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1.0 ABSTRACT 
We briefly review our recently published approach to mining 
digenic genotype patterns, which consist of two genotypes each 
originating in a different DNA variant. We do this for a genetic 
case-control study by evaluating all possible pairs of genotypes, 
distributing the workload over numerous CPUs (threads) in a high-
performance computing environment and apply our methods to two 
known datasets, age-related macular degeneration (AMD) and 
Parkinson Disease (PD). Based on a list of (e.g., 100,000) genotype 
pairs with largest genotype pair frequency differences between 
cases and controls, we determine the number Nu of unique variants 
occurring in this list. For each unique variant, we find the number of 
genotype pairs it participates in, which identifies a set of variants 
“connected” with the given unique variant. Among the total of 
variants “connected” with all unique variants, only a subset of 
variants is unique. The ratio of all connected variants divided by that 
subset of variants is a measure for the overall density or 
connectedness of variants interacting with each other. We find that 
variants for the AMD data are much more interconnected than those 
for PD, at least based on the 100,000 genotype pairs with largest 
chi-square we investigated. Further, for each of the Nu unique 
variants, we use the number of variants connected with it as a test 
statistic, weighted by the inverse of the rank at which the unique 
variant first occurred in the original list of genotype patterns. This 
weighing scheme ties the number of connections to the genetics of the 
trait and allows us to obtain, for each of the Nu unique variants, an 
empirical significance level by permuting ranks. We find 12 and 8 
significant, highly connected variants for AMD and PD, respectively, 
some of which have previously been identified by other machine 
learning methods, thus providing credence to our approach. Among 
the 100,000 genotype pairs investigated for each of AMD and PD, 
significant variants showed connections with up to 7,093 and 3,777 
other variants, respectively. Our approach has been implemented in 
a freely available piece of software, the Digenic Network Test. Thus, 
our statistical genetics method can provide important information on 
the genetic architecture of polygenic traits. 
 
 
 
 

 
 

 

 

 

https://esmed.org/MRA/index.php/mra/article/view/4604
https://doi.org/10.18103/mra.v11i11.4604
https://doi.org/10.18103/mra.v11i11.4604
https://doi.org/10.18103/mra.v11i11.4604
https://doi.org/10.18103/mra.v11i11.4604
mailto:wang.gao@columbia.edu
mailto:ott@rockefeller.edu


  

 

 
Medical Research Archives |https://esmed.org/MRA/index.php/mra/article/view/4604 2 

Digenic Analysis Finds Highly Interactive Genetic Variants Underlying Polygenic Traits 

 

2.0 Introduction 
Genetic mapping of genes responsible for 
observed traits arguably has its origins in the early 
1900s in the “fly room” at Columbia University1. 
Alfred Sturtevant, then an undergraduate, 
experimented with offspring of planned crosses of 
the fruit fly and developed on the X chromosome 
the first genetic map, consisting of the order and 
approximate linear spacing of six genes that is still 
valid today2. In humans, genetic linkage analysis 
based on family pedigrees3 has for many years 
provided localizations for disease genes, and so 
have the currently favored genome-wide 
association studies (GWASs)4. However, many of 
these approaches analyze correlation between 
disease phenotype and one DNA variant (SNP, 
single-nucleotide polymorphism) at a time, yet 
genes are unlikely to act independently but operate 
in concert with many other genes and environmental 
conditions. Here we introduce a new method for 
genetic trait mapping based on interactions among 
SNPs, which allows us to obtain information on the 
genetic architecture on two levels, (1) in a rather 
general way and (2) in more detail for each of the 
statistically significant SNPs. These significant SNPs 
can point to genes or pathways underlying the 
disease process and are potentially useful as drug 
targets in the treatment of disease. 
 

As early as 30 years ago, two-locus models of 
disease inheritance have been considered in human 
genetics5 and implemented in computer programs6 
but they were cumbersome and inefficient because 
of the presence of various unknown parameters in 
these models. Considerable progress was achieved 
when machine-learning methods were implemented 
in the analysis of human case-control data, and 
numerous different approaches to multi-variant 
analysis were published7-10 although most of these 
approaches are applicable only to rather small 
datasets. Recently, efficient software has been 
developed that makes use of multiple processors 
(CPUs, threads) in current Windows and Linux 
workstations11. Based on long lists of genotype 
pairs resulting from the analysis of case-control 
data under a digenic model, we now present a 
novel approach to uncover large numbers of 
interactions between a given significant variant and 
many others, where individual variants may not 
show much effect. This approach is likely to find 
highly significant relationships between variants 
while other approaches may fail.  
 

3.0 Methods 
Consider a genetic case-control dataset in plink12 
format, that is, a map file holding information like 
chromosome number and base-pair position for 

each variant (SNP), and a ped file listing genotypes 
at each variant for a given individual. For 
illustration purposes, we will be working with 
datasets on two traits, Parkinson Disease (PD)13 with 
541 individuals (270 cases, 271 controls), each 
genotyped at 379,502 variants (downloaded in 
2006 from the NINDS Coriell Institute, see 
Acknowledgments), and age-related macular 
degeneration data (AMD)14 with 146 individuals 
(96 cases, 50 controls), each genotyped at 
103,611 variants (AMD data available at  
https://www.jurgott.org/linkage/GPMdata.zip). 

 
Initially, a conventional GWAS is carried out with 
the Cochran-Armitage trend test15 as implemented in 
plink, that is, we test for each SNP whether the trend 
in genotype frequencies across genotypes is 
different in cases and controls. Any variants turning 
up significant (permutation test) will be removed 
from further analysis as we are mainly interested in 
interactions among variants rather than their 
individual (main) effects7. 

 
Consider two SNPs, each with three genotypes, so 
that there are nine genotype pairs for the two SNPs. 
We want to evaluate all possible genotype pairs in 
a given dataset and list, for each genotype pair 
(called a genotype pattern), its frequency in cases 
and controls. This is accomplished by the Gpairs 
program11, which will, for each genotype pair, 
create a 2 × 2 table of individuals (see Table 1 in 
Ott & Park16), with rows representing cases and 
controls, and columns referring to presence and 
absence of the given genotype pattern in an 
individual. We generally disregard genotype 
patterns occurring in fewer than s individuals (so-
called support for the pattern), and the two SNPs 
furnishing genotype patterns are required to reside 
on different chromosomes so as to avoid any 
potential interference with linkage disequilibrium11. 
Each 2 × 2 table will be analyzed by a 2-sided 
version of the Irwin-Fisher exact test17, that is, we 
are interested in whether a pattern occurs more 
often or less often in cases than controls. The Fisher 
test furnishes for each table a p-value (transformed 
to chi-square for easy interpretation), whose 
associated corrected empirical significance level 
may be obtained with the Bonferroni correction, pBon 
= Np, where N is the number of tests performed. 
This procedure generally furnishes long lists of 
genotype pairs. Often, however, few if any 
genotype pairs show statistically significant 
frequency differences between cases and controls, 
pBon < 0.05. This is in a nutshell a description of our 
current approach to finding pairs of genotypes 
(digenic patterns) and their frequencies in cases and 
controls11. 
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Testing for frequency differences of digenic 
patterns between cases and controls tends to have 
low power, partly due to the current requirement of 
applying Bonferroni correction for multiple testing 
(dramatic increases in computing power may 
change this situation in the future). Thus, we 
developed the digenic network test (DNT), which 
implements an exploration of digenic data from a 
different angle. Our novel approach to interpreting 
disease-predisposing genotype patterns starts with 
a possibly very long list of genotype patterns, with 
each pattern being characterized by chi-square 
from the Fisher test mentioned above. Assume that 
such a list is ordered so that the genotype pair (and 
corresponding variant pair) with largest chi-square 
is ranked 1, and we want to retain, for example, 
only the best Npairs = 100,000 genotype pairs, that 
is, the pairs ranked 1 through Npairs. Focusing on 
variants rather than their genotypes, we observe 
that a given variant occurs in multiple lines of the list. 
In other words, a given variant may be connected 
with various other variants. There will be 2 × Npairs 
variants in the list, but many variants occur multiple 
times, and we are interested in variants being 
connected with large numbers of other variants. 
 
Thus, we prepare a list of unique variants occurring 
in the Npairs variant pairs. Some of the resulting Nu 
unique variants are connected with large numbers 
of other variants, while many unique variants show 
only one connection. For each unique variant, we 
record its number of connections, ci = 1, ..., Nu, and 
the rank, ri, at which the variant first occurred in the 
ordered list. The total number of variants connected 

with the Nu variants is S1 = Σici, i = 1 ... Nu, but some 

of these S1 variants may be connected with more 
than one of the Nu variants. We therefore 
determine S2, the number of unique variants among 
the S1 variants, where S2 ≤ S1. If the S1 variants are 
all different from each other, then each of the Nu 
variants points to a different set of connected 
variants and S2 = S1. On the other hand, if many of 
the S1 variants are being pointed to by multiple of 
the Nu variants, then S2 << S1 and the set of Nu plus 
S2 variants represents a dense collection of 

interacting variants. Thus, the ratio, R = S1/S2, R > 
1, is a measure for the overall density or 
connectedness of the interacting variants. 
 
To evaluate whether large numbers of connections 
are related to the genetics of the trait, that is, 
whether they are enriched in top-ranked variants, 
we define a test statistic, Ti = ci/ri, i = 1, ..., Nu, so 
that the number of connections is weighted by the 
inverse of the rank of each unique variant. 
Statistical significance of each of the Nu unique 
SNPs is obtained by permutation analysis in that we 
permute all ranks Nperm = 100,000 times and each 
time record the largest Ti value, Tj,max, j = 1, ..., Nperm. 
The proportion of Tj,max values at least as large as 
an observed Ti represents its associated empirical 
significance level, pi, i = 1, ..., Nu. Software 
(program DNT) to carry out these calculations is 
freely available at:  
https://www.jurgott.org/linkage/DNT.html. As will 
be seen below, in each of our two sample datasets, 
some of the Nu unique variants are highly significant 
and are thus called lead SNPs or lead variants4. 
This approach allows us to find connections between 
variants significantly related to genetic effects (chi-
square) although genotype pattern frequencies 
may not be significantly different between cases 
and controls. 
 

4.0 Results 
We demonstrate our methods for the two published 
datasets, AMD and PD, mentioned in section 3.0. For 
PD, we use all variants while we disregard two 
variants (rs380390 and rs1329428) in the AMD 
dataset because they are significant in our single-
variant trend test (in the original publication14, 
rs380390 and rs10272438 were significant). Of 
course, the AMD dataset is smaller than PD, both in 
terms of variants and numbers of individuals. For 
each dataset, we applied the Gpairs program11 to 
generate pairs of genotypes (patterns). To be 
considered for further analysis, a pattern had to 
occur in at least 20 individuals, and the two 
genotypes had to come from variants on two 
different chromosomes

 

https://esmed.org/MRA/index.php/mra/article/view/4604
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Table 1. Twelve variants significantly connected with other variants based on 100,000 genotype patterns 
in the AMD dataset. Notes: r = rank, ID = variant identifier, c = number of connected variants, T = our test 
statistic, p = empirical significance level based on 100,000 permutations of ranks, chr = chromosome number, 
bp = basepair position (GRCh38), Gene = gene containing the given variant, iva = intron variant, gdt = 
genic downstream transcript variant. The most significant variant is shown with ID in bold; it is located within 
21.5 MB of the CFH gene. 
 

 
Table 2. Eight variants significantly connected with other variants based on 100,000 genotype patterns in 
the PD dataset. Notes: see Table 1, gut = genic upstream transcript variant. 
 
For the AMD and PD datasets, Tables 1 and 2 
respectively show the relatively small number of 
lead variants connected with large numbers of other 
variants in the 100,000 genotype patterns with 
largest chi-square values. Statistical significance in 
these tables refers to our test statistic, T, but the 
variants are listed in chromosomal order. Clearly, 
these data demonstrate large networks of variants 
associated with disease. For AMD, a total of S1 = 
30,935 variants are connected with 12 lead 
variants extracted by our procedure from the best 
100,000 genotype patterns. As there is some 
overlap among connections between the latter 
variants and the S1 variants, the number of unique 
variants among the S1 variants is only S2 = 19,128 
(obtained in a spreadsheet). Thus, our measure for 

dispersion among connected variants is R = S1/S2 = 
1.62 for the AMD data. On the other hand, for the 
PD data, S2 = 9,340 and R = 1.12 – much smaller 
than the R value obtained for AMD. Thus, within the 
best 100,000 genotype pairs, variants in the AMD 
dataset are more connected among themselves than 
in the PD data. 
 
If the full AMD dataset is analyzed, including 
variants rs380390 and rs1329428, then we obtain 
even larger numbers of connections to other variants, 
that is, 20,814 connections for rs380390, and 
17,365 connections for rs1329428. 
 
Also shown in Tables 1 and 2 is the rank (“rank 
GWAS”) of each lead SNP in the trend test 

https://esmed.org/MRA/index.php/mra/article/view/4604
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performed by plink. Clearly, some of the lead SNPs 
have very small main effects, that is, small 
frequency differences in genotypes or alleles 

between cases and controls, as indicated by ranks 
exceeding 10, for example. 

 

 
Figure 1: Number Nc of variants connected with the most significant variant in each of the AMD and PD 
datasets within the most significant Npatt genotype patterns. 
 
The difference in connectedness between the two 
datasets may also be seen when we consider only 
the most significant variant in each of tables 1 and 
2 and follow its increase in the number Nc of 
connected variants with an increasing number Npatt 
of most significant genotype patterns. As Figure 1 
shows, AMD data exhibit a much stronger increase 
in connectedness than PD data for each of their most 
significant variants. It is also clear that these curves 
are far from reaching a plateau yet, but we have 
been able to demonstrate genetically that at least 
among the most significant genotype patterns, there 
are many more significant connections among 
variants in AMD than PD. It may well happen that 
this situation is reversed when even larger numbers 
of genotype patterns are analyzed, but we have 
not looked into that situation. 

 

5.0 Discussion 
In one of our previous publications16, we discussed 
the rationale for working with patterns rather than 
single variants and also outlined applications to 
individual identification. Here, based on large 
numbers of genotype pairs (and associated variant 
pairs), we developed an approach to building 
significant networks of variants that are related to 
the discrimination between cases and controls. 

 
The main difference between GWAS approaches 
and our method is that GWASs assess individual 
(main) effects of each SNP while we work directly 
with interactions between any two genotypes and, 
thus, SNPs. One of the currently favored genetic 

constructs, polygenic risk scores (PRSs), combine 
information over many or all SNPs in  a GWAS4. 
For example, in psychiatric genetics, polygenic 
scores can predict behavioral and medical 
outcomes18 even though these scores capture “only” 
main effects of the SNPs they comprise. At times, 
however, PRSs (that is, genetic variants) add little to 
clinical and environmental risk indices19. On the 
other hand, a multi-PGS framework has been 
proposed that combines hundreds of PRSs obtained 
from publicly available GWASs and can result in 
increased phenotype prediction20. 
 

Our test statistic for each of the Nu unique variants 
in the best 100,000 genotype pairs consists of two 
parts, the number of connections to other variants 
and a weight, which should reflect the genetic 
“loading” associated with the number of connections. 
Here, we have chosen as a weight the inverse of the 
rank, at which a unique variant first occurs in the 
long list of genotype pairs. An alternative weight 
would be the chi-square value obtained from the 
Fisher test for each unique variant. There may be 
other conceivable weighing schemes, but we have 
not pursued this further as the current setup has 
furnished remarkable results. 
 

5.1 AGE-RELATED MACULAR DEGENERATION 
The AMD dataset has been used widely to illustrate 
new statistical procedures, notably techniques 
involving multiple variants. Early-on, methods have 
been developed to find novel variants correlated 
with known risk variants. For example, rs10511467 
has been identified in this manner based on a 

https://esmed.org/MRA/index.php/mra/article/view/4604
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specific search algorithm21. After removal of five 
variants with strong main effects, three of our 
variants (rs1363688, rs7104698, and rs1394608) 
were found with a search algorithm although some 
results are not statistically significant22. More 
recently, rs1363688 was found with a method 
related to genetic algorithms although the search 
included variants in known risk loci23. 
 

As pointed out above, our approach avoids using 
known risk variants and works exclusively with 
genotype patterns found in an exhaustive search. 
The fact that our highly significant results confirm 
previous findings should provide additional 
confidence in our method so that variants listed in 
Table 1, but not found in the literature, deserve 
careful attention, but they are not followed up here. 
 

5.2 PARKINSON DISEASE 
A recent review of PD genetics lists various known 
risk genes but the three genes mentioned in Table 2 
are not in that list24. However, emerging multi-omics 
resources and analyses related to PD could provide 
support for novel genes identified through our 
Digenic Network Test. Specifically, a recent study 
reported a strong mRNA expression difference for 
IL2RB between PD cases and controls in females (p 
< 0.0001) but not in males (p = 0.8013)25. This 
result validates our finding for variant rs229492 in 
Table 2. 
 

Several other variants in Table 2 have previously 
been reported. Variants rs4862792 and 
rs1480597 were already mentioned in the 
publication providing the dataset analyzed here13, 
and variants rs243023 and rs1480597 were 
detected by a specific tree classifier26. In a recent 
GWAS meta-analysis for PD, two of our eight 
significant variants (rs4862792 and rs1480597) 
were confirmed27. Variant rs4862792 on 

chromosome 4 is located within 24 KB of the 
LOC339975 gene and was reported as a nearly 
significant risk variant for major depressive 
disorder (MDD) in a large case-control study28, 
indicating a relationship between MDD and PD, 
which has recently been reviewed29. 

 

6.0 Conclusions 
The conventional GWAS approach has proven to 
be a powerful tool in identifying genes associated 
with disorders where a single gene variation plays 
a major role. However, many conditions are shaped 
by several genes, and sometimes these genes might 
not show strong effects by themselves. In our study 
of two diseases, AMD and PD, which have been 
extensively researched using GWAS, we 
developed a novel statistical method which 
aggregates patterns of gene-pairs related to 
disease into networks, suggesting potential genetic 
interactions that influence these diseases. The results 
presented in this paper highlight the initial success 
of the new approach. 
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