to fine-tune the pre-trained models to
the specific medical domain of interest, which
may have different characteristics from the
original domain the model was trained on.
However, with appropriate domain adaptation

techniques, it is possible to overcome these
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challenges and achieve state of- the-art
performance in medical applications. Overall,
transfer learning is a powerful technique for
improving the performance of deep learning
models in various domains, including medical
applications. It enables us to leverage the
knowledge gained from large datasets to
improve the performance of models trained
on smaller datasets and reduces the time and
computational resources required for training
a new model from scratch. In this paper, we
decided to use transfer learning on the visual
(VGG), VGG-16 model,

originally trained on the ImageNet dataset to

geometry group

classify images into 1000 categories. Using
transfer learning on the VGG-16 model is
important because it allows us to leverage the
model’s pre-trained weights and architecture,
which have been shown to be effective for a
wide range of image classification tasks. By
fine-tuning the last few layers of the model on
our own dataset, we can re-purpose the
model to solve our own classification task with
relatively few training examples. Compared to
training a model from scratch, transfer
learning can be significantly faster and require
less training data, as the pre-trained model
has already learned to extract useful features
from images. This can be particularly useful in
medical imaging, where annotated data can
be scarce and time-consuming to obtain.
Additionally, transfer learning can improve
the performance of our model by providing a
better initialization of the weights and biases
of the neural network, which can lead to
better convergence during training. However,
it is important to note that transfer learing is
guaranteed to

not always improve the

performance of a model. The choice of pre-

trained model and the specific layers to fine-
tune can have a significant impact on the
performance of the final model. In some
cases, it may be necessary to train a model
from scratch to achieve optimal performance

for a specific task.

B. VGG-16 VGG16 is a convolutional neural
(CNN)
introduced by the Visual Geometry Group
(VGG) at the University of Oxford in 2014. It is
a deep learning model that consists of 16

network architecture that was

layers, including 13 convolutional layers and 3
fully connected layers. The VGG 16 architecture
achieved state-of-the-art results on the
ImageNet dataset, which is a large-scale
image recognition dataset containing millions
of images.?” As shown in Figure 4, the VGG16
architecture is characterized by its simplicity
and uniformity. All convolutional layers have a
fixed 3x3 filter size and a stride of 1, and all
pooling layers have a 2x2 filter size and a
stride of 2. This
architecture easy to implement and optimize.
The first layer of the VGG16 model takes an

input image of size 224x224x3 and applies a

uniformity makes the

set of convolutional filters to generate a set of
feature maps. The subsequent convolutional
layers reduce the

progressively spatial

dimensions of the feature maps while
increasing the number of channels. The
pooling layers halve the spatial dimensions of
the feature maps, further reducing the
number of parameters in the model. The fully
connected layers at the end of the VGG16
architecture perform the classification task.
The output of the final fully connected layer is
a probability distribution over the different

classes in the ImageNet dataset.
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Figure 4: VGG-16 Architecture®.

Transfer leaming on VGG16 is a popular
technique in deep learning, especially for
computer vision tasks. Transfer learning
involves using a pre-trained model, such as
VGG16, as a starting point for training on a
new task or dataset. By using a pre-trained
model, we can leverage the knowledge that
the model has learned from a large dataset
and transfer that knowledge to a smaller
dataset. This can significantly reduce the
amount of data required for training and
improve the performance of the model. In our
research, we decided to do transfer learning
on VGG16 to classify medical images. The
Image Net dataset, on which VGG16 was pre-
trained, contains millions of natural images,
which have different features than medical
images. However, the lower layers of VGG16
learn generic features, such as edges and
textures, which are also present in medical
images. By freezing the lower layers of VGG 16
and training only the top layers on our medical
images, we can take advantage of the learned
generic features while adapting the model to
our specific domain. Compared to models
trained from scratch, transfer learning on
VGG16 can often achieve higher accuracy
with less training data and training time.
Additionally, VGG16 has been extensively
tested and optimized, making it a reliable and

robust architecture for many computer vision

tasks.

V. Making ai

explainable ai in medical diagnosis

transparent:

Explainable Al (XAl) is a growing field of
research that aims to develop machine
learning models that are transparent and
interpretable to humans. In the context of
medical applications, XAl has the potential to
improve patient outcomes and increase trust
in Al-based decision-making. XAl can help
clinicians understand how Al algorithms arrive
at their decisions, identify potential biases,
and improve the overall accuracy and
reliability of Al models®. One approach to XAl
in medical applications is to use visual
explanations. Visual explanations provide an
intuitive and interactive way to explain the
decision-making process of Al models to
clinicians and patients. One example of this is
the use of saliency maps to highlight the most
important features in medical images that
contribute to a particular diagnosis. Another
example is the use of attention maps to
visualize the regions of interest in medical
images that are most relevant for a particular
task. Another approach to XAl is to use
model-agnostic methods, which can be
applied to any type of machine learning
model. These methods aim to identify the
most important features or inputs that
contribute to the output of the model. This
can be achieved through techniques such as
feature importance ranking, partial dependence
plots, and individual conditional expectation
plots. These methods can help identify
potential biases in the model and provide
insights into how the model is making
decisions. XAl in medical applications is still a
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relatively new field, and there are many
challenges to overcome. One of the
challenges is the need for large and diverse
datasets to train and validate Al models.
Another

standardized evaluation metrics to assess the

challenge is the need for

performance and interpretability of Al
models. Despite these challenges, XAl has the
potential to revolutionize the field of medical
Al and
providing clinicians with more transparent and
tools. A.
Techniques for XAl in Medical Applications

improve patient outcomes by

interpretable  decision-making
Explainable Al is an essential requirement for
medical applications where decisions made
by Al models must be transparent and
explainable. There are various techniques
used for XAl in medical applications, some of
which are discussed below™.

1). LIME: Local Interpretable Model-Agnostic
Explanations (LIME) is a technique that can be
used to explain the output of any machine
learning model. LIME creates a local surrogate
model around the prediction made by the
original model and provides an explanation in
terms of the features that the surrogate model
finds most relevant to the prediction. In
medical applications, LIME can be used to
explain the output of deep learning models
applied to medical images.

2) Grad-CAM: Gradient-weighted Class
Activation Mapping (Grad-CAM) is another
technique that can be used to explain the
output of deep learning models. Grad- CAM
generates a heatmap that highlights the
regions of an image that contribute the most
to the final prediction. In medical applications,
Grad-CAM can be used to visualize the
regions of medical images that the deep

learning model has identified as being

relevant to the diagnosis.

3) Decision Trees: Decision trees are a popular
technique for building interpretable models.
In medical applications, decision trees can be
used to predict patient outcomes or diagnose
diseases. The structure of decision trees can
be visualized and provides insight into the

reasoning behind the model’s decisions.

4) Rule-based Systems: Rule-based systems
are another technique that can be used for
building interpretable models. Rule-based
systems consist of a set of rules that are used
to make predictions. In medical applications,
rule-based systems can be used to diagnose
diseases or predict patient outcomes. The
rules used in the system can be easily
understood by medical professionals and
provide transparency into the reasoning
behind the model’s decisions.

5) Model Distillation: Model distillation is a
technique that can be used to make complex
models more interpretable. The technique
involves training a smaller, simpler model to
mimic the behavior of a larger, more complex
model. The smaller model can then be used
to make predictions and is more interpretable
than the original complex model. The use of
XAl techniques in medical applications can
provide transparency into the decisions made
by Al models, enabling medical professionals

to make informed decisions.

VI. Methodology

In this section, we provide a detailed
description of the methodology used in our
study to develop and evaluate a deep
learning model for the detection of

atherosclerosis in murine subjects from gated
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MRI images. We begin by describing the pre-
processing steps, which involved the use of a
Block Matching 3D (BM3D) filter and Contrast
Limited Adaptive Histogram Equalization to
enhance the contrast in the images. We also
discussed how the dataset was augmented to
increase the number of images and how the
stacked

autoencoder architectures were employed

autoencoder and convolutional

and compared to each other.

A, DATA ACQUISITION AND  PRE-
PROCESSING

The MRI images used in this study were
collected using a high-performance 2-Tesla
horizontal MR system with a 180 mT/m
gradient set. Axial and coronal scout images
of the heart, aortic root, and the carotid origin
were obtained using a 2D gradient echo
sequence. In addition, three high-resolution
MRI sequences, GE (Gradient Echo), SE (Spin
Echo), and FSE (Fast Spin Echo), were employed
with specific acquisition parameters, TR/TE =
385/10 ms, 450/18 ms, and 2300/50 ms,
respectively. To capture the axial T1-weighted
images of the carotid origin, a 2D multislice
SE sequence was used with specific
parameters, including a TR of 290 ms, TE of
18 ms, matrix size of 256 x 256, slice thickness
of 1 mm, and pixel size of 90 pm. The dataset
available contains 215 murine subject images,
including 188 atherosclerotic and 27 healthy
images*!. After data cleaning and selecting
only the axial imaging plane we were left with
12 diseased images and 6 healthy.

To prepare the MRI images for training the
autoencoder, a pre-processing step was
implemented to enhance the quality of the
images by removing noise and improving

contrast. The images were first denoised

using the Block Matching 3D filter, which
groups similar blocks in the frequency domain
and eliminates high-frequency noise by
thresholding the transformed data*’. The
denoised blocks were then averaged to
produce the final denoised image. To further
improve the contrast levels of the denoised
images, Contrast-Limited Adaptive Histogram
Equalization (CLAHE) was applied. CLAHE
divides the

calculates a local histogram before equalizing

image into small tiles and
it, limiting the contrast based on a threshold.*
The application of BM3D filter and CLAHE is

shown in Figures 5 a and b respectively.

Figure 5.a: Before Processing

Figure 5.b: After Processing

B. DATA AUGMENTATION

Acquiring sufficient labeled data for real-
world applications, particularly in the medical
field, can be a daunting challenge for deep
learning models. Such models require an
extensive amount of training data to avoid
overfitting, which is why data augmentation
has become a critical aspect of training deep
Data
augmentation can help increase the quantity

learning models with image data.
and diversity of available training data, which
is essential for achieving high accuracy levels

in medical applications and other domains.

To augment our dataset, various image
augmentation techniques were employed,
using the ImageDataGenerator class in Keras

to rotate, shift, rescale, zoom, and flip the
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images. Specifically, we chose the axial point
of view (POV) from the healthy and diseased
images to train our model and applied all the
aforementioned techniques to them. Initially,
the dataset for this axial plane comprised only
6 healthy images and 12 diseased images.
However, after applying image augmentation
techniques, the number of healthy images
1505 and the number of
diseased images increased to 1212, enabling

increased to

the training of a more robust and accurate
deep learning model.

C. PROPOSED MODEL

In this subsection, we outline the
experimental protocol employed for the

training process of both autoencoders,

1. Deep Learning Algorithm:

The dataset was split into three parts using an
80-10-10 ratio: the training set, representing
80% of the total images, and the testing and
validation sets, each containing 10%. This
approach helps to ensure that the model can
generalize well to new data and not just
memorize the training set. The training set
consisted of only healthy images, while the
testing and validation sets were balanced,
with an equal number of healthy and diseased
images.

The autoencoder took grayscale images with
dimensions of 256 x 256 pixels as input,
meaning that the input layer of the
autoencoder had a shape of (256, 256, 1). The
models were trained using a batch size of 128
for 50 epochs, with the Adam optimizer. The
activation function used between the layers
was RelU, and sigmoid was used for the
output layer. The models were evaluated
using the Mean Squared Error (MSE) and
Mean Absolute Error (MAE) as the loss criteria.

2. Stacked Autoencoder Model

The model was designed to be trained on
healthy images and then tested on both
healthy and diseased images. Images with a
reconstruction error above a certain threshold
were considered diseased. The number of
layers and their sizes were selected using the
Keras Hyper tuner to optimize the model's
performance. The stacked autoencoder
model used multiple fully connected layers,
with the first layer being the input layer of
shape (256,256,1). The model had several
dense layers, with each dense layer having an
initially large number of neurons that
gradually decreased in size until the
bottleneck was reached. The bottleneck layer
had a neuron size of 32, and the output layer
of the decoder had a size of (256x256), which
was reshaped into (256,256,1) for image
stacked

autoencoder allowed for the model to learn

reconstruction. The wuse of a

more complex features and patterns in the
data,
identifying diseased images.

leading to improved accuracy in

3. Convolutional Autoencoder Model

The  convolutional autoencoder model
consisted of an input layer, followed by a layer
that added Gaussian noise to the images to
make the reconstruction more robust. The
model also had a convolutional layer using 16
filters and a kernel size of (3x3), followed by a
max pooling layer. More convolutional and
max pooling layers were added alternately as
the encoder layers progressed, with the
number of filters used in each convolutional
layer decreasing until the bottleneck was
reached. The decoder layer consisted of
deconvolutional  layers  paired  with
upsampling layers that alternated in size until

the size of the original input was reached.
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4. Transfer Learning

The autoencoder is trained using a dataset
comprising only normal MRl images. The
objective is for the autoencoder to learn the
underlying patterns and regularities present in
the normal images, enabling it to identify
The Adam

optimizer with a learning rate of 0.001 is

anomalies during inference.
employed to optimize the model parameters.
The mean squared error (MSE) loss function is
used to measure the similarity between the
input and reconstructed images. During
training, the model is exposed to the training
dataset in batches of 64 images. The training
data is shuffled in each epoch to prevent the
model from memorizing the order of the
images and to enhance generalization. The
training process is performed for a fixed

number of epochs, typically 50.

To evaluate the performance of the trained

autoencoder in detecting anomalies, a
separate validation dataset is used. This
dataset contains both normal and anomalous
MRI images, with ground truth annotations
indicating the presence of anomalies. The
trained autoencoder reconstructs the input
images from the validation dataset, and the
similarity between the reconstructed and
ground truth images is measured using the
MSE loss. A threshold on the loss value is set
to classify images as either normal or anomalous.
Performance metrics such as precision, recall,
and F1 score are computed to assess the
accuracy of the proposed approach in
detecting anomalies. Visual analysis of the
reconstructed images is also performed to
gain insights into the autoencoder's ability to

capture anomalous regions.

All experiments are conducted on a suitable

hardware platform with sufficient computational

resources. The model implementation is

based on widely-used deep learning
frameworks such as Keras and TensorFlow.
Hyperparameter

tuning experiments are

performed to  optimize the model
performance. Parameters such as learning
rate, batch size, and layer configurations are
systematically varied, and their impact on the

detection accuracy is evaluated.

5. Grad Cam

In this study, we applied the Grad-CAM
technique to visualize the activations in three
different layers of the trained autoencoder.
After training the autoencoder on a dataset
healthy  MRI
implemented Grad-CAM to gain insights into

comprising images, we

the importance and localization of features at
Grad-CAM
provides a heat map highlighting the regions

each layer of the encoder.
in the input image that contribute significantly
to the activations at a specific layer. We
followed a step-by-step methodology, starting
with a forward pass through the trained
autoencoder to generate the encoded feature
maps. Next, we selected three different layers
within the encoder to analyze the feature
activations, representing the transition from
general to specific features. By performing a
backward pass and computing the gradients,
we weighted the gradients and feature maps
to obtain the activation map. Finally, we
overlaid the activation map on the input MRI
image, generating a heat map that visually
represented the areas contributing most
significantly to the activations at each layer.
This methodology allowed us to visualize and
analyze the changes in feature activations
across the selected layers, providing valuable
insights into the hierarchical nature of the

autoencoder's encoding process.
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VIl. Results the CAE provides better reconstruction across

In this section, we present the results of
training the CAE and SAE models on a single
POV of healthy medical images. We evaluated
the performance of the models using MSE
and MAE loss functions. The reconstruction
loss was used as a metric to evaluate the
quality of the generated images by the
autoencoders, with lower reconstruction loss
indicating better autoencoder performance.
Table 1 displays the results of training,
validation, and testing loss for MSE and MAE
across the two architectures.

and Stacked

Autoencoder reconstruction loss across

Table 1: Convolutional

different loss functions.

MSE MAE

Training | 0.0024 | 0.0272
Validation | 0.005 | 0.0461

CAE Testing 0.0049 | 0.0457
Healthy 0.0032 | 0.0403
Diseased | 0.0068 | 0.052
Training | 0.0076 | 0.0466
Validation | 0.0246 | 0.0932

SAE Testing 0.0243 | 0.089
Healthy 0.0078 | 0.0478
Diseased 0.04 |0.1299

The results presented in Table 1 clearly show
that the SAE and CAE architectures perform
differently in terms of reconstruction, as
measured by the MSE and MAE metrics
during training, validation, and testing
phases. It is also important to note the
difference in reconstruction between unseen
healthy and unseen diseased images. which
shows that the model can detect the outliers
within the dataset and allows us to classify

images accordingly. The table also shows that

all loss functions.

From Figure 6, we can see the visual quality of
the reconstructed images using the two
models. Qualitatively, the images
reconstructed by the CAE architecture appear
to be more visually similar to the input images
compared to those reconstructed by the SAE
architecture. This suggests that the CAE
architecture is better able to capture the
important spatial features of the input images,

which leads to better reconstruction quality.

orginal original original
-
reconstructed reconstructed reconstructed

= £

(a)
original original original
—
-
4
reconstructed reconstructed reconstructed

Figure 6 a and b: Original & Reconstructed Images
using CAE (a) and SAE (b)

The performance of the proposed VGG16-
based autoencoder is compared with other
existing anomaly detection methods for MRI
images.  Evaluation  metrics, including
accuracy, precision, recall, and F1 score, are
used for quantitative comparison. This
quantitative analysis allowed a systematic
VGG16-based

autoencoder with other established methods.

comparison of  the
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The results of this comparative evaluation
revealed that the transfer learning-based
autoencoder performed worse than the
scratch.  This

judgment was reached based on a number of

autoencoder trained from
significant findings. First, The reconstruction
loss was consistently higher for the transfer
learning-based model, indicating a lower
fidelity in capturing the essential information
from the input images. This greater loss in
reconstruction implied a lower degree of
fidelity in preserving essential image elements
and attributes. The visual assessments of the
exhibited
decreased sharpness and detail compared to

reconstructed  images  also
the autoencoder trained from scratch, as well
as indicated by multiple performance metrics,
including accuracy, precision, F1 score, and
recall. The predicted images using a VGG 16-
based autoencoder are shown in Figure 7.

original original original original

reconstructed reconstructed reconstructed

Figure 7: Original & Reconstructed Images using
VGG16

reconstructed

In addition to evaluating the performance of

the  autoencoders based on  their
reconstruction quality, we also compared
several practical aspects between the normal
VGG16-based

autoencoder. Table 2 presents a comparison

autoencoder and the

of the number of parameters, size of the code,
inference time, and energy consumption for
both models.

Table 2: Comparison between the
performance and characteristics of
convolutional and VGG 16

CAE VGG16
Total parameters (4,385) Total parameters (36,218,307)

Numberof  Trainable (4,385) Trainable (21,503,619)
parameters = Non trainable (0) Non trainable (14,714,688)
Size of the 60KB 309,589KB

model

Inference 0.2165ms 0.3024ms

time

Consumption 0.00324) 0.00453 J

of energy

Performance  Accuracy: 0.9669
metrics Precision: 0.971
Recall: 0.9571
F1 score: 0.964

Accuracy: 0.9133
Precision: 0.9375
Recall: 0.9022

F1 score: 0.8695

autoencoder, trained from
exhibited a

parameters compared to the VGG16-based

The normal

scratch, lower number of
autoencoder. This indicates that the normal

autoencoder had a more compact
architecture, requiring fewer resources for
storage and computational operations. In
the VGG16-based autoencoder,
which leveraged the pre-trained weights of
the VGG16 model, had a higher number of

parameters due to the inclusion of the pre-

contrast,

trained encoder.

Regarding the size of the model, which refers
to the memory footprint required to store the
autoencoder models, the normal
autoencoder had a smaller size compared to
the VGG16-based
attributed to the

parameters in the

autoencoder. This s
reduced number of
normal autoencoder,
leading to a more efficient utilization of

memory resources.

In terms of inference time, which measures the
time required for the autoencoder to process
and reconstruct an input image, the normal

autoencoder exhibited faster inference times
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compared to the VGG 16-based autoencoder.
The simpler architecture of the normal
more efficient

autoencoder allowed for

computations, resulting in quicker

reconstructions.

Finally, considering the energy consumption
which measure the total amount of power
used by the laptop during its operation
represented as thermal design power (TDP)
multiplied by the total time of operation, the
normal autoencoder demonstrated lower
energy requirements compared to the
VGG16-based autoencoder. The

number of parameters and faster inference

reduced

times of the normal autoencoder contributed
to its energy efficiency.

VIII. DISCUSSION

The obtained results reflect the effectiveness
of the Stacked
Autoencoder architectures in the context of
different
the two

Convolutional  and
image reconstruction.  The
performance patterns between
designs are highlighted, highlighting the
potential benefits of adopting the CAE for
medical picture reconstruction rather than the
SAE. The fact that the models can distinguish
between photos of healthy and diseased
tissue based on the learned features suggests
that this has implications for disease diagnosis
CAE frequently

outperforms other reconstruction methods in

and classification. The

terms of loss functions, which suggests that it
can extract important information from the
input images, making it an important tool for

accurate image production and analysis.

The quantitative results are further supported
by a visual comparison of the reconstructed

photos, with the CAE-generated images

showing greater fidelity to the original input
images. This demonstrates how crucial it is for
medical imaging applications for the CAE to
accurately replicate small details and
structures. The CAE's ability to maintain
image quality further increases its potential for
use in clinical settings, supporting medical
professionals in making precise diagnoses

and treatment plans.

VGG 16-based

autoencoder with existing MRI abnormality

The comparison of the

detection methods provided valuable insights
into the effectiveness of learning transfer in
this context. The use of rigorous evaluation
scales enabled robust quantitative evaluation,
highlighting trade-offs associated with the use
of pre-trained models. The observed
underperformance of the transfer leaming-
based autoencoder, as shown by increased
reconstruction loss and reduced visual quality,
emphasizes the difficulties transfer learning
can present in some contexts. Pre-trained
models like VGG16 can be useful in some
situations but applying them to a given task
may not always result in better results. The
performance gap between transfer learning
and starting from scratch stresses the
importance of carefully weighing the task at
hand,

architecture's domain-specific adaptability.

dataset  properties, and the

The quantitative results are vividly supported
by the visual evidence shown in Figure 7,

both the
images produced by the
VGG16-based autoencoder.

disparities in image quality point out the

which features original and
reconstructed

The obvious

VGG16-based autoencoder's limitations in
accurately capturing the minute details

necessary for anomaly detection in MRI scans.
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In addition to the

reconstruction, practical aspects such as the

quality of the

characteristics of the model were also taken
into account. A comparison of a CAE and a
VGG16-based highlighted
trade-offs complexity,

memory footprint, inference time, and power

autoencoder
between model
consumption. The CAE showed advantages in
terms of the number of parameters, model
size, inference speed, and energy efficiency.
These practical considerations underscore the
importance of tailoring model architectures to
the requirements of specific applications, as a
CAE has proven useful in scenarios where
resource efficiency is critical.

IX. Conclusion and perspectives

In conclusion, our research presents a deep
learning model that can aid in the accurate
and efficient detection of anomalies in MRI
images. This can greatly benefit cardiologists
and medical staff in identifying different types
of anomalies, including atherosclerosis, with
high accuracy using auto-encoders. The
of this

implementation in clinical practice. Moving

success model encourages its
forward, we plan to explore the use of
Generative Adversarial Networks (GANs) to
augment medical data, and also investigate
other deep learning models to determine
which produces the most accurate results.

This will help improve the performance and

reliability of our model for detecting
anomalies in medical images.
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