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ABSTRACT 
Dendritic cells can be subdivided into three major subsets. The 
conventional (classical) dendritic cells (cDCs), also known as myeloid 
DCs, can be further split into the cDC1 and cDC2 subpopulations. The 
third subpopulation is the plasmacytoid DC (pDC), which can be 
further divided into three subsets. The pDCs are unique because they 
constitute the leukocyte, which secretes the largest amount of 
interferon (IFN). Since IFNs are crucial in the defence against viruses, 
it could be hypothesized that reduced IFN production by pDCs could 
cause susceptibility to viral infections in general. However, this does 
not seem to be the case, since it was not until the SARS-CoV-2 
pandemic that the essential role of pDCs in viral immunity was 
revealed. In this review we discuss the role of pDCs in the protection 
against Covid-19 and the mechanisms underlying susceptibility when 
these cells are malfunctioning as seen in haematological 
malignancies, exemplified by chronic lymphocytic leukemia (CLL). In 
contrast, overactive pDCs can lead to selected autoimmune diseases, 
where systemic lupus (SLE) is the premier example, demonstrating 
the yin and yang relationship. We also review pharmacological 
interventions related to pDCs.  
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Introduction 
The first description of pDCs may have been the 
report by Eckert & Schmid in 19891, although at this 
stage the nature of these cells remained elusive. Ten 
years later, pDCs were identified as the major cell 
in blood responsible for the secretion of type 1 IFNs 
2,3. Thus, in contrast to cDCs, which are essential 
antigen-presenting cells 4, pDCs have a very 
different physiological role. 
 
These cells naturally produce IFN and are 
conserved across both humans and mice. Other 
functional, as well as key genetic features of pDCs, 
are shared between both species 5,6, demonstrating 
the evolutionary conservation of this immune cell 
type. Using gene inactivation experiments the 

authors concluded that all IFN-α and -β responses, 

whether systemic production in innate immunity, or 
local action of IFN from pDCs in adaptive immunity, 
are under the control of IFN regulatory factor 7 
(IRF7) 7. This research-group also demonstrated that 
the IFN-inducing Toll-like receptor 9 (TLR9) ligand, 
CpG oligodeoxynucleotide, together with the 

Myeloid differentiation primary response 88 
(MyD88)–IRF7 complex, is specifically retained for 
long periods in the endosomal vesicles of pDCs. This 
spatiotemporal effect underlies the unique 
signalling scenario, which characterizes the 
extremely potent IFN induction by pDCs 8. 
 
Plasmacytoid dendritic cells originate from the bone 
marrow and emerge as mature cells in the 
periphery. Here they remain non-proliferative and 
have a relatively short lifespan of days. Stimulation 
through TLRs will promote their survival 9. In contrast 
to cDC, the pDC subset is known to require B-cell 
lymphoma-2 (BCL-2) to resist apoptosis. This pattern 
was maintained upon TLR stimulation. Hence, as 
expected, treatment with the BCL-2 selective 
inhibitor venetoclax (brandnames Venclexta® or 
Venclyxto®) primarily kills pDCs 10 and therefore 
this drug has also been used to treat blastic pDC 
neoplasms 11. Furthermore, stimulation of precursors 
of pDCs results in the induction of three different 
subpopulations depending on the type of stimulus, 
the P1-pDC (Fig. 1), being found in SLE-patients 12. 

 

 
Figure 1. The development and diversification of plasmacytoid dendritic cells (pDCs). Modified from 12. 
Accordingly, the pDC subsets have the following characteristics: P1-pDC, PD-L1+CD80-; P2-pDC, PD-L1+, 
CD80+, P3-pDC, PD-L1-CD80+. 
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Both cDCs and pDCs carry the cytokine receptor 
FMS-related tyrosine kinase 3 (FLT3, also known as 
CD135) and are strictly dependent on its ligand 
FLT3L for development. In fact, FLT3 alone in the 
absence of other signals, is sufficient to drive the 
development of pDCs and cDCs 13. 
 
Plasmacytoid dendritic cells may not always be 
protective against infections but increased numbers 
have instead been shown to occasionally correlate 
with disease severity. Thus, in mice susceptible to 
cutaneous leishmaniasis, the presence of larger 
numbers of pDCs is associated with more protracted 
infection, suggesting a complex and important role 
for pDCs in this condition 14. 
 
Recently, a novel interferonopathy was discovered, 
where deletions of the 3’ end of the RELA (also 
known as p65 in the NF-kB pathway) mRNA cause 
a dominant negative effect on the gene product  15. 
Autoinflammation and autoimmunity in these 
patients was driven by an upregulation of TLR7 and 
MyD88 transcripts in pDCs, but also in classical and 
nonclassical monocytes and in myeloid DCs (mDCs). 
Although the exact contribution of the pDC is not yet 
defined, it demonstrates that excessive IFN 
production causes disease. 
 
In this review, we will describe conditions where 
pDCs are impaired with potential implications for 
viral infection susceptibility. In contrast, overactive 
pDCs may also lead to disease, which can be 
exemplified by SLE. Finally, we discuss whether 
pDCs can be directly targeted by drugs to 
modulate immune responses in different disorders. 
 
LOSS AND IMPAIRMENT OF pDCs DURING 
INFECTION WITH HIV 
Already in 1994, Feldman et al. showed that the 
number of IFN-producing cells in peripheral blood 
is reduced in HIV-infected patients 16. Seven years 
later the same group reported that such IFN-
producing cells corresponded to the pDC 
population 17. The authors concluded that deficient 

production of IFN-α by pDCs from HIV-infected 

patients results from both loss of these cells in 
number, as well as their qualitative dysfunction. 
Patterson et al., 2001 reported that while both 
pDCs and mDCs express CD4, as well as, low levels 
of C-C chemokine receptor type 5 (CCR5) and C-X-
C chemokine receptor type 4 (CXCR4), pDCs are 

more readily infected by HIV 18. Treatment with 
highly active antiretroviral therapy (HAART) 
regimens did not fully restore the pDC 
compartment, while the correlation with CD4 counts 
varied among the studies 19,20. Collectively, this 
demonstrates that HIV impairs pDC activity at 
different levels and points to the importance of 
pDCs in the immune defence response against this 
infection. Given the profound immunological defect 
in untreated HIV, even if pDCs have a unique 
capacity to produce IFN, because they are just one 
of many cell types affected by a retroviral 
infection, their impairment only explains part of the 
enhanced susceptibility to infections among these 
patients (Fig. 2). More recently, it was found that 
upon TLR stimulation, pDCs show augmentation of 
activation-marker levels, IFN-related genes, HIV-1-
restriction factors and cytokine levels 21. The T-cell 
response appeared in parallel with upregulation of 

HIV-1-restriction factors and IFN-α production by 

pDCs.  
 
It is also known that TLR7-driven type I IFN-
production in pDCs is higher in women owing to cell-
intrinsic actions of oestrogen and escaped X-
chromosome inactivation leading to increased TLR7 
protein levels 22,23. The effect of this sex-difference 
on the outcome of an HIV-infection is, however, 
complex 24. In contrast, as described elsewhere in 
this report, the sex difference enhances the 
development of autoimmune disease, with females 
having a greater propensity to such disorders 25. 
 
LOSS AND IMPAIRMENT OF pDCs IN 
HEMATOLOGICAL MALIGNANCIES 
Another group of conditions where pDCs are 
impaired are the hematological malignancies. We 
have previously pointed out 26 that pDCs are lost 
and functionally impaired in chronic lymphocytic 
leukemia (CLL), a B-cell malignancy, both in the 
human disease 27-30, and in the T-cell 
leukemia/lymphoma-1 (TCL1) mouse model of CLL 
29. Interestingly, treatment with Bruton tyrosine 
kinase (BTK) inhibitors, which selectively block B-cell 
receptor-mediated NF-kB signalling 31, restores 
pDC numbers 28,30,32. In Smith et al., 2022 26, we 
also proposed that the severe Covid-19 observed 
in CLL 33 and in other hematological malignancies 
may be caused by lack of pDC activity, in particular 
due to reduced pDC numbers.  
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We have now found additional evidence for this 
notion in the literature. However, as mentioned, 
apart from reduced numbers, the pDC population in 
CLL also frequently seems to be functionally 
impaired 27. In other hematopoietic malignancies 
both reduced pDC numbers and activity have also 
been reported. Boissel et al., 2004 demonstrated 
that bloodborne pDCs in chronic myeloid leukemia 
(CML) show altered gene expression, which 
correlates with high plasma levels of Vascular 
endothelial growth factor (VEGF), and that reduced 
numbers of pDCs are not completely normalized by 
treatment with imatinib mesylate, a tyrosine kinase 
inhibitor 34. Wysocka et al., 2002 reported that 

CD123+ DCs, major producers of IFN-α, are 

significantly diminished in patients with cutaneous T 
cell lymphoma (Sézary syndrome) regardless of the 
level of tumour burden 35. Thus, pDCs appear to be 
reduced both in number and function in various 
haematological malignancies (Fig. 2), which could 
increase the risk for infectious complications in this 
patient-group. 
 
In blood malignancies, pDCs are not the only cell 
type affected, rather in such malignancies 
haematopoietic progenitors in general are 
impacted. As an example, bone marrow of 
untreated CLL shows a significantly lower 
proportion of CFU-GM (colony forming unit of 
granulocyte-macrophage), BFU-E (burst-forming 

unit-erythrocyte), and of CFU-GEMM (granulocyte, 
erythrocyte, monocyte, megakaryocyte) compared 
to normal controls 36. CLL cells were also reported 
to block hematopoiesis by TNF and other cytokines, 
among them IL-3 37. In addition, disturbed T and B 
cell interactions may cause defects of the immune 
system observed in patients suffering from CLL 38. 
Moreover, CLL cells influence their microenvironment 
by producing cytokines and chemokines, and by 
subverting normal accessory cells to promote tumour 
cell survival and escape from immune detection 39,40. 
 
pDCs ORCHESTRATE THE TYPE 1 INTERFERON 
RESPONSE DURING SARS CoV-2 INFECTION 
The Covid-19 pandemic has swept over the world 
during recent years. Early in the pandemic, it was 
clear that older people had a much higher risk of 
dying from Covid-19. In addition, underlying 
conditions such as obesity, lung disease and severe 
immunosuppression also increased the risk of 
succumbing to the disease 41. Interestingly, male sex 
appears to be a risk-factor as well, which could be 
related to X-linked traits 42.  
 
However, some young and previously healthy 
people also had a very severe disease course. This 
fact prompted a deeper analysis of the underlying 
cause in these unexpected cases 43. Several 
research-teams across the world found genetic 
variants in the type 1 IFN pathway that turned out 

Figure 2. Plasmacytoid dendritic cells (pDCs) impact human health in different ways corresponding to a 
yin and yang scenario. Excessive pDC effects seem to induce susceptibility to Systemic Lupus Erythematosus 
(SLE), whereas reduced effects predispose to severe Covid-19.  
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to explain parts of this susceptibility 44. Notably, 
many of these genes are highly expressed in pDCs, 
and indeed dysfunctional pDCs were shown to be 
involved 45. For example, patients with deleterious 
variants in the genes encoding TLR7 and IRF7, which 
profoundly impair pDC function, are highly 
susceptible to severe Covid-19 46,47.  
 
Notably, these genetic variants do not seem to 
confer an increased risk to other viral infections, 
since most of the affected individuals in the SARS 
CoV-2 studies appeared to have handled 
influenza, varicella, and other viral infections in a 
normal way. This narrow immunological gap to 
SARS CoV-2, is intriguing and deserves further 
investigations before the next pandemic arrives. 
Nevertheless, the lessons learned from the studies 
on these inborn errors of immunity have been 
immense and contributed to an increased 
understanding of the essential role that pDCs play 
in the immune response and as master controllers of 
the type 1 IFN responses in humans 48.  
 
Collectively, this suggests that there are at least 3 
pDC-related mechanisms causing susceptibility to 
severe SARS-CoV-2 infection (Fig. 2): 1. inherited 
defects, affecting TLR7 and IRF7 genes, resulting in 
impaired activity of pDCs, 2. crowding-out activities 
by which leukemias and lymphomas impair the 
development of normal hematopoietic cells, 
including pDCs, by the synthesis of cytokines and 
possibly by other means and, less substantiated, 3. 
pharmacological effects caused by treatment with 
BCL-2 inhibitors because pDCs are highly sensitive 
to BCL-2 inhibition. In addition, all the mechanisms 
underlying susceptibility in the general population, 
such as age, sex and impairment of interferon 
(outside of TLR7 and IRF7) synthesis may also 
impact disease course and severity, but these are 
not specific pDC-mediated effects.    
 
EXCESSIVE pDC-ACTIVITY CAN LEAD TO DISEASE: 
SYSTEMIC LUPUS AS AN EXAMPLE. 
Women have a more rigorous immune response to 
infectious agents, while at the same time have an 
increased risk for autoimmune diseases. This can 
partly be explained by sex hormones, such as 
estrogen and progesterone 23, but recent 
knowledge indicates that the control of immunity is 
directly linked to the number of sex chromosomes. A 
key gene, that is highly expressed in pDCs, is TLR7, 
the corresponding protein of which is a sensor of 
double stranded RNA. TLR7 is X-linked and thus 
undergoes inactivation in most female cells, thereby 
avoiding gene dosing effects. However, in several 
immune-cell subsets, TLR7 escapes inactivation, 
which subsequently leads to increased amounts of 
TLR7 transcript and protein and thereby an 

excessive immune response after receptor 
activation.  
 
Notably, TLR7 activation induces downstream 
activation of the type 1 IFN system, which is 
implicated in the pathogenesis of SLE. The ligands 
of TLR7 originate from several sources, including 
foreign viral RNA and endogenous retroviral RNA 
49. In addition, pDCs can be activated by 
endogenous DNA via additional nucleic acid 
sensors, such as cGAS (cyclic guanosine 
monophosphate–adenosine monophosphate 
[cGAMP] synthase) 50. In fact, it seems that excessive 
nucleic acid sensing can break tolerance in B-cells 
and drive development of autoreactive antibodies 
in SLE 51. Thus, excessive TLR7-signaling in both 
pDCs (Fig. 2) and B-cells is a central theme in SLE 
pathogenesis. Another piece of evidence for the 
involvement of B-cells is the recent report on 
chimeric antigen receptor (CAR) T-cells directed 
against CD19 as a treatment in SLE 52.  
 
Only selected autoimmune disorders are dependent 
on pDCs for their pathological manifestations. 
Apart from SLE, Systemic sclerosis, a systemic 
inflammatory disease, also seems to be dependent 
on pDCs 53.  
 
FUTURE PERSPECTIVES: CAN pDCs BE TARGETED 
AS A NOVEL TREATMENT OF IMMUNOLOGICAL 
DISORDERS? 

There is solid evidence that IFN-α is a key driver of 

the pathogenic process in SLE 54. Thus, several 
attempts have been carried out to block this 
cytokine 55. The strongest evidence stems from work 

in mouse models, where depletion of IFN-α 

ameliorates 56, whereas elevation of endogenous 

IFN-α production worsens disease 57. Recently, a 

monoclonal antibody directed against the IFN-α 

receptor showed beneficial effects in subgroups of 
lupus patients 58. However, the precise target 
population and clinical use is still discussed.  
 
More recently, antibody-mediated pDC depletion 

has been suggested as one option to reduce IFN-α 

signalling in lupus (Fig. 2). Again, solid evidence has 
been produced in two mouse models where pDC-
depletion reduced disease scores 59. In particular, 
the target has been BDCA (blood dendritic cell 
antigen), a pDC marker for which there is a 
monoclonal antibody. Results from cynomologous 
monkeys have shown that this drug could inhibit IFN 
signalling in blood cells 60.  Notably, results from 
two Phase 2 trials have been published where 
litifilimab, an IgG1 monoclonal antibody directed 
against the BDCA2 cell surface antigen, was 
evaluated against cutaneous and systemic lupus 
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erythematosus, respectively 61,62. Both trials showed 
beneficial effects on the primary endpoints. 
However, an increased incidence of herpes virus 
infections occurred in a few patients.  
 
Following the same concept, an antibody directed 
against the pDC-specific marker immunoglobulin-
like transcript 7 (ILT7) has been tested in two Phase 
1 clinical trials and demonstrated promising results. 
A detailed analysis of the results revealed that 
response was better in those with high baseline type 
1 IFN activity, which lends further support for pDC 
depletion in systemic lupus 63. The BCL-2 inhibitor, 
venetoclax has also been used to treat SLE, but the 
clinical benefit remains elusive 64. To this end, the 
blastic pDC neoplasm is an aggressive neoplasm, 
which frequently responds to venetoclax 11. A 
majority of these tumours seems to lack expression 
pf PD-L1/CD274 65, suggesting that at least some 
of them belong to the P3-pDC subpopulation 
characterized as PD-L1-CD80+ 12, Fig. 1. For these 
reasons we propose that the BCL-2 dependency 
may not exist for all the three pDC subsets, including 
the P1-pDC population implicated in the 
pathogenesis of SLE. 
 
Combined, there are several promising approaches 

to block IFN-α signalling in lupus, including inhibition 

of the cytokine directly, receptor blocking as well 
as depletion of the pDC number and function. 
However, careful monitoring of adverse events, such 
as viral infections (specifically SARS CoV-2) are 
warranted, and real-world data are still scarce. 
 

Conclusion 
Here we have reviewed different aspects of pDCs 
in relation to loss-of-function or excessive activity. 
First, we can conclude that pDCs are central 
components of the type 1 IFN responses to viral 

infections and are crucial for protection against 
SARS CoV-2. This is clearly shown by patients with 
genetic variants in the type 1 IFN signaling system 
mainly affecting pDC responses, who unexpectedly 
had very severe Covid-19 infection. Secondly, it 
seems that pDC numbers and function can be 
suppressed also in other conditions, for example 
due to haematological malignancy or drug 
treatment, where the BCL-2-inhibitor venetoclax 
seems to be particularly efficient in depleting pDCs. 
However, whether this dependency is valid for all 
the three pDC subsets remains elusive. Thirdly, 
excessive type 1 IFN activity is implicated in the 
pathogenesis of lupus. Consequently, several 
attempts to block type 1 IFN signaling have been 
tried with various success. Recently, pDCs have been 
directly targeted in SLE by using anti-BDCA2-
antibodies, which resulted in beneficial outcomes for 
patients in Phase 2 clinical trials. However, an 
increased frequency of viral infections was 
observed. Thus, pDCs can be described as the yin 
and yang of the type 1 IFN system and emerge as 
a promising therapeutic target for selected 
autoimmune diseases, given that the risk for 
susceptibility to viral disease is considered.  
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