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ABSTRACT
Background: The COVID-19 pandemic has necessitated the

development of efficient diagnostic tools to predict T-cell responses,
which are crucial for viral clearance and protection against reinfection.
Current diagnostic tests lack the ability to predict the epitope
repertoire of an individual that induces T-cell responses.

Methods: We developed VERDI, a new machine learning-based
diagnostic tool that leverages the sequence data of all the six HLA class
| alleles of an individual to rank all putative epitopes based on their
potential to induce T-cell responses. VERDI was trained on a
comprehensive clinical dataset of 920 SARS-CoV-2 epitopes and
validated using an independent dataset collected for the FDA-approved
T-detect COVID test. We compared VERDI's performance with existing
HLA-allele-based models through statistical analyses.

Results: Our findings reveal that VERDI's top-ranked epitopes accurately
represent the individual's epitope repertoire that participates in T-cell
responses. VERDI outperformed current models, improving T-cell response
prediction recall by threefold and precision by eightfold. It exhibited
exceptional diagnostic accuracy, precision, and recall in predicting the
potency of the top 20 epitopes. Despite experimental limitations that
allow testing of only 1% of putative epitopes, VERDI accurately predicted
30% of these, implying a potentially higher accuracy if broader testing
were feasible. Notably, the mean potency of the top-ranked epitopes
predicted by VERDI, which reflects the strength of an individual's SARS-
CoV-2-specific T-cell responses, exhibited a Gaussian distribution.
Conclusions: VERDI is the first diagnostic tool that uses the complete
HLA genotype data to predict the breadth and strength of an individual's
T-cell responses to SARS-CoV-2 infection. Its ability to accurately identify
the potency of epitopes involved in individual T-cell responses and its
superior performance compared to the state-of-the-art make it a new

resource for personalized vaccine design and disease management.

Medical Research Archives | https://esmed.org/MRA/index.php/mra/article/view/4533 1



https://doi.org/10.18103/mra.v11i11.4533
https://doi.org/10.18103/mra.v11i11.4533
mailto:*julianna.lisziewicz@verdisolution.com
mailto:*julianna.lisziewicz@verdisolution.com
https://esmed.org/MRA/mra
https://esmed.org/

Medical
Research
Archives

HLA-genotype-based Predictive Diagnosis of T-cell Responses to SARS-CoV-2

Infection Powered by Machine Learning

Introduction

The global outbreak of SARS-CoV-2 has led to
widespread hospitalizations and fatalities,
especially among individuals with unprepared
immune systems. T-cells, especially CD8+ T-
cells, have emerged as crucial components in
the immune response to the infection, capable
of eliminating infected cells even in the absence
of protective antibodies. 2 While effective
vaccines have been developed to induce both
antibody and T-cell responses, the continuous
mutation of SARS-CoV-2 and the decline of
antibody responses over time have underscored
the importance of T-cells as the primary defense
against severe illness and death. 34

T-cell responses are triggered by specific
antigens displayed by Human Leukocyte
Antigens (HLA). Following infection, viral proteins
are processed into peptides, a subset of which,
known as epitopes, bind to HLA class | molecules
and are transported to the cell surface to activate
T-cell receptors (TCRs). Over recent years, the
identification of more than 1,400 epitopes
stemming from SARS-CoV-2 has revealed their
capacity to induce T-cell responses within at

least one out of 1,197 individuals. ®

However, accurately diagnosing the specific
epitopes and their potency in triggering T-cell
responses in an individual remains a significant
challenge.® Experimental methods can test only
a few percentage of putative epitopes due to
specimen limitations, and the reproducibility
of antigen-specific T-cell responses is inconsistent
across different individuals. ” Existing machine
learning models designed to predict epitope-
HLA and epitope-TCR pairs are most accurate
for common HLAs. However, even accurately
predicted HLA-allele-binding epitopes rarely
induce T-cell responses in HLA-allele-matched

individuals. >#? This discrepancy highlights the
unique specificity and potency of T-cell responses
in each individual and underscores the need
for prediction tools that are not only trained
but also validated at the individual level, a
feature currently lacking in existing models.

We addressed these challenges by developing
a machine learning model named VERDI
(Vaccine Epitopes Ranked by Digital Intelligence).
VERDI models our hypothesis that T-cells
respond to high-density epitopes cooperatively
presented by autologous HLA molecules on
an individual's cell surface. TCRs are repeatedly
stimulated by epitopes on the cell surface that
share a common ligand (“core”) capable of
TCR recognition. The VERDI model addresses
the three-phase puzzle by ranking all putative
epitopes based on their potential to induce T-
cell responses at the individual level: epitope
processing and presentation on the cell surface
by HLA, TCR recognition of the epitope, and

stimulation of the T-cell response.

Substantial clinical data was used to test and
validate the VERDI model, leading to a significant
discovery - the epitopes that rank highest
within the VERDI system directly correspond
to the pivotal T-cell antigens. Notably, these
top-tier epitopes collectively serve as a
defining biomarker of SARS-CoV-2-specific T-

cell responses in individuals.

This study provides a comprehensive
understanding of the role of T-cell responses in
SARS-CoV-2 infection and explores the potential
of machine learning in predicting these
responses. It contributes to the ongoing debate
on the effectiveness of current diagnostic
methods and offers a novel predictive diagnosis
of T-cell responses, thereby addressing a

significant gap in the field.
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Methods in the pool having the strongest binding affinity

Cohorts. Two cohorts were used for developing
VERDI - the ABF training cohort and the
Adaptive validation cohort. The ABF training
and cross-validation cohort is comprised of 79
individuals characterized with a 4-digit genotype
of 6 HLA class | alleles representing the sequence
of the epitope-binding pocket of the HLA. ™
NetMHCpan4.1 prediction was employed to
select 2,204 test epitopes with strong binding
to one or more dominant HLA class | alleles of
the study subjects. ? T-cell responses were
measured with labeled peptide-MHC-I multimers,
which quantify the potency of CD8" T-cell
antigens as “log-fold-change” compared to no
antigen or baseline indicating the expansion
of antigen-specific T-cells after SARS-CoV-2
infection in the body. We trained VERDI with
all the published potency data of an average
of 920 epitopes per HLA-allele-matched

individuals.

The Adaptive validation cohort comprised
114 individuals characterized by a complete 4-
digit HLA-genotype. ' 545 distinct HLA class |
binding epitopes was predicted with the
NetMHCpan4.1 to strongly bind to one HLA-
allele of the test subject. An average of 169
epitopes per individual were tested with the
TCR sequencing method that quantifies the
potency of T-cell antigens as “hits” compared
to the no antigen control (data was accessed at
https://clients.adaptivebiotech.com/pub/covi
d-2020). A "hit” shows the number of copies
of each TCR sequence in the sample that

quantifies the expansion of an antigen-specific
T-cell clone after SARS-CoV-2 infection in the
individual. Since several experiments tested
pools of peptides, we postulated that the T-
cell responses were dominated by one epitope

to the dominant HLA-allele of the subject,
resulting in an average of 51 tested epitopes

per subject.

The complete HLA-genotype of individuals
from the European SDY614 (1,061 subjects)
and US SDY28 (1,092 subjects) populations
was accessed at

https://www.immport.org/shared/home.

VERDI model. VERDI was trained and validated
with clinical dataset of SARS-CoV-2-specific T-
cell responses from individuals that included
information on the HLA genotypes of these
individuals as well as the epitopes that were
recognized by their T-cells. Using the HLA
genotype data VERDI generates a comprehensive
list of predicted epitopes ranked by their
potency to trigger T cells (See the Supplementary

section for details).

Statistical evaluation. To evaluate the binary
classification performance of the models, five-
fold cross-validation was performed at the
antigen-individual level, and the receiver
operating characteristic curve (ROC) and
precision-recall curve (PR) were computed on
the test splits. To evaluate the diagnostic
function of VERDI at the individual level, the
top-N epitopes with the highest T-cell response
per individual were identified. The ranked
accuracy (Eq. S.3) was defined as the fraction
of top-N antigens predicted correctly for an
individual. Precision and recall were also
defined at the individual level (Eqgs. S.4 and
S.5). When only positive T-cell responses were
reported in the validation dataset, the "PU-
metric" was employed for model comparison
(Eg. S.6), which is commonly used in positive-
unlabeled learning. The statistical evaluation

was summarized in the manuscript.
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Results may be transported to the cell surface by each

of HLA-allele and HLA-
genotype-based models of T-cell responses

Comparison

To model T-cell response prediction, we used
the ABF cohort which is the largest published
experimental dataset on epitope-specific T-cell
responses in HLA-genotyped individuals. ' As
a baseline model following current practices,
we used the dominant HLA-allele-based
prediction of T-cell responses and selected
the highest EL score (EL Max) for every epitope
of each subject predicted by NetMHCpan 4.1.7
The ROC-AUC 0.57 and PR-AUC 0.0135
performance demonstrated that this EL Max
model is just marginally better than random
guessing to predict the epitopes that induced
T-cell responses at the individual level. (Figures
2 a, b) Indeed, in the ABF cohort, only 5% of
the predicted “strong” HLA-allele-binding
epitopes induced T-cell responses in HLA-allele-
matched subjects.

To address the diagnostic challenges of T-cell

responses, we hypothesized that (i) epitopes

EL scores

autologous HLA molecule albeit to a different
extent, and (i) T-cells may be stimulated by
overlapping epitopes having the same “core”,
which is the TCR binding site.’>"® To model
our HLA-genotype-based hypothesis, we
developed VERDI, a cloud-based predictive
diagnostic test, where the input is the 4-digit
HLA genotype of the subject. VERDI reports all
putative epitopes ranked by their potency to
trigger the T-cells of the HLA-genotyped
individual (Figure 1). It uses a balanced
(B-RF)
machine learning model that is learned from

random forest as a downstream
the HLA-genotype and the epitope-specific T-
cell response potency data measured in SARS-
CoV-2-infected individuals. Since the model is
trained on the ranked probability of epitopes
triggering a TCRin the test subject, the output
(probability of an  epitope  being
immunogenic) is interpreted as the potency of
an epitope to induce T-cell responses in the

individual.

& sub-scores .

6 HLA Class 1
of individual

NetMCHpan 4.1

Epitope &
sub-epitope

LSPRWYFYY

Epitope BLOSUM 62 Encoding

& Length

ML Model
(Balanced RF)
Probability of
immunogenic
epitope
for individual

Figure 1: Prediction of T-cell responses of an HLA-genotyped individual with VERDI. 6 HLA class |

(input): The test subject’s 4-digit HLA class | alleles includes the sequences of the epitope-binding

domains of the 6 HLA-alleles. Epitope: VERDI creates all the putative epitopes from input protein

sequences and engineers the individualized input features described in the Supplementary section.
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To compare the performance of the two
models, we performed grouped 5-fold cross-
validation on the ABF dataset. The epitope-
ROC and PR curves and the
corresponding AUCs showed that the HLA-
genotype-based VERDI improved 3-fold the

individual

recall and 7.7-fold the precision of the prediction
of T-cell responses compared to the HLA-allele-
based EL Max model. (Figures 2 a, b)

To evaluate the diagnostic performance of
VERDI to predict the antigen repertoire of
individuals involved in T cell responses to
SARS-CoV-2 infection, we computed the top-
N ranked accuracy, precision, and recall for the
ABF dataset as described in the Supplementary
information. The results revealed that the mean
ranked accuracy across individuals for VERDI
was above 40%, whereas for EL Max it was below

10% (Figure 2c). These findings demonstrate

the superior diagnostic capability of VERDI in
predicting T-cell responses at the individual
level. Additionally, VERDI outperformed EL
Max in all the evaluation metrics of individualized
diagnostics, including accuracy, precision, and
recall distribution of the top-20 epitopes,
although there was a large spread across
individuals due to the limited coverage of certain
HLA-alleles in the training dataset (Figures
2d-2f). These results suggest that the genetics
of both the virus and the individual's HLA-
genotype govern SARS-CoV-2-induced T-cell
responses, making it impossible to predict these
responses accurately at the HLA-allele or
population level. Therefore, VERDI represents
the first-ever HLA-genotype-based individualized
diagnostic test for T-cell responses, offering new
opportunities for personalized medicine in

infectious disease management.
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Figure 2. Performance of VERDI to predict the specificity and potency of T-cell antigens of an individual

compared to the EL Max (state-of-the-art) and Random baseline models. a) Individual-epitope responses for

Receiving Operating Characteristic (ROC) curves for each model across all test folds, along with mean AUCs.

b) Precision-Recall (PR) curves for each model across all test folds, along with mean AUCs. Both ROC and

PR curves are computed by predicting T-cell responses at the epitope-individual level on the test folds. c)
Mean Ranked Accuracy across individuals for the EL Max and VERDI models. d)-f) Distribution of at @Top-

20 ranked accuracy, precision, and recall across individuals. (For precision and accuracy calculations we use

the same decision threshold, but we explored other thresholds for the model, all yielding similar results.)

Subfigures a and b are computed across all epitopes and individuals in the dataset. Subfigures c-f are

computed using aggregated metrics across individuals as defined in the Methods section.
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Validation of VERDI with clinical data used for
FDA approval of the T-detect COVID test

To evaluate the clinical performance of VERDI
in individuals outside the ABF cohort, we used
an independent dataset collected for the
development of the first T-cell response test
approved by the FDA. " Compared to the ABF
dataset, the Adaptive dataset encompassed
not only different epitopes but also different
cohorts of individuals living in different parts of
the world (US vs. Denmark), different methods
to quantify T-cells (TCR sequencing vs. multimer
staining), and tested a different number of SARS-
CoV-2 epitopes per subject (mean of 51 vs. 920).

VERDI ranked all 70,000 SARS-CoV-2-derived
putative epitopes for each individual in the
Adaptive cohort and we evaluated a smaller
top-ranked dataset per individual since fewer
epitopes were tested by Adaptive. VERDI
predicted the top N=1,2,3 with an average
accuracy of around 30% across individuals and
outperformed the EL Max model for the most

restrictive case predicting the most potent T-
cell antigens. (Figure 3a) However, it appeared
that EL Max outperformed VERDI as we relaxed
the ranking requirements for larger N rankings.
Adaptive reported only the positive T-cell
responses on epitopes predicted to be
immunogenic, and consequently, a potential
excess of false positives predicted by EL Max
was not adequately penalized. To correctly
control for false positives, we used the “PU-
Metric” from positive-unlabeled ML and observed
that VERDI is superior to the EL Max model for
all top-N values of interest. (Figure 3b)
Importantly, VERDI predicted at least 1 of the
3 most potent T-cell antigens identified by the
FDA-approved T-cell response diagnostic for
most subjects. (Figure 3c) The PU-Metric
distribution indicates that VERDI has a good
predictive performance in most individuals.
(Figure 3d) The validation of this challenging
out-of-distribution dataset confirmed that VERDI
provides a better predictive diagnosis for T-
cell responses than the EL Max.

6o Model
50 VERDI
EL Max

Mean Ranked Accuracy (%

)
®

cy per Individual

as Model
VERDI
EL Max

# of Individuals

0 20 40 60 80 100
Ranked Accuracy (%)
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b) Mean PU Metric acros
3.0
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P
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Figure 3. Clinical validation of VERDI in diagnosing T-cell responses to SARS-CoV-2 in the individuals of
the Adaptive cohort. EL Max: state-of-the-art prediction; VERDI: our ML model trained with clinical data of

individuals in the ABF cohort. a) Mean Ranked Accuracy at various top-N epitopes. Lower N values

compared to Figure 2 are used, given the limited number of reported epitopes per patient in the Adaptive

Cohort. b) PU metric corrects the limitations of the Mean Ranked Accuracy, as explained in the methods
sections. ¢) Distribution of @Top-3 Ranked Accuracy per Individual for VERDI and EL Max model. d)
Distribution of @Top-3 PU Metric per Individuals for VERDI and EL Max model.
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Diagnosing the breadth and strength of
SARS-CoV-2-specific T-cell

individuals

responses of

The top-50 epitopes ranked by VERDI include
the T-cell antigens responding to SARS-CoV-
2 infection since individuals respond to an
average of 30 epitopes.’ We evaluated the T-
cell epitope repertoire in 2,346 individuals and
found that immunogenic epitopes (antigens)
spread throughout the SARS-CoV-2 proteome
with extreme variability. Only a small subset of
antigens was shared by a subset of individuals,
and no single antigen was immunogenic in all

individuals.

Our observations revealed a surprising
consistency in the potency of the T-cell antigen
repertoire within the same individual (Figure
4 a, b). We quantified the mean potency of the

top-50 T-cell antigens as the measure of an

individual's SARS-CoV-2 specific T-cell responses.
For instance, the T-cell response strength in
individual ADAP-142 was 68% [64-80] (HLA-
A24:02, HLA-A24:02, HLA-B15:35, HLA-B40:02,
HLA-C08:01, HLA-C15:02). In contrast, for
ADAP-6359, the strength was 82% [74-96]
(HLA-A02:01, HLA-A24:02, HLA-B07:02, HLA-
B07:02, HLA-C07:02, HLA-CQ7:02). Interestingly,
the strength of T-cell responses across individuals
appeared to follow a Gaussian distribution in
different populations (Figure 4 ¢, d). These
findings suggest that the breadth and strength
of SARS-CoV-2 specific T-cell responses vary
among individuals. However, the strength
remains fairly consistent within the same
individual, following a Gaussian distribution
across different populations. This predictive
diagnostic tool could potentially guide physicians
in determining which patients may require

preventative measures or treatment.
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Figure 4. Characterization of SARS-CoV-2-specific cytotoxic T-cell responses at the individual level.

a, b) lllustration of the specificity (indicated as the location in the proteome) and potency (likelihood

of T-cell response) of the top-50 SARS-CoV-2-specific T-cell antigens in two individuals from the

Adaptive Cohort. Dotted lines represent the strength of SARS-CoV-2-specific T-cell responses of the

individual defined as the mean potency of the top-50 high-ranked T-cell antigens illustrated as 9-mer

“cores”. ¢ and d) Frequency distribution of the strength of T-cell responses in the EU populations.
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Discussion framework elegantly complements prior findings

VERDI represents the first predictive diagnostic
tool for SARS-CoV-2 specific T-cell responses
in individuals, based on their 4-digit HLA-
genotype data. Our model posits that an
epitope can be transported to the cell surface
by any autologous HLA molecules, and T-cells
respond to a high-density ligand on the
epitopes, referred to as the "core," which
stimulates the same TCR (Figure 5). The VERDI
model aligns with experimental data showing
that clusters of HLA-epitope complexes on
the cell surface stimulate a cluster of TCRs. &

Furthermore, our HLA-genotype-dependent

A B

Antigen Presenting Cell

STATE-OF-THE-ART

¥ 9 ¥ Y “/—"'\»

& I,'O/} C) TCR
. & & S oo -
‘f Dl I,

m D ‘:‘ “”:HL.\_Bi \

Antigen Presenting Cell

that underscore the significance of epitope
presentation by HLA-alleles, acknowledging
that while necessary, it alone is insufficient to
elicit T-cell responses.>'® The VERDI model also
explains the promiscuity of epitopes binding
to various HLA-alleles and the pivotal role
they play in eliciting T-cell responses that
remained previously went unnoticed at an
individual level. " VERDI has not only elucidated
this mechanism but has also paved a strategic
avenue for the predictive diagnosis of the
breadth and strength of T-cell responses at the
individual level, which had previously remained

elusive and unattainable.

T-Cell

[ = 037

\

VERDI

Figure 5. Models for the mechanism of induction of cytotoxic T-cell responses in an individual.

a) The state of the art, modeled by EL Max assumes that T-cells are activated by an epitope that

strongly binds to an individual's HLA-allele. b) The VERDI model assumes that T-cells are activated

by the top-ranked high-density epitopes transported to the cell surface by any HLA-allele expressed

in the cell. Overlapping epitopes can also stimulate the same T cell, which are represented as red

boxes in the illustration.

Clinical studies have shown that, on average,
SARS-CoV-2 infection induces T-cell responses
through approximately 30 epitopes per individual.™
Consequently, the top 50 epitopes ranked by
VERDI can accurately diagnose the extent of
T-cell responses to SARS-CoV-2, which may

be relevant to the outcome of infection and
vaccine protection at the individual level.* We
propose a concept of sequential T-cell activation
orchestrated by these top-ranked epitopes.
Epitopes possessing greater potency exert a
more robust stimulus on T-cells, thereby
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intensifying their proliferation and accelerating
the eradication of infected cells. Following the
successful clearance of the infection, a subset
of activated T-cells forms a memory pool, while
others succumb to programmed cell death.
Conversely, epitopes with comparatively
diminished potency elicit a milder response in
T-cell proliferation, leading to a protracted
process of eliminating infected cells. As long
as the infection persists, additional epitopes
continue to trigger fresh T-cell clones, culminating
in a diverse T-cell response. This extended
immune engagement simultaneously prompts
the expression of inhibitory molecules that
foster viral persistence. Importantly, it is notable
that individuals harboring weaker epitope
repertoire are more prone to experiencing
elevated viral loads and the onset of severe
COVID-19 symptom.?' Experimental evidence
confirms that individuals, who cleared the infection
quickly and effectively, had more potent T-cell
responses and fewer SARS-CoV-2-specific T-
cell epitopes compared to individuals with
severe COVID-19.22 The extreme heterogeneity
of T-cell responses explains the diverse clinical
findings among SARS-CoV-2-infected individuals.

VERDI faces its primary limitation in the scarcity
of high-quality data. Presently, experimental
techniques can assess only a limited number
of epitopes per individual, reaching a maximum
of a few hundred. Moreover, T-cell response
tests lack standardization and reproducibility
among individuals. Additionally, the complete
HLA-genotype of participants is often not
published in clinical trials reporting the potency
of T-cell epitopes. Despite these limitations,
VERDI holds promise for continuous improvement
through the incorporation of additional data.

VERDI holds immediate medical utility in

diagnosing epitope repertoire that elicit T-cell
responses in individuals, as 4-digit HLA-
genotype data can be sourced from clinically
validated tests employed in transplantation.?
VERDI's
potential delivers invaluable insights to physicians,

Moreover, predictive  diagnostic
enabling a deeper comprehension of cross-
reactive T-cell responses that occur between
circulating viruses and vaccines. The prospect
of predictive diagnostics extends towards
personalized treatment strategies, enhancing
the ability to

concerning the clinical trajectory of SARS-CoV-

manage  expectations

2 infection for individuals. This stems from the

correlation observed between  T-cell
responses and clinical outcomes, as
supported by  previous  research.’?®

Furthermore, the identification of epitopes
inducing T-cell responses through VERDI
diagnosis could exert significant influence over
personalized vaccine design. By pinpointing
prevalent epitopes that are conserved across
diverse SARS-CoV-2 variants, a fertile ground
emerges for the creation of precision vaccines
and T-cell therapies, promising advancements

in the field of personalized healthcare.

Conclusions

VERDI is an innovative machine learning-
based diagnostic tool, utilizing an individual's
complete HLA genotype to predict T-cell
responses to SARS-CoV-2. Its improved capability
to assess the potency of viral antigens in
individual T-cell responses sets it apart and
positions it as an advancement in immunology.
When compared to current state-of-the-art
tools, VERDI emerges as an improved option,
demonstrating an increased capacity for
accuracy, sensitivity, and speciﬁcity.
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This predictive diagnostic tool offers potential
in reshaping vaccine development approaches,
moving towards a more individualized
paradigm where vaccines can be tailored
based on one's unique genetic makeup. Such
personalized vaccines have the capacity to
stimulate more focused and robust immune
responses, providing a key strategy in achieving
comprehensive and lasting protection against
not only SARS-CoV-2 but potentially other

infectious agents.

Beyond vaccine design, VERDI holds promise
in transforming the landscape of disease
management and prognosis. By providing
personalized insights into an individual's immune
response, it might facilitate risk assessment,
treatment planning, and ongoing disease
monitoring, thus optimizing patient care and

potentially leading to improved clinical outcomes.

Moreover, VERDI's emergence marks the
initiation of a host of future research avenues
and applications. The intersection of genetics
and immune responses, as probed by VERDI,
is poised to broaden our understanding of
various diseases, extending far beyond SARS-
CoV-2,

fundamental mechanisms underlying immune

and offering insights into the

responses in health and disease.

Supplementary Material

Individualized inputs of VERDI and feature
engineering

VERDI uses the following features for each
epitope-individual pair: Epitope Weight Scores
(EWS), Subepitope Weight Scores (SWS),
Blosum-62 epitope encoding, and epitope
length. EL scores (ELS) were predicted with

the NetMCHPan4.1 for each epitope-HLA pair.
We interpret these scores at the individual
level as the likelihood of the HLA-allele presenting
an epitope on the cell surface. We define EWS
are the aggregated ELS of an epitope,
approximating the density of the epitope on
the cells of the test subject. Thus, the model
features EWS_A, EWS_B, and EWS_C are the
separately aggregated ELS on the HLA*A,
HLA*B, and HLA*C locus, respectively.

To account for the contribution of overlapping
epitope relations, a multi-leveled directed
graph network was introduced (Figure S1).
Every node in the graph identifies a peptide
which is distributed into different levels based
on their amino acid length. Every node that is
not on the lowest level is considered to be a
parent node, and every parent node has an
edge pointing toward its left-child and right
child. The left child is one amino acid shorter
Prefix of the parent peptide. The right child is
one amino acid shorter Suffix of the parent
peptide. We call every epitope which is below
the selected epitope in the graph, a sub-
epitope. The overlapping epitopes are
considered by calculating the Sub-epitope
Weight Scores (SWS) which are based on the
EWS for the sub-epitopes in the left and right
subgraph (S-Eql, S-Eq2). When the selected
epitope has a length greater than the minimum
length, the SWS1 is defined by the sum of the
EWS of each sub-epitope in the left subgraph
of the selected epitope. The SWS2 is defined
by the sum of EWS of each sub-epitope in the
right subgraph, except the common nodes
with the left subgraph (left subgraph of the
right child) of the selected epitope.
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Figure S1: Multi-leveled directed graph network used for the identification of T-cell antigens

from overlapping epitopes
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The left sub-epitope score (SWST) and the right sub-epitope score (SWS2) may be calculated

from:

SWS1
SWS2(y,

where x; is an epitope with the length of i,
where i is between 9 and 14 amino acids,
Ix;_4 is the left sub-epitope of x; and rx;_; is
the right sub-epitope of x; . The initial values
for HLA class 1 are S1(xg):=0 , and
SWS2(xg):= 0.

Finally, the epitope length is passed to the
model as an integer, and BLOSUM 62 is used
to encode the epitope sequence.

EL Max and VERDI Model validation at the

individual level

To demonstrate the binary classification
performance of the EL Max and VERDI models
we performed two evaluations at the antigen-
individual and the aggregated-individual levels.

First, we considered the predictions made
independently for each antigen and individual.
The subject-grouped five-fold cross-validation

= EWSge,_py + SWS1(y, ) + SWS2(1x, )
= EWStra_p + SWS2(xy)

[S-Eq1]
[S-Eq2]

procedure uses the ABF clinical data separated
into 5 random folds of 80% and 20% training
and test splits, respectively. These splits were
stratified to maintain the ratios of immunogenic
and non-immunogenic antigens in each
subject and the grouped data were not shared
between train and test splits. In each split, we
train the model and compute the receiver
operating characteristic curve (ROC) and the
precision-recall curve (PR) on the test split.
The PR curve is an alternative metric to the

ROC curve in this class imbalanced scenario.

Second, as we are interested in diagnosing
the T-cell antigens of individuals, we compute
aggregated performance metrics for each
individual. Therefore, for a given individual, we
rank T-cell epitopes according to the predicted
likelihood of being immunogenic (potency).
Then, we threshold the top-N epitopes as
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antigens for each individual according to the
ranking. For validating the ABF cohort, we
considered the top-20 epitopes as T-cell
antigens of the individual. Then, we compute
two metrics: Top-20 precision and Top-20
recall, which correspond to the precision and
recall metrics computed for the top-20 antigens
of each individual, compared to the (non-
ranked) ground-truth immunogenic epitopes
in the ABF cohort (S-Eq4, S-E@5). Ideally, we
would also like to validate the congruence of
our ranked likelihood (potency) with the
ranked epitopes for each individual in the ABF
cohort. This ranking corresponds to the “log-
fold-change” for each epitope according to
the ABF cohort. In this setting, we define the
Top-N ranked accuracy for each individual,
which corresponds to the percentage of the
top-N experimentally ranked T-cell antigens
that are correctly predicted as eliciting T-cell
responses by the epitopes ranked by potency
(S-Eq. 3). We explore this aggregated ranked
accuracy metric for different N values and
choose to explore the distribution of top-20
individual ranked accuracy.

To demonstrate the performance of VERDI
with other individuals, we trained VERDI with
the complete ABF cohort and performed T-
cell antigen prediction on the independent
Adaptive Cohort. Adaptive only reported
immunogenic epitopes (T-cell antigens) and
we could not obtain the results of the experiments
with no T-cell responses. Therefore, we focused
on the ranked accuracy at the individual level,
as defined in the ABF cohort, except that the
“hits” variable is used to experimentally rank
epitopes for each individual. Because of the

smaller data size per subject, we choose the
top-3 ranked accuracy as our metric of interest.
In the absence of true negative examples, the
top-N precision and recall metrics are not
correct in this setting. For this purpose, we
computed a metric commonly used in positive
unlabeled learning (PU-learning), the “PU metric”,
which corresponds to the recall in the dataset
scaled by the fraction of positive predictions
of a given model (S-Eq6).?* This can be seen
as a penalized f-score approximation that avoids
benefiting models that produce an excess of
false positives. A model with a higher PU metric
is preferred.

Evaluation metrics of the individualized

diagnostic test

We use two classes of evaluation metrics:
population and individual metrics. The population
metrics are computed across the dataset
considering each data point in the dataset
regardless of the individual and correspond to
the common dataset-wise definition of ROC-
AUC and PR-AUC classification metrics. These
metrics provide useful comparative information

on model performance.

However, individual-level metrics are more
consistent with the diagnostic function of
VERDI. At the
interested in identifying the Top-N epitopes

individual level, we are
with the highest T-cell response, where N is
defined according to the number of epitopes
of interest per individual in each dataset. In
our case, we choose N=20 in the ABF dataset
and N=3 in the Adaptive dataset, as the latter
contains less characterized epitopes per

individual.
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In each Top-N case, we define the ranked accuracy 4y, as:

TPr is computed by ranking the top-N
epitopes by the ground-truth potency measure
in each dataset for each individual, and by
ranking the top-N antigens predicted by
VERDI. TPy corresponds to the number of
correct predictions in the VERDI ranking that
are present in the ground-truth ranking. Thus,
Ag can be interpreted as the fraction of top-N

TP
~ TP+FP
_ TP

" TP+FN

Where TP is the number of true positives in
the epitopes of interest, FP is the number of
false positives and FN is the number of false
negatives at the individual level.

R‘R

PU = o=

[S-Eq3]

antigens that were predicted correctly for an

individual.

In addition to ranked accuracy, we were
interested in measuring the precision and
recall of each individual. For this, we ranked
the Top-N antigens by VERDI. Then, the
Precision P and recall R for an individual is
defined as:

[S-Eq4]
[S-Eq5]

In the Adaptive dataset, only positive values are
reported. In this case, we use a common metric
in positive-unlabeled learning, computed for
each individual at the top-N epitopes ranked
by predicted likelihood:

[S-Eq6]

Where R is the recall for the Top-N ranked epitopes and, Pr(y’ = 1) corresponds to the fraction

of the positive predictions made by the model. This metric approximates the f-score when true

negatives are not available. ®

Model selection

We used VERDI's engineered features to train
and select the best-performing model based
on cross-validation. The following models were
evaluated by five-fold patient-grouped cross-
validation. We consider several ML classification

228 including Logistic regression (LR),

models,
Gradient Boosting Regression Trees (GB), Random
Forest (RF), and Multilayer Perceptron (MLP),
as implemented in the sci-kit-learn package.
We also considered the deep neural network
architecture TabNet # with class weighting
corresponding to the inverse of the frequency

of each class. Finally, given that the dataset

suffers from substantial class imbalance, we
considered several machine learning models
for imbalanced classification, as implemented
in the imbalanced-ensemble Python package,
including Balanced Random Forest (B-RF),
Balanced Cascade Classifier (B-CC), AdaUBoost
(B-ABC), AdaCost (B-AC), and Self-Paced
Ensemble (SPE) Classifier. Figure S2 presents
the results for mean ROC-AUC and PR-AUC for
each model at the individual-epitope level across
5 folds. The model with the best performance
is a Balanced Random Forest classifier, which
we use for validation and comparison to the
EL Max model.
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Figure S2: Mean AUC-ROC and AUC-PR for various ML algorithms using five-fold cross-

validation
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Individualized inputs and feature selection

Figure S3 summarizes the impact on individual-epitope performance metrics for a subset of
model features. “No_Len” is a model without the epitope length feature, “No_SWS” does not
include all SWS features, and “No_Blosum” is a model without epitope encoding. The largest

impact on model performance is caused by removing the epitope encoding.

Figure S3: Impact of various features on mean AUC-ROC and AUC-PR using five-fold cross-

validation.
s AUC-ROC for 5 fold CV 06 AUC-PR for 5 fold CV

Full No_Len No_SWS No_Blosum ull No Len No SWS No Blosum
Model B Model - h
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