Medical

Research
Archives

European
Society of
Medicine

a OPEN ACCESS
Published: November 30, 2023

Citation: Linder, K., et al.,
2023. Prediction of Ovarian
Cancer with Deep Machine
and  Alternative
Splicing. Medical Research
Archives, [online] 11(11).

https://doi.org/10.18103/mra.

v11i11.4602

Learning

Copyright: © 2023 European
Society of Medicine. This is an
open-access article distributed
under the terms of the Creative
Commons Attribution License,
which permits unrestricted use,
distribution, and reproduction
in any medium, provided the
original author and source are
credited.

DOI:
https://doi.org/10.18103/mra.
v11i11.4602

ISSN: 2375-1924

RESEARCH ARTICLE

Prediction of Ovarian Cancer with Deep
Machine Learning and Alternative
Splicing

Katharine Linder', Rachel Watson', Keely Ulmer’,
David Bender'!, Michael J Goodheart', Eric Devor’,

Jesus Gonzalez Bosquet™

'University of lowa Hospitals and Clinics Department of Obstetrics
and Gynecology, lowa City, lowa.

“jesus-gonzalezbosquet@uiowa.edu

ABSTRACT

Objective: Early detection of ovarian cancer could lead to improved survival
rates, however no method has reliably been able to predict ovarian cancer. The
aim of this study is to determine if processing alternative splicing data from high
grade serous ovarian cancer patients using machine learning analytics will
discriminate high grade serous ovarian cancer from normal fallopian tube
samples. The ultimate goal would be to have a model that can predict high grade
serous ovarian cancer with a blood test.

Methods: This is a case-control study of patients with confirmed high grade
serous ovarian cancer and those undergoing salpingectomy for benign indications.
RNA-sequencing was performed on all samples. RNA-sequence data was then
put into Deep-learning augmented RNA-seq analysis of transcript splicing
software suite. Deep-learning augmented RNA-seq analysis of transcript splicing
created a model of differential alternative splicing aimed to discriminate between
high grade serous ovarian cancer and normal fallopian tube. DEXSeq analysis
was used to determine exon-based expression. Initial results with both analytics
were then modelled with multivariate lasso regression to create prediction
models (performance determined by area under the curve and 95% Cl). Models
created were the validated using The Cancer Genome Atlas data sets.

Results: One hundred and twelve high grade serous ovarian cancer and 12
benign samples were successfully sequenced. Deep-learning augmented RNA-
sequencing analysis of transcript splicing identified 998 unique differentially
expressed exons between high grade serous ovarian cancer and controls.
Multivariate lasso regression analysis identified several exons that predicted high
grade serous ovarian cancer with high performance. Specifically,
ENSG00000182512:E001 from gene GLRX5 was highly predictive of high grade
serous ovarian cancer with an area under the curve of 100%.

Conclusions: Application of machine learning analytics to exon differential
expression, most likely due to alternative splicing, predicted high grade serous
ovarian cancer with high performance. These results were validated in an
independent dataset of cases and controls. Differential exon expression from
cell-free RNA potentially could be used for early diagnosis of high grade serous

ovarian cancer.
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Introduction
There are estimated to be less than 20,000

new cases of ovarian cancer in the United
States in 2022, but it is the fifth leading cause
of cancer deaths in women'. Of the subtypes
of ovarian cancer, high-grade serous carcinoma
(HGSC) is the most common and encompasses
cancers originating from the fallopian tube,
ovary, and peritoneum. Ovarian cancer is
most frequently diagnosed at advanced
stages, and the 5-year survival rate for patients
with ovarian cancer is less than 50%. However,
when diagnosed at an early stage it is greater
than 90%?. Early detection and treatment of
ovarian cancer has been shown to decrease
mortality, however, there is a lack of screening
methods to achieve early detection?®.

Patients with ovarian cancer will typically
present with a pelvic mass, however, the
differential diagnosis for pelvic mass is broad
and preoperative diagnosis of pelvic masses
can be difficult. While cancer antigen 125 (CA-
125) and transvaginal ultrasound (TVUS) are
critical for the initial assessment of adnexal
mass, each lacks sensitivity and specificity to
be utilized as standard screening tests. CA-
125 and TVUS have been utilized in large
studies but failed to show a significant
mortality benefit and illustrated the potential
for harm for patients with benign masses
undergoing unnecessary surgical intervention®?.
Studies

gynecologic cancers have better outcomes

have shown that patients with

when treated by gynecologic oncologists®®.
Improved screening methods would lead to
better healthcare utilization and patient
outcomes by assessing which patients with
adnexal masses should be evaluated by

gynecologic oncologists.

There is emerging evidence for utilizing cell
free DNA (cfDNA) and circulating tumor DNA
(ctDNA) in a patient’s plasma’. Circulating
tumor DNA refers to the tumor DNA that is
distinct from the patient DNA present in the
plasma. This has become known as a “liquid
biopsy.” Studies have shown the potential for
cfDNA and ctDNA to be utilized in the
diagnosis and treatment strategies for several
cancers including pancreatic, colorectal, lung,
and breast’™".

machine learning (ML) prediction model

We sought to create a

analyzing RNA sequencing that could be used
as a "liquid biopsy” and could diagnose
HGSC patients at earlier stages.

Deep ML is a means of utilizing artificial
intelligence to enhance our ability to process
large amounts of data and make predictive
models. Deep ML models use algorithms to
analyze patterns in data sets, then using these
patterns the model trains itself to make
predictions on new data sets'. It has been
used in oncology with varied applications,
such as to classify disease genetic variations in
genomes and identify RNA sequences™. A
prior study developed Deep-Learning
Augmented RNA-seq analysis of Transcript
Splicing, or DARTS. This program involves a
“deep neural network model that predicts
differential alternative splicing between two
conditions based on exon-specific sequence
features and sample specific regulatory
features; and a Bayesian Hypothesis (BHT)
statistical model that infers differential
alternative splicing by integrating empirical
evidence in a specific RNA-seq dataset with
prior probability of differential alternative
splicing”.” We will use DARTS, a ML based
method, to create a prediction model that

could detect HGSC in blood.
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DEXseq is another method that has been used
to test for differences in the usage of exons in
RNA sequencing samples and, consequently,
alternative splicing in biological samples.
DEXseq has the ability to control for false
positives by taking into account biological
variability'®. We will also use this method to
assess differential

exon expression to

compare and complement DARTS method.

We utilized a large biobank of ovarian cancer
specimens and normal fallopian tubes at our
institution to analyze RNA splicing. We
hypothesize that alternative splicing analyzed
with ML will discriminate HGSC from normal
fallopian tube samples. Our objective is to
create a model to identify HGSC using two
different differential
expression and alternative splicing, deep ML
framework (DARTS) and DEXSeq methods.
These models were further validated with
independent datasets, TCGA, and in ML
analytical platforms.

methods for exon

Methods

We performed a single-institution retrospective
study using HGSC
obtained at the
cytoreductive surgery and benign fallopian

case-control tumor

specimens time of
tube specimens. RNA was isolated from all
specimens and RNA sequencing (RNA-seq)
was performed.

SPECIMEN ACQUISITION

High grade serous ovarian cancer tissue
samples were obtained from the Department
of Obstetrics and Gynecology Gynecologic
Oncology Biobank (IRB, ID no. 200209010),
part of the Women'’s Health Tissue Repository
(WHTR, IRB, ID no. 201804817) at the
University of lowa (Ul). All tissues archived in

the Gynecologic Oncology Biobank (herein
termed Biobank) were originally obtained
from adult patients under informed consent in
accordance  with  University of lowa
Institutional Review Board (IRB) guidelines.
Tumor samples were collected, reviewed by a
board-certified pathologist, flash-frozen, and
then the diagnosis was confirmed in paraffin
at the time of initial surgery. All experimental
protocols were approved by the University of

lowa Biomedical IRB-01.

tube
undergoing gynecologic procedures were

Fallopian samples from patients
obtained from patients with no family history
of cancer beside squamous cell carcinoma of
the  skin

salpingectomy for benign indications. (IRB, ID

and who were undergoing
no. 201202714). These samples were similarly
obtained from adult patients under informed
consent in accordance with the University of
lowa IRB guidelines. RNA from both the
fallopian tubes and HGSC specimens had
already been extracted and purified in a

previous study.

Two-hundred and fifty-three patients with
advanced (stage Il and IV) or recurrent HGSC
were identified from the database. Of these
193 had available flash frozen tissue for RNA
isolation. One-hundred and twelve of the
samples had good quality RNA successfully
processed for RNA-seq. Of the 20 benign
fallopian tube samples obtained, 12 patients
had good quality RNA that was successfully
processed for RN-seq (Figure 1A). All samples
were obtained and processed for previous

studies’’.
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A. Ul BioBank

20 patients with no personal or
family Hx of cancer undergoing
salpingectomy for benign
indications

253 patients with
advanced or
recurrent HGSC

B. Validation

374 TCGA patients with
HGSC successfully
processed for RNA-seq
(GDC repository)

12 normal specimens from
normal fallopian tubes
processed for RNA-seq (EMBL-
EBI project PRJEB18066, and

12 patients with good
quality RNA that were
successfully processed for
RNA-seq

193 patients with
available flash
frozen tissue

I

112 patients with good
quality RNA that were
successfully processed for
RNA-seq

GEO project GSE137238)

Figure 1: Flow chart of specimens used for analysis. A. Specimens processed from Ul Biobank: 112 cases and 12

controls (normal fallopian tubes). B. Publicly available samples for validation: TCGA HSC specimens, and normal
fallopian tubes from EMBL-EBI repository (project number PRJEB18066) and GEO accession number GSE137238.

RIBONUCLEIC ACID SEQUENCING

Ribonucleic acid was isolated from HGSC and
benign fallopian tube samples. Methods for
RNA sequencing and processing have been
described elsewhere' . Total cellular RNA was
extracted from tissue with the mirVana
Fisher, Waltham, USA) RNA
purification kit. The RNA yield and quality

(Thermo

were assessed with Trinean Dropsense 16
spectrophotometer and Agilent Model 2100
bioanalyzer. RNA quality was determined to
be adequate if the sample had an RNA
integrity number (RIN) of 7.0 or greater.
Samples that were of adequate quality were
then sequenced. 500ng of RNA was quantified
by Qubit measurement (Thermo Fisher). RNA
was then converted to ¢cDNA and ligated to
sequencing adaptors with lllumina TriSeq
stranded total RNA library preparation (lllumina,
San Diego, CA, USA). Sequencing was then
carried out on the lllumina HiSeq 4000 genome
sequencing platform using 150 bp paired-end
SBS chemistry. All sequencing was performed
in the Genome Facility of the University of
lowa Institute of Human Genetics (IIHG).

DEEP-LEARNING AUGMENTED RNA-SEQ
ANALYSIS  OF TRANSCRIPT  SPLICING
ANALYSIS

Deep-learning augmented RNA-seq analysis
of transcript splicing (DARTS) is a method for
predicting alternative splicing patterns'. It
uses a bayesian hypothesis testing (BHT)
model paired with a deep neural network
(DNN) to predict differential
splicing. The DARTS BHT initially analyzes
large-scale RNA-seq data to generate training

alternative

labels for differential or unchanged splicing
events. This is used to train the DNN. Then the
trained DARTS DNN was used to predict
alternative splicing and differential exon
expression in our data set. The prediction,
along with observed RNA-seq read counts,
are incorporated as an informative prior by the
DARTS BHT to perform deep
augmented splicing analysis.

learning

DEXSEQ ANALYSIS

DEXSeq analysis was used to determine exon-
based expression'. BAM files from RNAseq
were used to determine expression of single
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exons. The DESeq2 R package was used to
normalize and transform data to determine
the differences between HGSC samples and
benign fallopian tube samples®
(Supplementary Figure S1 and S2). The
differential expression analysis in DESeq?2
package uses a generalized linear model to
assess difference in log2-transformed counts.
A p-value (Wald test p-value) adjusted with
false discovery rate (FDR) was considered
significant when < 0.0001 to account for

multiple comparisons?.

CREATION OF PREDICTION MODELS OF
HIGH GRADE SEROUS OVARIAN CANCER)
WITH MULTIVARIATE MODELS

Significant variables from the univariate
analysis - ANOVA for the DEXSeq analysis and
DARTS analysis - were then incorporated into
two different multivariate lasso regression
prediction models of ovarian cancer (HGSC),
one for each method. Multivariate prediction
models were fit with lasso (least absolute
shrinkage and  selection operator) as
implemented in the glmnet R package?, and
detailed

prediction models were measured by the area

previously?’.  Performances  of
under the receiver operating characteristics
curve (AUC) and their 95% confidence interval
(Cl), estimated with 1,000 replicates of ten-
fold cross-validation to avoid over-fitting.
Bias-corrected and accelerated bootstrap Cl's
were computed for each model. AUC of 0.5
indicates no predictive ability of a model and
1.0 represents perfect predictive performance.

VALIDATION OF PREDICTIVE MODELS WITH
THE CANCER GENOME ATLAS DATABASE
AND MACHINE LEARNING ANALYTICS

High grade serous ovarian cancer data from
The Cancer Genome Atlas (TCGA) was used

to validate created predictive models®. We
included publicly available controls from
EMBL-EBI project PRJEB18066 and GEO
project GSE137238 databases (Figure 1B).
After permission was granted to access
controlled data by the Genomic Data
Commons (GDC) Data Portal (dbGaP# 29868),
TCGA HGSC BAM files from RNA-seq
experiments aligned to the human reference
genome (version hg38) with the STAR suite
were downloaded in their original format.
DEXSeq analysis to determine exon-based
expression was performed as described
previously for both, TCGA cases and GEO and
EMBL-EBI controls. Then selected features
used in the multivariate prediction lasso
model were extracted also from TCGA single
exon expression dataset and used for
prediction model validation of both, DARTS

and DEXSeq analyses.

Machine learning prediction models with
TensorFlow platform were performed with
those features more informative for prediction
of HGSC in previous analysis. Initial validation
of prediction models with ML included all
selected exons from initial univariate and
multivariate analyses for both DARTS and
DEXSeq. Then we used ML platforms to
validate models performed with those exons
selected in TCGA validation analysis. The final
goal was to identify and validate the simplest,
most accurate and robust model that could
predict HGSC.

Results

We extracted count expression information
60,000

different transcripts in our database, including

from 645,243 exons from over

genes, long noncoding RNAs (IncRNAs), MIRs

and other transcription units.  Differential
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exon expression was performed with both
DARTS and DEXSeq analysis (Figure 2).
Deep-learning augmented RNA-seq analysis
of transcript splicing identified 998 unique
differentially expressed exons between HGSC

HGSC
998 unique differentially spliced elements
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and controls (Figure 2A, upper panel). A
prediction model with all these exons had an

AUC of 91%. Differential exon expression

with DEXSeq, identified 1,399 significant
exons (p<0,001).
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Figure 2: Analysis of differential exon expression and alternative splicing by different methods: A. DARTS: first a deep

neural network (DNN) model predicts differential alternative splicing based on exon-specific sequence features and

sample-specific features (upper panel); then, a Bayesian hypothesis testing (BHT) statistical model infers differential

alternative splicing by integrating empirical evidence in a specific RNA-seq dataset with prior probability of differential

alternative splicing. Prediction model represented by the ROC curve (lower panel). B. Differential exon expression by

DEXSeq analysis. Heatmap with resultant exons. C. Principal component (PC) analysis of differential exon expression

with DEXSeq. The figure represents a plot of the two main PCs.

CREATION OF MULTIVARIATE PREDICTION
MODELS OF HIGH GRADE SEROUS
OVARIAN CANCER

A multivariate lasso regression prediction
model using all features selected in the
univariate analysis after DEXSeq assessment
(N=1,399) identified a unique
ENSG00000182512:E001 (within gene
GLRXb5) that predicted HGSC with and AUC of
100% (Figure 3A, upper
multivariate lasso regression using the results
from the DARTS analysis identified three

exon,

panel). The

exons: ENSG00000050130:E013 (within gene
JKAMP), ENSG00000135597:E014 (in gene
REPS1), and ENSG00000175061:E013 (in
IncRNA FAMZ211A-AS1, or SNHGZ29), which
predicted HGSC with an AUC of 100% (Figure
3A, lower panel). When assessing the relative
expression between of these 4 exons between
HGSC and tube
ENSG00000182512:E001
HGSC, the other three were decreased, and
protective of HGSC (Figure 3B).

samples, only

increased risk for
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Figure 3: Multivariate lasso regression analysis and machine learning validation with TensorFlow.

A. Multivariate lasso regression analysis to predict HGSC with differential exon expression: In the upper panel,
multivariate lasso regression prediction model using results from univariate regression analysis after DEXSeq
(p<0.001): one differentially expressed exon, ENSG00000182512:E001 (GLRXY5) predicted HGSC with and AUC of
100%,; the inferior panel shows the multivariate lasso regression prediction model using results from the machine
learning augmented method DARTS: three exons, ENSG0O0000050130:E013 (JKAMP), ENSG0O0000135597:E014
(REPST), and ENSG00000175061:E013 (FAM211A-AS), predicted HGSC with an AUC of 100%. B. Exons odds ratio
expression with respect to normal Fallopian tube: only ENSG00000182512:E001 (GLRX5) expression was elevated in
HGSC vs tube; the expression of the other 3 exons were lower in HGSC samples.C. Validation of HGSC prediction
models with machine learning using TensorFlow: a) Model using all differentially expressed exon in DEXSeq univariate
analysis (N=1,399): the left panel shows the confusion matrix representing the observed versus the predicted values;
the right panel represents the ROC graphic including a model accounting for unbalanced samples: Train R: results of
unbalanced (or re-sampling) model training; Test R: results of re-sampling model testing. b) Model using all 998 unique
differentially spliced elements in the DARTS analysis (N=998): the left panel shows the confusion matrix representing
the observed versus the predicted values; the right panel represents the ROC graphic including: 1) models accounting
for weights of the outcome: Train W: results of weighted model training; Test W: results of weighted model testing;
2) models accounting for unbalanced samples: Train R: results of unbalanced (or re-sampling) model training; Test R:
results of re-sampling model testing. ¢) Model using all 4 exons found to be significant in both multivariate lasso
analyses: the left panel shows the confusion matrix representing the observed versus the predicted values; the right
panel represents the ROC graphic including: 1) basic model: Train B: results of basic model training; Test B: results of
basic model testing; 2) models accounting for weights of the outcome: Train W: results of weighted model training;
Test W: results of weighted model testing; 3) models accounting for unbalanced samples: Train R: results of
unbalanced (or re-sampling) model training; Test R: results of re-sampling model testing.

VALIDATION OF PREDICTION MODELS initial DARTS assessment. The performance of

Initially, these multivariate prediction models
were validated in a different ML analytical
platform using TensorFlow. First, we validated
the models including features selected after
the univariate analysis with DEXSeq and the

prediction models with 1,399 exon from the
DEXSeq analysis (Figure 3C.a) and 998 exons
DARTS (Figure 3C.b) had
excellent performances, with AUCs of 100%.

selected by

A third model with only the 4 resulting exons

7
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after both multivariate lasso regressions (for ~ TCGA+controls databases. A new
DEXSeq and DARTS results), resulted in multivariate lasso regression was done with

another model with excellent performance those 1,171 exons in Ul dataset, and then the
also, AUC of 100% (Figure 3C.c). model was applied to TCGA+controls dataset
Then, these models were validated in an using pROC (a R package) in data (Figure 4A).
independent dataset. After downloading, The same unique exon, ENSG00000182512
homogenizing, determining exon expression, ~ ‘E001 (in gene GLRXY) predicted HGSC in Ul
we normalized and log2 transformed TCGA data with an AUC of 100%, and when the
and control data from EMBL-EBI and GEO model was applied to TCGA data, the
databases. Out of the initial 1,399 exons performance of the validated model was
selected after univariate analyses with  excellent, with an AUC of 97% (Figure 4C,

DEXSeq, 1,171 were also detected in  Upper panel).

. OR
A- Ul lasso analysus (N=1,171) TCGA validation (N=1,171) C' ENSG00000182512:E001 124
66777665585 4:2221
1000
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= | Tub
o >
=) =
<8 | S &1 B B o 0% = o0
o 'g °
@
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Figure 4: Validation of differential exon expression with TCGA data.

A. Validation of HGSC prediction with differential exon expression of DEXSeq analysis: the left panel, shows the
prediction model using exon expression significant in the Ul cohort, that is also present in TCGA cohort
(N=1,171): again, one differentially expressed exon, ENSG00000182512:E001 (GLRX5) predicted HGSC with
and AUC of 100%. The right panel shows the validation of the prediction model in TCGA data, with an excellent
performance of 97% (Cl, 95-99%).

B. Validation of HGSC prediction with differential exon expression regression prediction model using results
from the machine learning augmented method DARTS: the left panel, shows the prediction model using exon
expression also present in TCGA cohort (N=857): 9 differentially expressed exons predicted HGSC with and
AUC of 100%. The right panel shows the validation of the prediction model in TCGA data, with a very good
performance of 82% (Cl, 64-99%).

C. Detailed level of exon expression in 2 of the exons. Both, ENSG00000182512:E001 and
ENSGO0000161999:E007, had higher expression in HGSC samples (red) than in tubal samples (blue).
Comparison of other exons in the same genes are also represented.
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Out of the initial 998 exons selected with
DARTs, 857 exons were also detected in
TCGA+controls dataset. A new multivariate
lasso regression with these 857 exons in Ul
data, resulted in a prediction model of HGSC
with an AUC of 100%. When this model was
applied to TCGA+controls data, the resulting
validated model also had very good
performance with an AUC of 82% (Figure 4B).
This TCGA validation model had 9 exons that
were informative for HGSC classification
(Figure 4C, mid and lower panel). Examples
of alternative splicing based on expression of
in the multivariate

two exons selected

analyses are represented in Figure 4C panel.

SIMPLIFIED PREDICTION MODEL OF HIGH
GRADE SEROUS OVARIAN CANCER

With the goal to create a simplified model that
is robust (across databases from different
populations) and validated (across different
analytical  platforms  and independent
databases) we designed a new model with the
most informative exons in previous models,
with DEXSeq and DARTS selection, and after
TCGA validation. For this new model we used
the 10 exons more informative in predicting
HGSC in previous models. The resulting
model in Ul data selected the same unique
exon, ENSG00000182512:E001 (GLRX5) as
predictor of HGSC with an AUC of 100%
(Figure 5A, upper panel). When this model
was applied to TCGA dataset, the validated
model had a performance of 97% (Figure 5A,
lower panel). Finally, we validated these
simplified models in a new ML platform. First,
we tested a model with the 10 selected exons
in Ul data, with excellent performance (Figure
5B.a). Then, we tested the model with the
singular most predictive exon,
ENSG00000182512:E001, in Ul data also with

excellent performance (Figure 5B.b). Lastly,
we validated the model with only one exon in
TCGA data, also with excellent performance
of 97% (Figure 5B.c).
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Figure 5: Validation of simplified prediction models of HGSC.

A. Validation of HGSC prediction with differential expression of the most relevant 10 exons in TCGA: the upper panel, shows the
prediction model using the 10 more relevant exon expression (see Figure 4C) in the Ul cohort: again, one exon,
ENSG00000182512:E001 (GLRX5) predicted HGSC with and AUC of 100%. The lower panel shows the validation of the prediction
model in TCGA data, with an excellent performance of 97% (Cl, 95-99%).

B. Validation of HGSC prediction models with machine learning using TensorFlow: a) Model using the 10 more relevant exon
expressions (see Figure 4C) in the Ul cohort: the left panel shows the confusion matrix representing the observed versus the predicted
values; the right panel represents the ROC graphic including models accounting for unbalanced samples: Train R: results of
unbalanced (or re-sampling) model training; Test R: results of re-sampling model testing.

b) Model using only the more relevant exon expression (ENSG00000182512:E001) in the Ul cohort: the left panel shows the confusion
matrix representing the observed versus the predicted values; the right panel represents the ROC graphic with a model accounting
for unbalanced samples: Train R: results of unbalanced (or re-sampling) model training; Test R: results of re-sampling model testing.
C. Validation of HGSC prediction models with machine learning using TensorFlow in TCGA data: Model using only the more relevant
exon expression (ENSG00000182512:E001) in the Ul cohort: the left panel shows the confusion matrix representing the observed
versus the predicted values; the right panel represents the ROC graphic including: 1) model accounting for weights of the outcome:
Train W: results of weighted model training; Test W: results of weighted model testing; 2) model accounting for unbalanced samples:

Train R: results of unbalanced (or re-sampling) model training; Test R: results of re-sampling model testing.

Discussion invasive methods available for the diagnosis
The aim of this study was to create a validated, of HGSC. TVUS and CA-125 have been used

robust model to identify HGSC from benign @ surrogate marker for predicting malignant

fallopian tube tissue using two different ~ potential of adnexal masses, however, these
methods for differential exon expression and  lack specificity and sensitivity for screening
alternative splicing, deep machine learning  tests"®. The model created in this study could
framework (DARTS) and DEXSeq methods. be used to detect ovarian cancer (HGSC) with
There are currently no non- blood tests, by detecting differences in
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products (exons) originating from circulating
tumor cells®. Survival outcomes for patients
with ovarian cancer differ greatly depending
on the stage at time of diagnosis?. Ultimately,
the findings of this study could lead to the
development of methods to diagnose HGSC
early and non-invasively, which could improve
survival outcomes. The simplified prediction
model performed with a multivariate lasso
regression analysis, identified several exons
that predicted HGSC with high performance.
Multivariate  lasso  regression  analysis
identified several exons that predicted HGSC
with  high  performance.  Specifically,
ENSG00000182512:E001 from gene GLRX5
was highly predictive of HGSC with an AUC of
100%.
validated in public datasets TGCA and EMBL-

EBI with excellent performance.

Results were then successfully

Alternative splicing has been identified as a
possible driving force in several complex
human diseases. Reble, Dineen, and Barr
previously reviewed several studies that
showed numerous genes with alternative
splicing that are associated with several
psychiatric conditions, including schizophrenia,
bipolar disorder, and autism spectrum
disorder®. Both type 1 and type 2 diabetes
have been shown to have higher rates of
alternative splicing genes that play a role in
the development of these conditions®?.
diseases such as

and heart

Several cardiovascular

hypertension, atherosclerosis,
failure have been associated with alternative
calcium channels as

splicing in  L-type

previously reviewed by Hu, Liang, and
Additionally,
hypertension also has been associated with

different

Soong®. obesity-related

alternative splicing in several

genes?. Alternative splicing has been found
to have prediction capabilities for prognostic
and progression factors in several different
types of cancer, including triple negative
breast, gastric, testicular, melanoma, and

hepatocellular’®®, as well as ovarian cancer.

Studies have identified alternative splicing
patterns associated with ovarian cancer** and
comparison with normal samples have
identified unique exon-exon junctions more
common in ovarian cancer®. There have been
studies that showed promising results for
predicting overall survival in ovarian cancer
splicing
patterns®, but few have looked for alternative

patients based on alternative
splicing signatures that may be used to
diagnose ovarian cancer. The predictive
model in our study identified an exon from
alternative  splicing  from  the gene
Glutaredoxin 5 (GLRXS). This gene codes for
a protein localized to the mitochondria and is
involved in biogenesis of ion-sulfur clusters®.
Expression of GLRXS5 has been shown to be
altered in hepatocellular carcinoma®. Other
identified inhibition of the
protein has been associated with cisplatin-

studies have

resistant head and neck cancers®’, however no
studies we are aware of have linked GLRX5
and ovarian cancer. Furthermore, the exon
described has not been associated with
ovarian cancer or described previously. In fact,
no studies that we are aware of have linked
alternative splicing of GLRX5 to outcomes in
any cancer. The identification  of
ENSG00000182512:E001 from gene GLRX5
has the potential for early diagnosis of ovarian
cancer and extrapolating findings from other
studies identifying GLRX5 could also have
prognostic or therapeutic implications for

ovarian cancer.
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The strengths of this study are the use of data
from a clinically well annotated database of
patients with HGSC with comprehensive
genomic information and an adequate
number of controls. Additionally, prediction
models were validated in an independent
comprehensive dataset (TCGA). Further, data
were analyzed with two separate analytical
platforms. The limitations of this study are that
it is retrospective, and therefore is at risk of
bias. The Ul database is limited by minimal
diversity in the sample given the
demographics of lowa, with the general
of 90.1%

studies

population white
individuals®.

models prospectively and in larger data sets

made up

Future using these

are needed to test their clinical utility.

Conclusion

Our study created a validated model for
identifying HGSC by utilizing deep machine
learning framework (DARTS) and DEXseq to
identify differences in exon expression and
alternative splicing in tumor cells when
compared to benign fallopian tube cells. In
the future, this model could be utilized to
differentiate tumor cells in blood samples as a
means for early and non-invasive diagnosis of
HGSC, which could ultimately lead to a
reduction in mortality.
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