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ABSTRACT

Diabetics have an increased risk of contracting COVID-19
infection and tend to have more severe symptoms. This
systematic review explores the potential mechanisms
influencing the high prevalence of COVID-19 infections in
individuals with diabetes. It reviews the emerging evidence
about the interactions between viral and diabetic pathways,
particularly how diabetes physiology could contribute to
higher viral reception, viral entry and pathogenicity, and the
severity of disease symptoms. Finally, it examines the
challenges we face in studying these mechanisms and offers
new strategies that might assist our fight against current and

future pandemics.
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Introduction

The COVID-19 pandemic has profoundly
impacted global health, affecting individuals
with various underlying conditions differently.
Among these conditions, a significant
predictor of morbidity and mortality in
COVID-19 patients is diabetes'™. One study
found that COVID-19 patients with type-2
diabetes had higher hospital readmission
rates and disease severity’. Another study
estimated that COVID-19 patients with
diabetes have a 2 - 3.5 times greater risk of
hospital death than non-diabetic patients’.
However, it remains unclear why diabetics
exposed to the SARS-CoV-2 virus have poorer

prognoses.

There are several theories as to how diabetes
and viral symptoms synergistically influence
disease severity and mortality after SARS-
CoV-2 diabetes

symptoms such as high inflammation, blood

infections.  Prima facie,
coagulation, immune response impairment,
etc., could aggravate viral infection and
associated symptoms®’. Conversely, SARS-
CoV-2 infection could further worsen pre-
existing diabetes symptoms, leading to a
cytokine storm and excessive inflammation®’;
dysregulated inflammation could impact the
immune response, leading to a higher
likelihood of developing acute respiratory
distress, multi-organ failure, and death™.
Despite  these  ostensible associations
between diabetes and viral symptoms, new
details are emerging about how diabetes
physiology could specifically influence viral
reception, viral entry and pathogenicity, and
disease symptoms. In this systematic review,

we focus on these recent findings.

Diabetes symptoms influence
SARS-CoV-2 reception on cell
membranes

One reason why diabetics have a greater risk
of contracting COVID-19 could be because they
tend to have elevated expression levels of the
SARS-CoV-2 receptor, ACE2"". Higher ACE2
expression in specific tissues favors increased
viral binding and susceptibility to infection.
This section elaborates on recent findings
about a potential relationship between diabetes
and upregulation of ACE2 expression.

A significant portion of confirmed COVID-
positive subjects have a history of comorbid
conditions™™. To identify the risk factors
SARS-CoV-2

infection, Rao et al. conducted a phenome-

affecting  susceptibility to

wide Mendelian randomization study on
ACE2 expression''; the analysis revealed a
positive association between diabetes-related
traits and increased ACE2 expression. While
the specific mechanisms by which diabetes
symptoms alter ACE2 expression are unclear,
other studies have suggested that the
dysregulated glucose levels in diabetics might
contribute toward altered ACE2 levels. For
instance, in diabetic mice, hyperglycemia
increased renal ACE2 shedding into urine'™,
In contrast, insulin treatment of diabetic mice
normalized their hyperglycemia and decreased
urinary ACE2 secretion™. Similarly, in humans,
diabetics with poor glucose tolerance have
higher urinary ACE2 levels than control

subjects with standard glucose tolerance’.

Although it was previously shown that glucose
can induce ACE2 expression in cell lines", it
was controversial whether diabetes patients
had higher or lower expression of ACE2'8"%. A

recent study seems to have put this
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controversy to rest: By testing the effect of
glucose on ACE2 expression in human kidney
showed that an

organoids, this study

oscillatory glucose treatment led to a
significant upregulation of ACE2 expression
at the protein and mRNA levels®. Other
studies comparing kidney biopsies from
patients with diabetic kidney disease and
healthy patients showed that the ACE2 mRNA
expression  was diabetes
subjects???.  This of ACE2
expression is likely because hyperglycemia
increases the stability of ACE2 mRNA in

diabetic organoids®.

increased in

upregulation

However, an increase in ACE2 expression
during diabetes was not restricted to the
kidneys. When ACE2 expression was profiled
in a non-obese diabetic (NOD) mouse model,
the NOD mice, after diabetes onset, had
marked upregulation of ACE2 in the serum,
liver, and pancreas®. When ACE2 protein and
mRNA expression levels were evaluated in
human lung tissues, it was noted that patients
with diabetes had higher ACE2 protein levels
than control patients in their lung tissues®.
Similarly, an evaluation of ACE2 gene expression
in heart tissue revealed that diabetics had
significantly higher ACE2 gene expression
than non-diabetics in their heart tissues®.

Does an increase in ACE2 expression lead to
higher SARS-CoV-2 infectivity? While more
studies need to be conducted to answer this
question, some studies indicate a positive
ACE2
expression within some tissues, such as lungs
and kidneys, and a higher risk of SARS-CoV-2
infections®. Two other studies using cell lines

correlation between increased

showed a positive correlation between ACE2
expression levels and susceptibility to SARS-
CoV-2?728 Additionally, the efficiency of

SARS-CoV-2 replication in 293T cells was
found to be dependent on the ACE2 receptor
levels in a dose-dependent manner®.

Together, these findings make it reasonable
to speculate that diabetics have a greater risk
of contracting COVID-19 due to increased
ACEZ2 expression.

Diabetes symptoms aid SARS-

CoV-2 viral entry into cells

In addition to a higher expression of the viral
receptor, another reason why diabetics have a
greater risk of contracting COVID-19 is
because the symptoms associated with
diabetes may facilitate viral entry into cells.
This is supported by recent findings related to
at least three different symptoms of diabetic
physiology: (i)
increased levels of furin, and (iii) higher

altered glycosylation, (i)

expression of fibrinolytic enzymes. Together,
these symptoms potentially modify the ACE2
receptor to either increase its affinity for the
virus or facilitate viral entry. This section
elaborates further on these findings.

(i) Altered glycosylation. A common symptom
of diabetics is chronic hyperglycemia. Chronic
hyperglycemia can alter the glycosylation

273036 Glycosylation—

patterns of proteins
attaching glycans (polysaccharides) to specific
amino acid residues—is a post-translational
modification of proteins necessary for its
proper function®. In contrast, an abnormal
increase in protein glycosylation could lead to
altered

an irreversible accumulation of

proteins. One protein  susceptible to
abnormal glycosylation in diabetics is the

SARS-CoV-2 receptor, ACE2.

The ACE2 protein is susceptible to chronic
and abnormal glycosylation in diabetics due
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to its numerous lysine residues available for
3841, of ACE2's
revealed that its

glycosylation Examination

molecular  structure
extracellular domain contains 34 lysines,
seven of which are glycosylated*#. At least
five of these seven lysines were shown to be
relevant for viral interaction: Lys 353, located
in the ACE2 binding domain, is a crucial
residue for SARS-CoV-2 binding; Lys 619, Lys
631, Lys 659, and Lys 689, all located in the
ACE2 neck domain, are involved in ACE2
dimerization*?. Glycosylation of any of these
residues can affect the ACE2 receptor's
affinity for SARS-CoV-2.

Long-term effects of diabetes on the
glycosylation of the ACE2 receptor can affect
its affinity for the SARS-CoV-2 virus by altering
viral binding or by enhancing the stability of
the virus-receptor complex. First, although
glycosylation of Lys 353 was relatively low
compared to other lysines, it did influence
ACE2's binding affinity to the viral spike
protein*?. Second, glycosylation of lysine
residues in the ACE2 neck domain increases
ACE2 dimerization; dimeric ACE2 exhibits
higher binding affinity for the SARS-CoV-2
spike protein. For instance, the binding
kinetics between the SARS-CoV-2 spike
protein and ACE2 are more pronounced for
engineered dimeric and trimeric ACE2 than
the monomeric subunit®. Finally, elevated
levels of ACE2 dimers on the cell surface
could lead to interactions with multiple SARS-
CoV-2 receptor binding domains, thereby
enhancing the stability of the virus-receptor
complex and facilitating the transition from a

pre-fusion state to a post-fusion state***>.

(i) Increased levels of furin. Diabetics tend to
have elevated plasma levels of furin*. Furin,

which is expressed in many tissues, including

the oral and airway epithelial cells, cardiac
tissues, and enteric canals, is a type | membrane-
bound serine endoprotease®’. A host cell’s
membrane-bound endoproteases are typically
exploited by viruses such as the SARS-CoV-2
to cleave their surface glycoproteins and
facilitate cell entry. Interestingly, the SARS-CoV-
2 S glycoprotein has cleavage sites specific to
the furin-endoprotease activity, bestowing furin
a vital role during the viral infection®“. In
support of this, the co-expression of furin and
the viral receptor ACE2 has been detected in
the cell membranes of several cell types®.

In addition to its activity on the host's cell
membranes, within cells, furin shuttles between
the membranes of the Golgi and endosomal
compartments®*. Thus, furin may aid viral
infection in two different ways: First, at the level
of the cell membranes, furin may form a ternary
complex with the ACE2 receptor to help with
S glycoprotein cleavage and viral entry®*;
second, at the level of organelle membranes,
furin may aid in the diffusion of virions during

their transport along the secretory pathway?#%0.

(iii) Higher expression of fibrinolytic enzymes.
Both type | and type Il diabetics have elevated

385152 Plasmin, the

levels of plasmin(ogen)
proteolytically active form of plasmin(ogen), is
a non-specific protease capable of cleaving the
SARS-CoV-2 spike protein. Since the cleavage
of the virus envelope glycoproteins by host
cellular proteases is an important step for the
pathogenicity of respiratory viruses, higher
levels of plasmin in diabetics, like furin, could
further enhance SARS-CoV-2 pathogenicity

by facilitating its entry into the host cell.

In vitro studies support plasmin’s role in
cleaving the SARS-CoV-2 S protein®. While in
vivo studies of plasmin-specific cleavage of
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the SARS-CoV-2 S protein are lacking, this
idea is further supported by studies of
plasmin-specific ~ cleavage  of  another
respiratory virus, the influenza virus: Plasmin
cleaves the HA proteins of the influenza virus
enabling its spread and pathogenicity* 2.
Does the SARS-CoV-2 S protein have a
plasmin-specific cleavage site? Since plasmin
can cleave the furin sites in the y-subunit of a
human epithelial sodium channel, it has been
suggested that plasmin also likely targets the

SARS-CoV-2 S protein at its furin sites®**?,

In addition to its alleged role in cleaving the
viral S protein, plasmin, typically present in
human serum, is responsible for degrading a
variety of plasma proteins, especially fibrin
clots, via the fibrinolysis cascade®®. However,
when plasmin levels are elevated, as seen in
diabetics, it could lead to hyperfibrinolysis.
Hyperfibrinolysis results in decreased platelet
counts and elevated levels of D-dimer, a
protein byproduct of blood clot breakdown.
Decreased platelet counts and elevated D-
dimer levels are associated with increased
hemorrhaging, one of the leading causes of
death among COVID-19 patients®'. Elevated
serum D-dimer levels were noted in 97% of
COVID-19 patients and increased further in all
patients before death®'.

Overall, the increased glycosylation of the
ACE2 receptor and the increased expression
of proteases such as furin and plasmin in
diabetics may directly or indirectly aid in
SARS-CoV-2 pathogenicity.

Diabetes increases the severity of
COVID-19 symptoms

Once infected with the virus, diabetics tend to

have more severe COVID-19 symptoms™'®

20226263 \While many factors could influence
symptom severity, three observations from
recent studies might explain why diabetics
tend COVID-19

symptoms: (i) increased viral replication, (ii)

to have more severe

delayed viral clearance, and (iii)
hyperinflammation. Together, these factors
can allow SARS-CoV-2 to multiply, persist,
and, along with the increased inflammatory
response, cause severe disease symptoms in
diabetics.

(i) Increased viral replication. Viral replication
inside a host cell requires energy and a carbon
source to synthesize nucleotides, amino acids,
and lipids®*®*. To fulfill these needs, many
viruses, including SARS-CoV-2, hijack the host
cell metabolism to increase glycolysis. SARS-
CoV-2, in particular, promotes glycolysis by
evoking mitochondrial reactive oxygen
species (ROS) production®. In support of this,
increasing glycolytic flux promoted SARS-
CoV-2 replication®. In contrast, inhibiting
glycolysis prevented SARS-CoV-2 replication®’.
Thus, dysregulated glycolysis, as is often
observed during diabetes and in diabetics on
insulin therapy, can influence SARS-CoV-2
replication®®7°.

Insulin, which is the cornerstone of therapy for
diabetic patients, can augment glycolysis by

H'72. Insulin was

increasing intracellular p
shown to stimulate Na*/H* exchange, leading
to a decrease in extracellular pH and an
increase in intracellular pH”?7%. Therefore, it is
reasonable to hypothesize that an insulin-
stimulated  acidic  external environment
promotes SARS-CoV-2 entry’”®, while the
corresponding alkaline intracellular environment
promotes glycolysis and, thereby, SARS-CoV-

2 replication®7°.
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(ii) Delayed viral clearance. Diabetes is one of
many factors that can delay viral clearance.
Chen et al. tested 106 COVID-19 patients
using SARS-CoV-2 gRT-PCR and found that
diabetes negatively affected viral clearance.”®
Another study on the Omicron variant
investigated the risk factors for 7- and 14-day
viral clearance post-infection: The Omicron
variant clearance was delayed in diabetes
patients with elevated fasting glucose levels”.
While it remains unclear why diabetes might
hinder viral clearance, one idea implicates the
high plasma lactate levels commonly
observed in diabetes patients. Lactate was
shown to impair type | interferon (IFN-1)
production in response to viral infection’®”.
Impaired interferon production reduces the
innate ability of cells to recruit immune cells
for the purposes of viral clearing following an
infection®.

(iii) Hyperinflammation. A pathogen infection
of the human body triggers a cascade of
events, including an inflammatory response
marked by the secretion of proinflammatory
cytokines®®®'. Inflammation is a fundamental
immune response designed to protect the
body against harmful stimuli like viruses.
However, when inflammation becomes
dysregulated and persists at high levels, it can
contribute to the development and
progression of various human diseases.
SARS-CoV-2

dysregulates the host's

Infection by the virus
immune system,
causing high levels of inflammation. This
situation can be further exacerbated in
patients with diabetes who already have

blunted

inflammatory responses.

anti-viral  and  dysregulated

T lymphocyte function and a delayed

hyperinflammatory response®®; additionally,
they exhibit reduced natural killer cell activity®
and a blunted interferon response®*'. On the
other hand, SARS-CoV-2 can also dysregulate
the host’s inflammatory response due to their
ability to increase apoptosis of T lymphocytes
(CD3, CD4, and CD8 cells)?” reduced T
lymphocyte function relieves the inhibition of
the innate immune system, leading to the
secretion of high amounts of proinflammatory
cytokines, a phenomenon known as “cytokine
storm”?. Covid-19 patients have low peripheral
counts of CD4+ and CD8+ T lymphocytes and
elevated levels of proinflammatory cytokines
such as IL-6, TNF-a, CXCL-10, CCL2%*%,
Overall, the synergic combination of a blunted
anti-viral and exaggerated inflammatory
response in diabetics and the dysregulated
SARS-CoV-2

infection can lead to hyperinflammation and

inflammatory  response  to

increased COVID-19 disease severity and
duration in diabetics. In support of this,
diabetic mice infected with the MERS-CoV
virus had more pronounced disease severity
and duration than non-diabetic mice”.

While the primary site of infection and
inflammation in COVID-19 is the respiratory

system'®, high inflammation has also been

observed in the cardiovascular system'™'1%,

102,107-109 102,110-112

kidneys , liver , gastrointestinal

t‘l‘l3-‘|‘|5 116—119‘

trac , and the nervous systems
Chronic inflammation can damage tissue,
impair organ function, and contribute to the
development of chronic diseases, including
cardiovascular and metabolic disorders'®%1,
Thus, the hyperinflammation observed due to

a combination of viral infection and diabetes

On the one hand, diabetics have impaired  symptoms may lead to poor disease
adaptive immunity characterized by reduced prognoses.
Medical Research Archives | https://esmed.org/MRA/index.php/mra/article/view/4540 6
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Discussion approaches may lead to new insights and help

The established view is that diabetes and viral
symptoms synergistically influence COVID-19
disease severity and mortality. While these
associations may play a significant role, recent
more details about how

studies reveal

diabetes physiology can influence viral
reception, viral entry and pathogenicity, and
disease symptoms. In this review, we focused
on some of these interactions: Hyperglycemia
in diabetics can lead to elevated expression of
the SARS-CoV-2 receptor, ACE2, making cells
more receptive to the virus; symptoms of
diabetic

glycosylation, higher levels of furin and

physiology such as higher
fibrinolytic enzymes can alter the function of
the ACE2 receptor further increasing its
affinity for the virus and facilitating viral entry
into cells; other diabetes symptoms influence
viral  replication, viral clearance, and
hyperinflammation, thus contributing to

disease severity and mortality.

We note that many of these potential
interactions between the diabetic and viral
mechanisms remain incompletely understood
or clinically tested. A more complete
understanding of these interactions is critical
before we can devise new strategies to
mitigate the risk of COVID-19 infection and
disease progression in people with diabetes.
In this context, insightful knowledge may be
gained by a renewed focus on investigating
insulin- and ACE2-specific mechanisms and
their potential interactions in different tissues
using cell culture and model system research.
These

platforms to more precisely test specific

study systems offer controllable

hypotheses to investigate interactions

between viral and diabetic mechanisms. Such

identify potential drug targets primarily

relevant to disease progression in diabetics.

Given that diabetes affects a large percentage
of the world’s population, we hope this review
conveys the urgency for more attention to the
interactions between diabetic and SARS-CoV-
2 pathways.
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