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ABSTRACT

Adenosine 5'-triphosphate (ATP) is found in every cell of the
body where it plays a critical role in cellular metabolism and
energetics. ATP is released from cells under physiologic and
pathophysiologic conditions; extracellular ATP acts as an autocrine
and paracrine agent. Its effects on targeted cells are mediated
by subtypes of purinergic receptors (P2R). In the lungs, relatively
large amounts of ATP are released under inflammatory conditions.
Extracellular ATP triggers a central vagal reflex by activating
purinergic receptor P2XR localized on pulmonary vagal sensory
nerve terminals. This results in cough, bronchoconstriction and
the release of pro-inflammatory neuropeptides via axon reflex.
COPD patients manifest higher sensetivity to aerosolized ATP
than healthy subjects, and the levels of ATP in COPD patients’
lungs are 3x that found in healthy subjects. This review succinctly
details (i) the sources amd mechanisms of ATP's release into
the extracellular space, (ii) the ways extracellular ATP is
eliminated, (iii) the deleterious effects of ATP in the lungs in
general and in COPD in particular, and (iv) the rationale for the
blockade of these actions of ATP in the lungs as a novel therapeutic

approach in the management of COPD patients.
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Introduction

In recent years, it has become overwhelmingly
clear that extracellular adenosine 5-triphosphate
(ATP) is a ubiquitous component of damage-
associated molecular patterns (an alarmin)’,
which plays a major role in systemic and
localized inflammatory responses. Here we focus
on the mechanistic role of ATP in inflammatory
processes in the lungs in general and COPD

in particular.

ATP is found in every cell of the human body
at a concentration range of 5-10 mM, except
for platelets, in which its concentration is far
higher?. Intracellular ATP plays a critical role in
cellular metabolism?. It is the final source of
energy for all body functions at the cellular,
tissue, organ, and organism levels. ATP is
stored in intracellular vesicles of multiple cell
types”. In particular, it is stored as a co-transmitter
in neurotransmitter vesicles®. ATP is released
from cells under physiologic and pathophysiologic
conditions; extracellular ATP is rapidly degraded
by ecto-enzymes to adenosine, which s
eliminated from the extracellular space by
ecto-adenosine deaminase and active transport
into cells (see below). Extracellular ATP may
act as an autocrine and paracrine agent®. The
actions of extracellular ATP are mediated by
P2 purinergic receptors (P2R)°. These receptors
are divided into two families: P2YR, which are
seven trans-cell membrane domain G-protein
coupled receptors (GPCR; metabotropic)’, and
P2XR, which are cationic channels (ionotropic)®.
Eight P2YR and seven P2XR have now been
cloned. Several P2XR heterotrimers have also
been identified including P2X2/3R, which
manifests combined characteristics of P2X2R
and P2X3R%™°. P2R are highly expressed in the

11,12

lungs''?, and purinergic signaling plays

important roles in alveolar homeostasis, but is
also involved in the development and
progression of severe pathological conditions

like acute lung injury, fibrosis and cancer™ .

The continued exponential growth of research
activities dealing with the role of purine
nucleosides and nucleotides in pulmonary
physiology and pathophysiology is manifested
in the large number of papers that have been
published since the publication of our recent
reviews' ™. Accordingly, it is inevitable that
the coverage of the relevant research in this

review is succinct, and article citation is limited.

ATP release: ATP is released from cells under
physiologic and pathophysiologic conditions.
Multiple mechanisms mediate the release of
ATP including exocytosis, large membrane
pores and specific trans-cell membrane ionic
channels'®'. There are several sources for
extracellular ATP?: Large amounts of ATP are
found in platelets and ATP is released during
platelet activation?'?®. ATP is also stored in
red blood cells (RBC), from which it is released
under conditions of imbalance between O,
supply and O, demand?#. In addition, several
biologic substances as well as increased blood
flow can induce the release of ATP from vascular
endothelial cells?*" and smooth muscle cells®>%,
Pannexin channels and connexin hemichannels
play a critical role in this release®. ATP is also
released from nerves as a co-transmitter 3°> and
from exercising skeletal muscles®. In the heart,
ATP is released into the extracellular fluid under
various conditions. Specifically, ATP's release is
evoked by sympathetic nerve stimulation and
In addition, ATP is

released in the heart during acute myocardial

by catecholamines®-°.

ischemia®!, and from cardiac myocytes in response

to hypoxia ***3. During inflammation, ATP is
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released from inflammatory cells*“. For
example, ATP is released from mast cells
Elevated
extracellular concentrations of ATP have been

found in the lungs of COPD patients*“.

following  FceRl-cross  linking®.

Increased plasma concentrations of ATP have
also been reported in COPD patients and are
correlated with disease severity. Hlap¢i¢ |,
Hulina-Tomaskovi¢ A, Somborac-Badura A,
Rajkovi¢ MG, Dugac AV, Popovi¢-Grle S, Rumora
L. Extracellular adenosine triphosphate is
associated with airflow limitation severity and
symptoms burden in patients with chronic
obstructive pulmonary disease®. Pulmonary
ATP concentrations are also increased in a
mouse model of smoke-induced acute lung
inflammation and emphysema®*" and in

human smokers®2,

Degradation of extracellular ATP:

Extracellular ATP is rapidly and sequentially
degraded by ectonucleotidases, including
ectonucleoside triphosphate dephosphorylase-
1 (CD39) and ecto-5'-nucleotidase (CD73) to
ADP, adenosine monophosphate (AMP), and
adenosine; the latter, exerts its own effects on
targeted cells by activating P1 purinergic cell-
surface receptors (A1R, A2aR, A2bR, and A3R)
>33 CD73 is widely expressed in a variety of
tissues, including the colon, kidney, brain,
liver, heart, lung, spleen, and bone marrow®’.
CD39 is expressed by multiple cell-types
including epithelial, endothelial and immune
cells. It is highly expressed in different human
tumor types®. Adenosine is rapidly eliminated
from the extracellular space by ecto-
adenosine deaminase and active transport
into cells®. Extracellular adenosine acts as an
anti-inflammatory agent, the actions of which
are mediated by A2aR, A2bR and A3R¢®,

However, adenosine can indirectly cause

bronchoconstriction by activating airways
mast cells®, and cause CD73-dependent
excessive neutrophil infiltration through the
upregulated expression of the A2aR receptor
in a murine model of asthma®?. Therefore, the
levels of CD39 and CD73 and their enzymatic
activities play a critical role in controlling the
duration and magnitude of autocrine and
paracrine effects of ATP and adenosine.
Multiple studies have shown that the level of
these  enzymes is  altered  during
pathophysiologic conditions. For example,
increased expression of CD39 and CD73 by
pulmonary epithelial and endothelial cells was
observed during high inspiratory pressure-
induced lung injury®®. Also, upregulation of
CD39/CD73 expression has been observed in
patients with small cell lung cancer as well as
in patients with a broad spectrum of solid
cancers®. It has most recently recognized that
CD73 manifest a bimodal activity in the lungs,
specifically, certain pathophysiologic conditions
are associated with harmful effects of CD73,
while others are associated with beneficial

effects®®.

ATP axis in the lungs: In 1996, Pelleg and
Hurt reported for the first time that extracellular
(intravenous) ATP stimulates canine vagal sensory
nerve terminals in the lungs by activating P2XR
localized on slowly conducting C-fibers® as
well as fast conducting Ad fibers (see Figure 1
in ). The former are bimodal receptors, i.e.,
they respond to either mechanical (stretch) or
chemical (ATP, capsaicin) stimuli®®. Also in 1996,
a study in human subjects demonstrated that
aerosolized ATP is a potent bronchoconstrictor
in healthy subjects and more so, in asthmatic

patients®’. A subsequent study in 1998 established
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the cause-and-effect relationship between these
two fundamental observations; in that study,
bronchoconstriction in the canine lungs was
caused by extracellular ATP, thereby indicating
that ATP’s stimulation of vagal sensory nerve
terminals in the lungs triggers a central
pulmonary-pulmonary vagal reflex®®. Since C-
and A fibers mediate cough®’’?, the fact that
ATP stimulates both fiber types strongly
suggest that extracellular ATP is an important
tussigenic agent’™”’. The stimulation by ATP
of these nerve terminals could also lead to
release  of

localized pro-inflammatory

neuropeptides via the axon reflex’®.

A year later, the spectrum of ATP’s effects in
the lungs was significantly broaden by the
observation that extracellular ATP markedly
enhanced the IgE-dependent histamine release
in human lung mast-cells®’. Based on these
early studies, a seminal review put forward
the hypothesis that extracellular ATP plays a
major mechanistic role in pulmonary disorders,

what was termed as “ATP Axis in Obstructive

Airway Diseases” (Figure 1)%. Since then,

voluminous data obtained in numerous studies
have validated this original claim that extracellular

ATP plays a major mechanistic role in multiple
pulmonary disorders'1>83,

In addition to P2X3R and P2X2/3R that
mediate the action of ATP on vagal sensory
nerve terminals in the lungs®®, P2X4R has
been more recently implicated in the deleterious
effects of ATP in the lungs. Specifically, the
expression of P2X4R that are predominantly
expressed in secretory cells of the airways, is
upregulated in those cells under inflammatory
conditions, and activation of P2X4R enhances
mucin secretion and potentially contributes to
mucus hypersecretion and mucus plagque
formation®. In addition, P2X4R has also been
implicated in ATP-induced contraction of
tracheal and bronchial smooth muscle cells®8?
as well as airway remodeling by acting on the
phenotype switching of bronchial smooth muscle
cells™. Last but not least, P2X4R mediates the
ATP-induced
response-induced mast cell degranulation?.

augmentation of immune
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cells, Ischemic cells, Apoptotic cells, Red
Smooth muscle cells,
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blood cells,
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Figure 1: A schematic outline of the “ATP Axis in the Lungs.” ATP released from muiltiple cell types activates P2
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purinergic receptors (P2R). The latter triggers a pulmonary central vagal reflex leading to bronchoconstriction and
cough, as well as an axonal reflex leading to the localized release of pro-inflammatory neuropeptides. In
addition, ATP stimulates inflammatory cells and enhances IgE-dependent degranulation and histamine
release from lung mast cells, and acting as an autocrine agent, causing the release of ATP in a positive

feedback loop. Extracellular ATP is degraded by ectoenzymes to adenosine; adenosine acts either as an

anti- or pro-inflammatory agent, the action of which are mediated by P1R (i.e., A2aR, A2bR and A3R).

ATP and COPD: COPD is associated with
chronic inflammation of the airways and lung
parenchyma as well as systemic inflammation®.
This inflammatory process increases further
during acute exacerbations episodesin COPD
patients”. Chronic and acute inflammations™
are complex pathological processes manifested
by a variety of molecular events, including the
activation of immune cells and the release of
pro-inflammatory cytokines™. Extracellular ATP
acts as a major pro-inflammatory agent™; it is
chemotactic to and activator of inflammatory
cells such as neutrophils, macrophages, dendritic
cells, and memory T cells®. As noted above,
the involvement of ATP in pulmonary
The

facts that (i) ATPisa pro-inflammatory agent,

inflammation is well documented??.
(i) its levels are increased in the lungs of
COPD patients and (jiii) several P2R mediating

the effects of ATP in the lungs have been

identified, constitute a strong rationale for the
targeting of these P2R and their signal
transduction pathways as a new therapeutic
modality in the management of patients with
COPD and chronic cough. COPD remains a
critical unmet clinical need and therefore, the
potential addition of ATP-P2R based therapy
in this arena would be attractive. Indeed,
several P2X3R antagonists are currently being
developed as oral medications for the
treatment of chronic cough. Several P2X3R
antagonists are currently being developed as
oral medication for the treatment of chronic
These
diaminopyrimidines including gefapixant (AF-
219)100101  the
camlipixant (BLU-5937)"?, which are in phase I
clinical trials and eliapixant (BAY-1817080)'%,
and sivopixant (5-600918)'* which are in
Phase Il clinical trials (Figure 2).
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Figure 2: Current developmental stages of drug-candidates aimed at treating patients with chronic cough.

Of the five drug candidates only DT-0111 is being developed as an aerosol. *On February 4, 2023, Bayer
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announced that it will discontinue

clinical ~ development  of  BAY-1817080.

(https://www.bayer.com/media/en-us/bayer-will-discontinue-phase-ii-development-candidate-eliapixant/)

Inhalation is the preferred administration
route for COPD therapy because it facilitates
reaching localized relatively high drug
concentrations within the lungs, leading to
increased efficacy and decreased systemic
adverse events versus other administration
routes (e.g., oral or intravenous)'®. Indeed,
muscarinic

inhalations  of  long-acting

long-acting adrenergic
agonists (LAMA and LABA, respectively) with

and without corticosteroids has been the

antagonists and

hallmark of therapy for COPD, and pending
approval, phosphodiesterase 3/4 inhibitor'®.
The first inhaled drug-candidate targeting
ATP-axis in the lung as a novel therapy for
COPD is DT-0111 (DT), which is a novel small-
water soluble molecule that acts as a selective
P2X3R antagonist’*'%. In preclinical proof-of-
concept studies, aerosolized DT effectively
dose of 0.14 mg/kg)
ATP-induced
bronchoconstriction and cough in free moving

(i.e., an optimal

suppressed aerosolized
conscious animals’. While these observations
are yet to be replicated in human subjects,
they indicate that DT might be the first inhaled
drug to combine bronchodilatory, anti-tussive

and anti-inflammatory actions.

Conclusions:

Over more than two decades since it was
originally proposed in 2002 that extracellular
ATP plays an important mechanistic role in
pulmonary disorders®, numerous studies
have generated voluminous data supporting
this hypothesis. The identification of specific
signal transduction pathways activated by
extracellular ATP’s binding to pulmonary cell-

surface P2R, has facilitated the novel drug

discovery process based on the pharmacologic
manipulation of these pathways. We suggest
here that future development in this arena
could go beyond anti-tussive therapies to
include novel therapeutic approach in the
treatment of COPD.
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