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ABSTRACT 
Prostate cancer is among the most common cancers in men with 
around 1.4 million new cases each year world-wide. A vital part in 
the diagnosis of prostate cancer is the evaluation of its severity using 
biopsies and histopathology. Recent progress in artificial 
intelligence-based image analysis has led to a flurry of algorithms 
for the automated analysis of prostate cancer histopathological 
data focusing on the detection of cancerous areas, the grading of 
cancer severity, and patient outcome. Some of these approaches 
have reached human expert-level performance and digital models 
trained directly on patient outcomes might surpass human 
performance in the future.  
Although these results hold great promise for the future usage of 
digital pathology in clinical settings, several bottlenecks remain to 
be addressed. Especially the robustness, reliability and 
trustworthiness of predictions must be guaranteed across a wide 
range of variation in protocols and instrumentation. While human 
experts are relatively robust to technical and biological variation in 
biopsies, artificial intelligence-based systems tend to struggle with 
differences in staining intensity, color, scanner type, and image 
resolution, impeding the clinical usage of digital models. 
In this work we highlight salient problems and minimal requirements 
of computational pathology for future use in clinical settings, while 
focusing on prostate cancer as a use case. In particular, we highlight 
data and model problems and solutions that include data variability, 
dataset size, and data annotations, as well as model robustness to 
data heterogeneity, model prediction confidence, and the 
explainability of model decisions. While model and data 
requirements for successful computational pathology in clinics will be 
highlighted, legal, ethical, and deployment requirements will not be 
addressed in this review. 
In summary, we provide a short overview of the field, salient 
problems, and potential solutions to harvest the full potential of 
digital pathology for prostate cancer in clinical practice. 
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The potential of artificial intelligence in 
prostate cancer digital pathology 
The rapid development in artificial intelligence (AI) 
over the last years is finding many potential uses in 
medicine. One of the promising application fields is 
for grading prostate cancer (PC), which is one of the 
most common cancers among men with around 1.4 
million new annual cases world-wide1. Cancers vary 
widely in how aggressively they grow, and it is 
important to grade the tumor to determine the type 
of treatment that finds the best balance between 
risk of deadly progression and morbidity caused by 
the treatment. The gold standard of grading is by 
manual inspection of tissue from biopsies and 
assigning a Gleason grade, which signifies cancer 
severity2,3. The grading system was updated in 
2005 by the International Society of Urological 
Pathology (ISUP)4. With the introduction of high-
throughput digital slide scanners, digital pathology 
opens up the possibility to subsequently use 
computer models to automate parts of the tissue 
analysis and grading process.  
 
Prostate cancer digital pathology (PCDP) can be 
broadly categorized into three different 
approaches. The first approach, image 
segmentation, is the delineation of glands, nuclei, 
and other biological features of interest that are 
associated with prostate cancer. Subsequent to the 
segmentation, the extracted features may be used 
to classify the severity of the cancer. With the 
introduction of new AI approaches in the last couple 
of years several groups have achieved good 
performance on internal validation cohorts, 
reaching an AUC of 0.99 for epithelial cell 
detection for instance, but data on external 
validation cohorts is largely missing5–9. In this 
context it is pivotal to define the difference 
between external and internal validation data. 
While internal validation data is not used for 
training of the PCDP, it is usually from the same 
cohort as the training data and therefore bears 
similar characteristics (staining, thickness, resolution, 
distribution). External validation data, on the other 
hand, is not used for training and stems from a 
different clinical source, bearing different 
characteristics. Hence, a true benchmark for the 
usability of a PCDP system needs to be evaluated 
on external validation data. In general, many 
studies on PCDP segmentation were conducted on 
very small data sets, usually in the range of 10 to 
100 training samples, potentially due to the time-
consuming process of creating manual 
annotations10–12. Given the absence of external 
validation data, the need for expert annotations, 
and the small data set sizes, it is still questionable if 

PCDP-guided segmentation could be robust enough 
to be of clinical use. 
 
The second approach is PCDP-guided cancer 
detection, which aims at classifying the presence of 
cancer in a biopsy, subsection of a biopsy, or even 
at a pixel level. The performance of the model and 
pathologist is measured as the area under the 
receiver operating characteristic (ROC AUC), for 
example, with values ranging between 0.5 (random 
prediction) and 1.0 (perfect prediction). Many 
studies have focused on this task, and several have 
reached excellent performance that rival human 
experts13. Campanella et al, for instance, reached 
a biopsy-level cancer detection ROC AUC of 0.991 
and 0.932 on internal and external validation 
cohorts, respectively14. The external validation 
cohort consisted of over 17,000 whole slide images 
(WSI). The overall good performance of biopsy-
level cancer detection algorithms on external 
validation data achieved by several independent 
groups suggests that this approach might be 
suitable for clinical use. 
 
The third procedure is PCDP-guided Gleason grade 
prediction, which aims to grade the severity of 
prostate cancer on a biopsy in accordance with the 
ISUP standard. In this case the PCDP performance is 
measured as the concordance of Gleason grading 
with clinical experts, measured as quadratic Cohens 

Kappa (𝑞𝑘). Several recent studies showed human 
expert-level performance on internal validation 
data sets, while having slightly lower performance 
on external validation data6,15–17. Bulten et al. 

achieved a PCDP 𝑞𝑘 of 0.85 on internal validation 

data, whereas the 𝑞𝑘 on the external validation 
data shrunk to 0.72 and 0.716. The benchmark 
standard in Gleason grade prediction has been 
performed recently in the PANDA (prostate cancer 
grade assessment) challenge, which featured 
heterogeneous biopsy data from several 
international clinics for training and testing and 
more than 1,000 groups that developed PCDP 

models18. The best model achieved a 𝑞𝑘 of 0.88 on 

internal and 0.83 on the external validation, which 
is on par with the concordance between expert 
pathologists (0.82). This study suggests that, given 
enough high-quality training data, PCDP-guided 
Gleason grade prediction can be performed at a 
performance that rivals clinical experts, even on 
external validation data. 
 

The above observation that PCDP models can 
potentially reach expert performance when trained 
on sufficiently large and heterogeneous data is also 
reflected in the recent appearance of several 
commercial PCDP solutions8,19–21. 

https://esmed.org/MRA/index.php/mra/article/view/4586
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While these results strongly suggest that PCDP 
models will become a mainstay in clinical PC 
evaluation, the decreased performance of nearly 
all PCDP systems on external validation data still 
poses the question how trustworthy and robust these 
systems really are. Furthermore, it is still unclear if 
PCDP models can outperform human experts in 
segmentation, cancer detection, or cancer 
aggressiveness grading.  
 

Contemporary difficulties and 
potential solutions 
In this section we delve into the challenges that the 
use of AI in the context of PCDP faces and discuss 
potential solutions. The three critical pillars 
discussed are, namely, those rooted in data, model 
robustness, and the overarching goal of predicting 
patient outcomes. 
 
DATA 
The first step in deploying an AI model to help either 
in the decision-making process or for full task 
automatization is the acquisition and inspection of 
data the model will be trained on. A major problem 
faced in the deployment of AI solutions for PCDP is 
the inherent time-delay of follow-up data. If a study 
with a specific cohort is planned it would take 5-10 
years to gather a new dataset including follow-up 
patient data. This limits the AI model construction to 
already existing data sets. In the following we will 
focus on several data-driven problems that need to 
be taken into account.  

Data variability. Arguably, the lack of robustness to 
data variation is the most prevalent factor that 
prohibits the usage of PCDP systems in clinical 
practice to date. Creating a digital slide involves a 
series of sequential steps: formalin fixation and 
paraffin embedding of tissue, sectioning, staining 
and slide scanning. Each of these steps encompasses 
numerous parameters that differ between clinics, 
research institutions and even within the same lab 
over time. Figure 1 depicts several variations in 
color caused by different protocols. In the worst 
case, different staining techniques might highlight 
different biological entities, such as membranes, 
nuclei, or glands, for instance. While this 
heterogeneity poses relatively little problems to 
expert pathologists, it can heavily affect PCDP 
models. 
 
In recent years, numerous approaches dealing with 
data variation and prevention of overfitting, the 
training of a model so that it fits the training data 
so closely to the point that it captures noise rather 
than underlying patterns and relationships, have 
been proposed in the literature. Most of these 
methods worked well under lab conditions but fell 
short when confronted with the wide variation in 
specimen preparation encountered in clinical 
routine. It is thus essential both to know when present 
tissue samples fall outside the model domain, the 
domain of data the model was trained on, and 
ensure that models give accurate predictions for 
these cases or reject a prediction. 

 

 
Figure 1 Potential variations in color for H&E-stained prostate tissue samples. a) and b) Visible differences 
in intensity and color saturation can be caused by using different slide scanner models or c) by the scanner 
acquired image resolution. d) to f) show typical variations caused by tissue preparation protocols, such as 
tissue slicing thickness (d & e) and staining duration (f). 

https://esmed.org/MRA/index.php/mra/article/view/4586
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Image augmentation and normalization. The most 
commonly used approaches in clinical 
histopathology trying to mitigate data variability 
are color augmentation (Fig. 2b) and stain 
normalization (Fig. 2c), both of which are used 
extensively for whole slide H&E images. Both 
methods aim to reduce stain color variation to 
assimilate training and test distributions. Recent 
studies looked at the effects of stain color 
augmentation and normalization and showed that 
stain color augmentation drastically improves 
performance, while normalization is in fact 
negligible for classification performance22. Even 
though both approaches did find their way into 
clinical practice they do not fully solve the 
underlying problem of adapting an unrelated 
domain. Normalization, which aims at the 
appearance of images, relies on the selection of 
meaningful reference slides23,24. A general problem 
with image normalization is, however, also present 
in histopathology data: spatial features are not 
taken into account, which can lead to structure colors 
not being preserved if the selected reference slides 
did not include the same structure. Data 
augmentation on the other hand, takes advantage 
of the stain variation itself by changing the intensity 
of color during training. Since complete data sets 
including all possible variations are not available, 
data augmentation can be used to expand the 
variety of training images artificially. Image 
augmentation methods include but are not limited to 
color adaptations and geometric transforms like 
flipping or rotation of training images.  The degree 
of change of color intensity can therefore be 
considered as an additional hyperparameter. 
Again, a problem with this approach is the variation 
of unseen data which could, although drastic 
changes in color are not realistic for histology, lie 
outside of the color augmentation space used 
during training. 
 

Color transfer. An ideal histopathological decision 
support system should provide ways to “push” 
samples that lie outside the training distribution 
back into the model domain. This push of test data 
into the same domain as the training data can be 
achieved by for example color transfer methods 
(see Fig. 2d). Histogram matching is a relatively 
simple technique that is employed to ensure that the 
color and staining characteristics of images remain 
consistent with a desired reference by modifying 
the color and intensity distribution to align it with a 
reference. The effectiveness of this method heavily 
depends on the quality and appropriateness of the 
chosen references. If the reference image itself 
contains artifacts or inaccuracies or if the number of 
reference points is too limited, it may propagate 
these issues to the adapted image or adapt images 

in an inadequate way25. In addition, histogram 
matching may not take spatial variations in staining 
intensity or color into account. The loss of spatial 
information can be critical in cases where local 
staining patterns are diagnostically relevant. A 
common method outside the medical field for 
image-to-image translation are CycleGANs, a type 
of generative adversarial network for unpaired 
image-to-image translation26. Basically, 
CycleGANs learn a mapping from the training 
domain to the test domain. Although this data-
driven approach allows CycleGANs to capture a 
broader range of staining variations and adapt 
images more effectively while potentially 
preserving anatomical features, the approach is 
prone to give confident results that are not justified 
by the training data and is therefore not simply 
applicable in the clinical settings. 
 
Obtaining large data sets. In addition to the 
previously described robustness issues, the cost of 
collection, management, and storage of PCDP data 
quickly grows with the number of patients included 
in a cohort, limiting available sample sizes in 
practice due to missing or limited infrastructure. At 
the same time, clinical and research institutions 
working on the same research problem and willing 
to join their efforts are not allowed to share 
sensitive patient data due to data protection 
regulations. Although first steps have been made by 
initiatives like Bigpicture (https://bigpicture.eu/) 
funded by the EU Innovative Medicines Initiative 
trying to enable researchers to share data and 
dealing with possible regulations in different 
countries, contemporary data access restrictions still 
limit the usage of ‘big biomedical data’ across 
research sites. 
 

Federated learning. A promising approach to train 
models on a large amount of data are the classes 
of Federated Learning and Secure Multi-Party 
Computation approaches27–29. Federated Learning 
is a privacy-enhancing technique that addresses the 
problem of data privacy and governance by 
training collaboratively on e.g., distributed data 
sets of different sites without exchanging the data 
itself. It implies collaborative model training on 
decentralized data owned by multiple participants, 
which does not disclose it to any other computing 
party, but exchange model parameters computed 
from their local data. In Secure Multi-Party 
Computation, all computations are performed on 
secret shares of the data distributed across 
computing parties, such that no party can recover 
private data belonging to any other party. 
However, there are several reasons why these 
approaches are not more widely used. Mainly, 
institutions need to invest time and resources to 

https://esmed.org/MRA/index.php/mra/article/view/4586
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develop the necessary infrastructure and protocols 
as the implementation is complex and data from 
different clinics may not be compatible due to the 
aforementioned lack of data standardization. 
 

Adding synthetic data. Due to the extremely large 
number of clinics, scanners, personnel training and 
the lack of a general standard of tissue 
preparation, using federated learning to 
incorporate training data from all possible domains 
is very hard to achieve. Increasing the robustness of 
the model by training on a complete data set that 
includes all biases, alone, is therefore not an option. 
If expanding the existing training data by adding 
data from other domains is not possible, the 
generation of synthetic data was proposed as a 
potential solution30. By simulating realistic tissue 
samples, the existing data set can be expanded 
and thus enhance the diversity of cases for training 
of a model drastically (see Fig. 2b). An additional 
benefit is the development and validation of models 
without compromising patient privacy. For synthetic 

data generation Generative Adversarial Networks 
(GANs) can be seen as the gold standard. However, 
the use of GANs in histopathology comes with its 
own challenges. While creation of synthetic images 
works reasonably well, replicating the level of 
detail inherent in histopathological WSIs requires 
the generation of structures on different scale levels 
(glandular to cell level). For histology data a 
pyramid of GAN structures was proposed, each 
responsible for generating a different level of 
detail31. Although the use of GANs for creating 
synthetic data can help in extending a limited data 
set, GANs also create synthetic artifacts reducing 
data quality and therefore require time-consuming 
manual quality control to be applicable for clinical 
use. Another drawback is that synthetic data still 
follows underlying assumptions of data distribution. 
If these assumptions do not accurately capture all 
nuances of real world data the problem of 
previously unseen scenarios is still present and bias 
is introduced into the AI model. 

 

Figure 2 Schematic overview of the three most common adaptation categories to compensate domain shift 
with exemplary prostate tissue images. a) if the distribution of model training data (blue) has little to no 
overlap with the unseen test data distribution (yellow) AI model results are unpredictable for this unseen test 
data. To adjust for domain shift, data can be synthetically augmented (b), data can be normalized to 
decrease data variance caused for example by color intensity shifts (c), or data can be ‘pushed’ in 
distribution by color transfer (d), for instance. 
 
Using additional information. The Gleason grade is 
per definition based on the glandular architecture 
of the tissue as visible in the sample. In contrast, an 
AI may also base its grade on other image 

components such as the nuclear chromatin 
texture/structure and changes in the structure of the 
stroma. It is well known that nuclear chromatin 
structure carries information about malignancy 

https://esmed.org/MRA/index.php/mra/article/view/4586
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grade32,33. To what extent the nuclear chromatin 
patterns add information to the prediction of 
patient outcome can be studied by image 
processing operations that detect cell nuclei, 
segment those and crop out a small region around 
each nucleus. A reasonably large sample of such 
nuclear images can be assembled into a stitched 
image of each patient. Those artificial images can 
then be used to train and test an AI-based model to 
predict outcome based only on those images. 
Similarly cropped images of connective tissue from 
patients can be assembled and used to train an AI 
model to predict outcome. It is likely that those 
models will be less powerful than the model trained 
on the WSI, but such a study will clarify the extent 
to which other information available in the tissue 
image than the glandular architecture that is the 
basis of Gleason grades contributes to the 
predictive power. Additional non-image related 
information such as PSA or other parameters 
available at the time of diagnosis could also be 
added to an AI model. Systematic studies of how 
these different components together with imaging 
form a reliable basis for AI training are, however, 
not available. 
 
MODEL ROBUSTNESS 
Before a model can be deployed clinically, it should 
provide a measure of quality of the prediction in an 
interpretable manner and if possible, adapt to 
encountered data variations. These model-based 
challenges and potential solutions will be discussed 
in the following.  
 
Domain shift. In the medical domain, the basic 
assumption in AI training, that training and test data 
follows the same distribution usually does not hold 
true. This creates a domain shift between the source 
training data and the target clinical data on which 
the model is deployed. When this domain shift gets 
too large, the model might fail on unseen data sets 
in unpredictable ways. Larger sample sizes with 
data coming from several domains are therefore 
highly desired to train a robust and accurate model 
and by constraining the clinical use case, e.g., to a 
certain scanner, domain shift can be contained to 
some extent. However, the general applicability of 
the model suffers greatly, and some sources of 
domain shift or bias are still inevitable. 
Anomaly detection. Tackling the problem of 
detection of unseen samples lying outside of the 
model distribution can be done with out-of-
distribution (OOD) detection. Data that lies outside 
the training distribution is detected and potentially 
highlighted for the user or excluded from 
prediction. Most traditional AI models, particularly 
deep learning models, may produce predictions 
with very high confidence on unseen data. This 

bears the risk of misdiagnosis. Conformal prediction 
can be used to address the issue of assessing the 
reliability of predictions in clinical applications by 
quantifying the uncertainty associated with the 
prediction. In the context of PCDP conformal 
prediction can assist pathologists and clinicians in 
making more informed decisions and flagging 
unreliable predictions of the AI system for human 
inspection. Olsson et al. showed in a recent study 
that conformal prediction could, with small sample 
sizes, detect systematic differences in external data 
leading to worse predictive performance34. 
 
Domain-invariant features. A general problem with 
domain adaptation, approaches that adapt a 
domain to a preexisting one to deal with domain 
shift, is that they build a mapping from the training 
domain to the test domain using fixed feature 
representations of the domains. Instead of trying to 
mitigate differences of the different PCDP domains, 
a promising approach is domain adversarial 
training. This method tries to use image properties 
that are both discriminative of the underlying 
clinical question, e.g., survival prediction of prostate 
cancer patients, and at the same time domain-
agnostic. This can help to avoid issues related to 
variations in staining intensity, color balance, and 
other image properties35,36.  
 
Fine-tuning. A powerful and commonly used 
technique is fine-tuning a neural network after 
pretraining it. After initial training, the network is 
fine-tuned on a target data set, which contains for 
example out-of-domain staining variations, lighting 
conditions, or other variations present in the target 
data set that the network should be adapted to. 
During fine-tuning, the network's weights are 
adjusted to better align with the specific 
characteristics of the target domain. Although fine-
tuning provides a certain level of control over the 
adaptation process, it is important to note that it is 
a complex process involving a lot of parameters 
(learning rate, layers to freeze, …) that need 
additional data from the target domain and careful 
monitoring to avoid a drop in the model’s 
performance. This method would also need to be 
reapplied for each new domain that the model is 
potentially adapted to in the future and is therefore 
heavily dependent on the target domain. 
 
Interpretability. It is also important that an AI model 
can show the urologist and pathologist what 
features in the image material it based its grade 
on. Trustworthy AI is a key concept here. Using a 
robust and generalizable model increases trust but 
neural networks still act as black boxes, not 
revealing the underlying decision-making 
processes37. The influence of single input features on 

https://esmed.org/MRA/index.php/mra/article/view/4586


  

 

 
Medical Research Archives |https://esmed.org/MRA/index.php/mra/article/view/4586  8 

AI-Based Prediction of Prostate Cancer Aggressiveness in Digital Pathology 

a prediction is hard to reconstruct due to the non-
linear and complex nature of neural networks, which 
makes them hard to interpret.  
 
Explainable AI. To overcome this, explanations of 
what the AI system focuses on during a prediction 
can be generated to some extent. By doing so, the 
decision-making process is better comprehensible. 
For PCDP, image regions that were most relevant 
for a classification by a model, e.g., glandular 
structure, can be visualized as heat maps, showing 
where in the tissue the model found cancer and what 
image features were used to grade that cancer. This 
can be achieved by using the attention mechanism 
of the model. Basically, the attention map of an 
input image specifies parts of the image that 
contribute to the decision of the network, making the 
result more interpretable. 

 

Modeling patient outcome 
Current PCDP models mainly focus on segmentation 
of glands, or directly predict Gleason grades. 
While these approaches have yielded impressive 
performance that rival human experts, they rely on 
subjective human annotations. Even expert 
pathologist concordance in Gleason grading suffers 
from high interobserver variability leading to over- 
or under-treatment38. These observations posit that 
PCDP trained on subjective human annotations will 
be limited by human performance, while potentially 
reducing the variability that is observed in human 
Gleason grading. 
 
In order to achieve objective scores of cancer 
aggressiveness that do not rely on subjective human 
annotations, PCDP models can be trained on known 
outcomes to predict patient survival or the time-to-
event. The endpoint for this prediction does not have 
to be the patient's death, but can also be, for 
example, the time to relapse. Two studies have 
recently been published based on a large biobank 
with prostate tissue samples from 17,700 patients 
with 10 years of follow up data. Dietrich et al. 
modeled the exact time of relapse using a Recurrent 
Neural Network and achieved expert-level 
performance on the internal validation data, 
reaching a cumulative dynamic AUC (CDAUC) of 
0.7739. Walhagen et al. reached similar 
performance, ROC AUC of 0.79, by predicting 
recurrence within the first five years post 
treatment40. The results of both studies show the 
ability to predict cancer outcome with a 
performance that rivals human experts that use 
Gleason grading. Interestingly, this could be 
achieved even with the AI model using much smaller 
tissue microarray spots (TMAs) for its prediction, 
____ 
 

while the Gleason grade was based on the whole 
prostatectomy tissue sample. 
While these studies highlight the potential usability 
to predict patient outcome to obtain objective 
cancer aggressiveness scores and categories, the 
robustness of these approaches on external 
validation data has still to be shown. Furthermore, it 
is still to be seen if PCDPs that model patient 
outcomes can in fact surpass human experts in their 
predictive performance. 
 

Conclusion 

In conclusion, this short-review has provided an 
overview of the challenges and advancements for a 
potential application of AI for PCDP. We have 
discussed the work of various research groups trying 
to overcome the current problems and steering the 
field into alternative grading of PC samples. Much 
of that work is not limited to the application in 
prostate cancer but relevant for possibly all 
histopathological sample assessment. The progress 
in the field of AI in medicine and AI-based Gleason 
grading and prostate cancer aggressiveness 
prediction in particular are promising and show the 
way to a potential deployment of advanced 
grading systems and clinical decision support 
software. The move away from a subjective scale 
like Gleason to a more objective survival outcome 
prediction might pave the way to a personalized 
approach in the treatment of prostate cancer 
patients. However, before such systems can be 
generally adapted in clinical routine, they have to 
prove their ability to handle the large data 
variability and that they are able to highlight data 
outside their training distribution and give an 
accurate measurement of their confidence in the 
results. AI models need to be able to communicate 
on what areas and aspects of the analyzed tissue 
the decision has been based on.  Although the first 
support systems have been approved by 
regulatory agencies their application is still limited 
by the data the system was trained on. Innovative 
new methods like the learning of domain-invariant 
features and quantifying the uncertainty with 
conformal prediction are promising methods to 
overcome these barriers. By combining 
collaborative data sharing strategies, establishing 
robust data standards, and leveraging extensive 
training on larger datasets, the future of AI in PCDP 
promises to be exceptionally intriguing. 
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