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ABSTRACT

Reactive oxygen species (ROS) are recognized as essential participants in normal
cellular processes, while their intricate involvement in the emergence of various
diseases, notably cancer, has garnered significant attention. Elevated levels of
ROS isassociated with pro-tumorigenic signalling, heightened cell survival,
increased proliferation, and DNA damage, thereby making substantial
contributions to the genetic instability. Intriguingly, at elevated levels, ROS
paradoxically initiate anti-tumorigenic signalling pathways, thereby instigating
cell death through oxidative stress. In this comprehensive review, a focus is given
on ROS generation, which encompasses both endogenous and exogenous
sources that collectively referred to as oxidative stress. To provide a
comprehensive understanding, an exploration of the structural, chemical, and
biochemical aspects of free radicals is undertaken.Diverse sources contributing
to ROS generation, including metal-mediated free radical formation is also
discussed. This review additionally conducts an in-depth examination of
oxidative stress within the context of cancer. Moreover, noteworthy contributions
of key antioxidant enzymes, namely, superoxide dismutase, catalaseand
glutathione peroxidase over the multifaceted landscape of carcinogenesis have
been discussed, drawing insights from a multitude of studies. Understanding the
intricate interplay between pro- and anti-tumorigenic ROS signalling pathways
offers a multitude of potential avenues for cancer therapy. The disrupted redox
balance observed in cancer cells presents promising opportunities for ROS
manipulation, thereby emerging as a viable and innovative treatment strategy.
This present review may serve as an invaluable resource, offering profound
insights into the multifaceted roles of ROS in cancer while simultaneously
highlighting their therapeutic potential, thereby paving the way for novel and

effective cancer interventions.
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1. Introduction

In experimental and clinical medicine, there
has been a remarkable surge in interest
regarding the role of oxygen-free radicals,
especially the reactive oxygen species(ROS)".
ROS have diverse sources, e.g., it is generated
during irradiation from UV light, X-rays, and
gamma-rays. It is also produced as by-
products of metal-catalysed reactions, in
presence as pollutants in the atmosphere, and
release by neutrophils and macrophages
during inflammatory responses. They are also
produced as by-products of mitochondria-
catalysed electron transport reactions and
other cellular mechanisms?. ROS plays a dual
zrole within biological systems, displaying the
capacity to either benefit or harm living
organisms®. ROS have physiological roles in
cellular responses to harmful stimuli, such as
defending against infectious agents and
participating in various cellular signalling
systems. One example of ROS functioning
constructively at low concentrations is their
induction of mitogenic responses. At high
concentrations, ROS can serve as significant
mediators of damage to cellular structures,
including lipidsmembranes, proteins, and
nucleic acids-a phenomenon referred to as
oxidative stress®. To mitigate the harmful
effects of ROS, cells employ an antioxidant
defence system consisting of both non-
enzymatic  antioxidants and antioxidant
enzymes®. Despite the presence of these
cellular antioxidant defence mechanisms to
counteract oxidative damage from ROS,
accumulated oxidative damage over an
organism's life-span has been proposed to
play a critical role in the development of age-
related diseases. Such diseases may include
arthritis,

cancer, arteriosclerosis,

neurodegenerative disorders, and various
other conditions'.ROS play a significant role in
inducing apoptosis in various cancer cells,
particularly those that are drug-resistant®®.
Oxidative

imbalance between the production of ROS,

stress is characterized by an
and their removal by protective mechanisms,
known as antioxidants. This imbalance can
result in damage to critical biomolecules and
cells, potentially affecting the entire
organism’. ROS is natural by-products of
cellular metabolism and serve essential roles
in triggering signalling pathways in both plant
and animal cells in response to changes in the
internal and external environments'®. During
normal metabolic processes, aerobic cells
produce ROS, including superoxide anion
(O2), hydrogen peroxide (H2O), hydroxyl
radical (OH®), and organic peroxidesas part of
the biological reduction of molecular
oxygen''. This electron transfer to molecular
oxygen primarily takes place within the
respiratory chain, situated in the mitochondria's

membranes'®"3,

Under hypoxic conditions,
the mitochondrial respiratory chain can also
produce nitric oxide (NO), which can lead to
the formation of reactive nitrogen species
(RNS)™.

reactive species, such as reactive aldehydes

RNS, in turn, can generate other

like malondialdehyde and 4-hydroxynonenal,
by promoting excessive lipid peroxidation.If
these products were remained in the cell for
longer time, they will damage the cells,
especially the biomolecules.Modification of
these biomolecules can increase the risk of
mutagenesis'. When environmental stressors
periods, ROS

production continues which may lead to

persist over extended

significant damage to cellular structures and

functions. This sustained oxidative stress can
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induce somatic mutations and contribute to
neoplastic transformation''®. Notably, oxidative
stress has been linked to cancer initiation and
progression due to its role in increasing DNA
mutations, causing DNA damage, promoting
genome instability, and enhancing cell
proliferation™. It has also been noted that
several pro-oxidants are available in the
environment. The common body tissuelike
lung and skin are constantly exposed with this
pro-oxidant along with several other
endogenous oxidants.To safeguard against
the harmful effects of these oxidant species,
the body relies on a well-organized system of
chemical and enzymatic antioxidants?®?'. The
body's defence against these harmful pro-
oxidants involves a complex system of
enzymatic  antioxidants like superoxide
dismutase (SOD), glutathione peroxidase
(GPx), glutathione reductase, catalase, and
non-enzymatic antioxidants such as glutathione
(GSH), and vitamins C and D*.Drug-resistant
cancer cells typically exhibit very low ROS
levels, primarily due to their elevated levels of
intracellular reduced glutathione (GSH) and
enhanced activities of antioxidant enzymes
such as GPx, catalase (CAT), and SOD?%*?.
Aging is also characterized by the gradual
accumulation of molecular damage in DNA,
proteins, and lipids. It is accompanied by
increased intracellular oxidative stress due to
the progressive decline in ROS scavenging
mechanisms®. Additionally, GSH is essential
for phase Il detoxification reactions, where
enzymes like glutathione S-transferase (GST)
require GSH to conjugate electrophilic drugs
and xenobiotics?’. Consequently, high levels
of GSH and GST have been implicated in

23,28-29

drug-resistant tumours .Chronic

inflammation,  triggered by biological,
chemical, and physical factors, is associated
with an elevated risk of several human
cancers®. The connection between inflammation
and cancer is supported by epidemiological
and experimental evidence and has been
confirmed by the effectiveness of anti-
inflammatory therapies in cancer prevention
and treatment’#.The effectiveness of
therapeutic agents in inducing apoptosis in
cancer cells often relies on the cells' ability to
generate ROS*. Interestingly, low levels of
ROS are conducive to the expression of ABC
transporters like P-glycoprotein (P-gp)*>. The
concept that prolonged irritation can lead to
cancer dates back to ancient Ayurvedic
medicine, which has been practiced for over
5000 Whether  this
corresponds  to Rudolf

described as inflammation in the 19th century

years®. irritation

what Virchow
remains uncertain®’. Virchow was the first to
observe inflammatory cells within tumours
and noted that tumours often develop at sites
of chronic inflammation®. Today, inflammation
is recognized as a "silent killer" in diseases
like cancer. For example, inflammatory bowel
diseases like Crohn's disease and ulcerative
colon

colitis  increase the risk of

adenocarcinoma®’4°

, and chronic pancreatitis
is associated with a higher incidence of
pancreatic cancer®'. The precise mechanisms
by which the

transforms into cancer are subject of intensive

wound-healing  process

research®*%?, Possible mechanisms include the
induction of genomic instability, changes in
epigenetic events leading to inappropriate
gene expression, increased proliferation of

initiated cells, resistance to apoptosis, aggressive
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tumour neovascularisation, invasion through
tumour-associated basement membranes,
and metastasis*®. This review focuses on the
major source of the ROS and their role in

inflammation induces carcinogenesis.

2. Reactive Oxygen Species:
Sources and reactions

Free radicals are molecules or molecular
fragments containing unpaired electrons,
conferring a high degree of reactivity upon
them. In living systems, the most important
class of free radicals is derived from oxygen,
known as ROS*. ROS can originate from both
endogenous and exogenous sources. The
primary source of endogenous ROS is
mitochondria. Mitochondria also produce
superoxide radicals, which are efficiently
converted into hydrogen peroxide and then
water by antioxidant enzymes like SOD®.
Xanthine oxidase (XO), an enzyme that
catalyses reactions involving purines, leading
to the production of superoxide anions and
hydrogen peroxide®. Activated immune cells
such as

neutrophils, eosinophils, and

macrophages increase oxygen uptake,

resulting in the generation of various ROS,
including superoxide anion, nitric oxide, and
Cytochrome  Paso

hydrogen  peroxide®’.

enzymes can also produce ROS when
induced, particularly superoxide anion and
Microsomes  and

hydrogen  peroxide®.

peroxisomes are additional endogenous
sources of ROS, with microsomes being
responsible for a significant portion of H.O;
production under hyperoxic conditions®.
Peroxisomes primarily produce H,O. but not
O." under normal physiological conditions,
and their H20:

contribution to overall

production is notable in the liver and other
organs containing peroxisomes, especially
during prolonged starvation®. Activated
Kupffer cells, the resident macrophages of the
liver, release biologically active molecules like
cytokines, which have been linked to hepato-
toxicological and hepatocarcinogenic events.
Recent research suggests a connection
between products released by activated
Kupffer cells and the tumour promotion stage
in carcinogenesis*. On the other hand,
exogenous  sources also  significantly
contribute in the ROS generation. Oxidative
stress and damage have been observed
following exposure to various xenobiotics,
chlorinated metal

such as compounds,

complexes (both redox and non-redox),
radiation, and barbiturates. For example, 2-
ROS,

leading to cancer in mice®®. Some frequently

butoxyethanol indirectly produces

encountered ROS are shown in Table-1.
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Table1: List of frequently encountered ROS in biological systems

ROS Chemical formula Reactivity
i) Selectively reactive, sparing most biological molecules
ii) Reduces transition metals (Fe®*, Cu?*) with rate depending
on metal ion ligand
Superoxide O iii) Rapid reaction with nitric oxide (k2 > 109 M~" s~") forming
radical anion peroxynitrite: Oz2°~ + NO* — ONOO-
iv) Can damage enzymes with Fe-S clusters
V) Reacts with other radicals to form hydroperoxides: Oz*~ +
R*+ H* — ROOH
Hydroxyl radicle “OH i) Highly reactive, in.disc.riminately reacts with adjacent
molecules at near diffusion-controlled rates
i) Unreactive with most biomolecules
i) Slow reaction with most thiols (k = 1 M~" s~ for GSH), faster
with certain Cys residues
Hydrogen H,0, iii) Reacts with transition metal ions to produce *OH (rate
peroxide constants 102717 M1 s-1)
iv) Main reactions with haem, thiols, and peroxidases
V) Reacts with CO2 to form more reactive
peroxymonocarbonate (HCO47)>’
i) Strong oxidants, react predominantly with thiols and
methionine
Hypol.1a|ous HOCI, HOBr ii) ReactiorTs with | amines. generate secondary
acids chloramines/bromamines, which are less potent
iii) React rapidly with thiocyanate (SCN-) to form HOSCN,
highly specific for thiols
i) Formed from COz reacting with peroxynitrite and HCO3
Carbonate CO reacting with *OH
radical anion i) Fairly reactive, oxidizes guanine in DNA and cysteine,
tyrosine, tryptophan
i) Reactive singlet state of Oz, formed by photosensitization
Singlet oxygen 02 reactions or chemical reactions with peroxyl radicals and
HOCI
i) Major atmospheric pollutant, rapidly oxidizes electron-rich
Nitrogen dioxide NO» compounds; forms nitrated products like 3-nitrotyrosine,
radical nitrotryptophans, nitrolipids, and nitrated DNA bases
ii) Some nitrated products have signalling functions

2.1 CHEMISTRY OF REACTIVE OXYGEN
SPECIES (ROS)
Superoxide anion, which arises as a result of

metabolic processes or when oxygen

undergoes "activation" through physical

irradiation, is considered the primary ROS. It

can further react with other molecules to
generate secondary ROS, either directly or
through  enzyme- or  metal-catalysed
processes™. It is important to note that the
superoxide radical doesn't directly interact

with polypeptides, sugars, or nucleic acids,

5
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and its ability to peroxidise lipids is a subject
of debate. Superoxide is typically removed
through a dismutation reaction®:

207"+ 2H* - H,0, + O,

SOD

reaction,

In  biological systems, enzymes

by
approximately four orders of magnitude.

significantly accelerate this

Additionally, SOD enzymes work in concert
with H20O2-removing enzymes like catalases
and GPx>*. The generation of various free

radicals is closely associated with the

The

redox state within cells is primarily governed

involvement of redox-active metals*.

by iron (and occasionally copper) redox
couples, which are maintained within strict
physiological limits. Under stress conditions,
excess superoxide can release "free iron"
The

released Fe (ll) can participate in the Fenton

from iron-containing  molecules™.
reaction (Figure-1), generating highly reactive
hydroxyl radicals ("OH) as follows:

Fe (Il) + H2O, — Fe (lll) + *OH + OH"

Fe'?

) x
O3

e
Fe' BL

N

HO-OH— O™ + HO

H20:2 + O2°

Oz + 11O + HO

Figure 1: Fenton reaction HO*- Hydroxyl radical; H202 — Hydrogen peroxide; Oz2 — Peroxide; Fe*?- Iron (Il); Fe*3- Iron (Ill)

Thus, under stress conditions, O, acts as an
oxidant and facilitates *OH production from
H.O, by making Fe (Il) available for the Fenton

56-60

reaction The superoxide radical also

contributes to the Haber-Weiss reaction
(Figure-2), which combines a Fenton reaction
with the reduction of Fe (lll) by superoxide,

yielding Fe (Il) and oxygen:

Or+e — 5 0O

Peroxide

Superoxide /

SOD

2H*

O+e+e — 02— »H,0; —— B2 HO®

Dismutation

0y + 0y ———» 0+ 052

energy
Hydrogen H}'d]lr'oxy
Peroxide radical
0
O3
HO'+ HO-

Figure 2: Harber — Weiss reaction (SOD - Superoxide dismutase; HO- Hydroxyl radical; H.O, — Hydrogen

peroxide; Oy ?— Peroxide)
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The *OH is highly reactive, with a half-life in
aqueous solution of less than 1 ns
Therefore, when produced in vivo, it rapidly
reacts near its site of formation. It can be
generated through various mechanisms,
including ionizing radiation and photolytic
decomposition of alkyl hydroperoxides. As
mentioned earlier, the majority of hydroxyl
radicals generated in vivo result from the
metal-catalysed breakdown of hydrogen
peroxide via the Fenton reaction:

Mn* (Cu*, Fe?*, Ti¥*, Co?*) + H,O, — M+ +

(Cu?*, Fe**, Ti**, Co®) + *OH + OH"-

This reaction primarily occurs when Mn*
represents iron, copper, chromium, cobalt, or

961 However, recent

certain other metals
findings have raised doubts about the in vivo
role of copper in Fenton-like generation of
hydroxyl radical due to the limited availability
of "free pools" of copper within cells®
Although Fenton chemistry is known to occur
in vitro, primarily due to the effective
sequestration of "free catalytic iron" by
various metal-binding proteins®®. However, in
conditions of iron overload, such as
hemochromatosis and B-thalassemia, excess
"free iron" can have detrimental effects. This
free iron is transported into a labile iron pool
(LIP), a low-molecular-weight pool of weakly
chelated iron that rapidly passes through
cells. The LIP likely contains both forms of iron
ions Fe () and Fe (Ill)) chelated by various
chelators like citrate, phosphate,
carboxylates, nucleotides, and others, with
experiments suggesting a concentration of
0.2-0.5 M and a predominance of Fe (ll).
Another class of radicals derived from oxygen
in living systems includes peroxyl radicals
(ROO").
species with a diverse range of reduction

Peroxyl radicals are high-energy

potentials, depending on the R group®’. The

simplest radical is the di-oxyl

(hydroperoxyl) radical HOO®, which is the

peroxyl

conjugate acid of superoxide, O;". The

chemistry of peroxyl radicals varies
depending on the R group, the local
environment, and the concentrations of
oxygen and other reactants®®. Peroxyl radicals
are known to participate in various biological
reactions, with lipid peroxidation being a
commonly cited example.They are also
involved in DNA cleavage and protein
backbone modification, and peroxyl radicals
can synergistically enhance DNA damage

induced by superoxide radicals.

3. Metal induced oxidative stress

and carcinogenesis

Numerous studies have extensively examined

the connection between metal-induced
toxicity and carcinogenicity, highlighting their
significant role in generating reactive oxygen
and nitrogen within

species biological

systemg*4°¢-58, This metal-mediated
generation of free radicals can lead to various
modifications in DNA bases, heightened lipid
peroxidation, and disruptions in calcium and
sulphydryl homeostasis*®¢¢-¢8.

3.1 COPPER

Copper's role as an essential component of
various endogenous antioxidant enzymes and
its potential association with free radicals in
the process of carcinogenesis have been
subjects of research®. The collective body of
evidences from both in vitro and in vivo
experiments suggests that copper, in the form
of copper salts, is not genotoxic®’. In vitro
studies have indicated that cancer cells thrive

and proliferate more easily in a high-copper

Medical Research Archives | https://esmed.org/MRA/index.php/mra/article/view/4661 7
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environment, potentially promoting tumours

7071, have also

formation Researchers
developed a novel copper complex, Copper
N-(2-hydroxyacetophenone) glycinate
(CuNG) (Figure-3) which has significant role in
overcoming drug resistance in Ehrlich Ascites
Carcinoma (EAC) cell’?”. Copper-dependent
oxidative damage can potentially be
mitigated through chelation with antioxidants,
particularly dipeptides that contain imidazole
rings capable of binding copper. Copper-
DNA adducts may have the potential to
exacerbate oxidative DNA damage’. Redox-
active metal ion, copper (Cu), is known to
contribute to the generation of ROS through
like the

biological systems’. Furthermore, hydrogen

processes Fenton reaction in
peroxide (H:O2) can deactivate the pro-

oxidant portion of the enzyme CuzZnSOD by

MO

O

H,

7

o:<‘ 0/ >0
2 N
CINR

loss of copper ions. This means that exposure
of human erythrocytes to elevated levels of
H2O; results in the inactivation of CuZnSOD.
Oxidative stress within cells often leads to
DNA damage, particularly when ROS are not
effectively neutralized, or when antioxidant
Such DNA

damage can manifest as single-strand breaks,

defences are overwhelmed.

double-strand breaks, or chromosomal
aberrations. Elevated oxygen concentrations,
exposure to factors like cigarette smoke,
asbestos, ozone, or carcinogenic metals such
as certain nickel compounds at concentrations
exceeding normal levels, can all contribute to
DNA damage’®”’.

indicated that alpha-tocopherol or catechol

Recent studies have

can induce oxidative DNA damage in the

presence of copper (Il) ions by generating O,*
and "OH free radicals’®”’.

H,O

CH,

Figure 3: Chemical structure of CuNG?”?

3.2. IRON
Iron is regarded as a vital element for all the
living organisms. It has significant role in
oxygen transport. Study on analysis of
biochemical, animal, and human data has led
to the suggestion that elevated levels of iron
in the body may be associated with an
increased risk of various diseases, including
diseases, cancer, and

vascular specific

80-81

neurological conditions®®'. The generation

ofROS by iron and the subsequent damage to

DNA and lipids seem to result from an
exaggeration of iron's normal function. Iron-
induced free radical damage to DNA is
believed to play a significant role in cancer
development, as cancer cells are known to
thrive in response to increased iron levels®.
Consequently, pre-menopausal women and
children are thought to have a lower risk of
common diseases because their body iron
levels are less likely to be excessive during

these periods. Nelson and Babbs proposed
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that exposure of the intestine to ingested iron
could be a primary factor in the development
of colorectal cancer in highly developed
meat-consuming countries®?%. They found a
dose-dependent relationship between serum
ferritin levels and the risk of colon adenomas.
Genetic hemochromatosis is linked to an
increased risk of hepatocellular carcinoma.
The connection between elevated body iron
stores and the development of hepatocellular
carcinoma in individuals with iron overload
unrelated to genetic hemochromatosis, along
with experimental evidence supporting iron's
co-carcinogenic role, strongly supports the
idea that iron is involved in hepatocellular
carcinoma development®™®¢. Several studies
model

on the animal have extensively

documented iron-induced carcinogenesis.
Intramuscular injections of an iron-dextran
complex, commonly used to treat anaemia in
humans, have been found to induce spindle
cell sarcoma or pleomorphic sarcoma in rats
at the injection site?”. It has been shown to
induce renal carcinogenesis when combined
with iron (Fe-NTA complex). It acts as efficiently
as "free iron" in vitro at physiological pH by
breakdown

catalysing the of hydrogen

peroxide through the Fenton reaction®.

3.3. CHROMIUM

Chromium, an essential trace element found
naturally, plays a vital role in regulating blood
glucose levels. However, it is crucial to
differentiate between Chromium (lll) and
Chromium (Vl) due to their distinct
characteristics. Chromium (VI) can be
potentially toxic and carcinogenic when

89-91 All chromates,

consumed in high doses
including Cr (VI), have the ability to enter cells
through channels designed for the transfer of

isoelectric and isostructural anions, such as

SO,* and HPO,> ", Insoluble chromates are
taken up by cells through phagocytosis. Inside
the cell, glutathione quickly forms a complex
with Chromium (VI), followed by the gradual
reduction of Chromium (VI) to yield Chromium
(V). Using an EPR spin-trapping technique, the
formation of Chromium (V) species (likely the
Chromium (V)-glutathione complex) and the
generation of the glutathione-derived thiyl
radical (GS°) were demonstrated”™. Once
formed, Chromium (V) species were found to
alter DNA conformation. In addition to GSH,
various other substances, including ascorbate,
cysteine, lipoic acid, NAD(P)H, fructose,
ribose, and others, have also been shown to
reduce Chromium (VI) in vitro®. Studies
suggest that the in vivo one-electron
reductant of Chromium (VI) occurs most likely
by NAD(P)H flavoenzymes. Once Chromium(V)
is formed, it can react via the Fenton reaction
with hydrogen peroxide (H.O:), generating a
hydroxyl radical capable of causing DNA
damage”™. Recent studies have emphasized
the involvement of Cr (ll)-dependent pathway
in Cr (VI) carcinogenicity and mutagenicity.
These studies, led by Zhitkovich and his team,
provide evidence that intracellular reduction
of Cr (VI) results in the extensive formation of
Cr-DNA adducts. Among these adducts, Cr
(Il-mediated DNA

molecules like glutathione, cysteine, histidine,

cross-links  involving
and ascorbate represent a major class of DNA
modifications™. Additionally, several studies
from the same laboratory have disproven the
existence and genotoxic/mutagenic effects of
Cr(V) species and the hydroxyl radical.
Reduction of carcinogenic Cr (VI) by
physiological concentrations of Vitamin C has
been shown to generate ascorbate-Cr (lll)-

DNA crosslinks and binary Cr (llI)-DNA
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adducts, both of which are potential sources
DNA  damage

reaction

of  oxidative through
products”.  These
findings suggest that Cr—-DNA adducts are

responsible for both the mutagenicity and

intermediate

genotoxicity of Cr (VI). Hexavalent chromium
is known to be associated with lung cancer in
humans®. Workers exposed to hexavalent
chromium in workplace air have shown
significantly higher rates of lung cancer
compared to non-exposed individuals.
Chromium has also been implicated in an

increased incidence of breast cancer?.

3.4. NICKEL

Nickel is recognized as a human carcinogen,
primarily affecting gene expression through
DNA

methylation and compaction, rather than

mechanisms  involving  enhanced
relying on mutagenic pathways”™. The nickel

compounds  implicated as  potential
carcinogens encompass insoluble dusts of
nickel subsulphides and nickel oxides, the
vapor emitted by nickel carbonyl, and soluble
aerosols of nickel sulphate, nitrate, or
chloride”. Acute nickel toxicity primarily arises
from exposure to nickel carbonyl, leading to
severe pulmonary and gastrointestinal
toxicity. The lung stands out as the primary
target organ for nickel toxicity in humans. An

epidemiological study conducted in Norway

involving workers in nickel refineries provided

compelling evidence of a substantial
association between cumulative exposure to
water-soluble nickel and the increased risk of
developing lung cancer”. Additional research
has demonstrated that inhalation of nickel
refinery dust, which contains nickel sub
sulphide, has been linked to higher mortality
rates from nasal cavity cancers and potentially
laryngeal cancer”. Furthermore, nickel has
the potential to interfere with DNA repair
processes, and toxic doses of nickel have
been observed to induce lipid peroxidation
and the formation of protein carbonyls in
animals. It is notable that trace amounts of
nickel have been shown to be essential for
normal growth and reproduction in certain
animal species, suggesting that small
quantities of nickel may also play an essential
role in human physiology. A very recent report

from our team also indicates a novel Nickel

chelate complex, Nickel N-(2-
hydroxyacetophenone)  glycinate  (NiNG)
(Figure-4)”. Blocking the mitogen-activated

protein kinase (MAPK) pathways effectively
prevents cell death induced by NiNG in both
drug-resistant and sensitive cancer cells”. An
imbalance in redox status serves as the central
mediator of NiNG-induced apoptosis in both
drug-resistant and sensitive cells”

Figure 4: Structure of NiNG?
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4. Oxidative stress and cell biological activities mentioned above),

. . modulate protein phosphorylation, and
signalling P priosphoty

Cells employ a sophisticated system known as
cell signalling or signal transduction to
communicate with one another and respond
stimuli'®.

to extracellular This signalling

process is initiated by external signals,

including hormones, growth factors, cytokines,

101

and neurotransmitters’®'. These signals are

relayed to the transcription machinery
responsible for the expression of set of
specific genes, primarily through a group of
proteins called transcription factors. These
signal transduction pathways can trigger a
wide range of biological activities, including
muscle contraction, gene expression, cell
growth, and nerve transmission'®?. WhileROS
are primarily associated with causing cellular
damage, they also play a crucial physiological
various of intracellular

role in aspects

signalling and regulation'®. Research has
clearly demonstrated that ROS can influence
the expression of numerous genes and signal
transduction pathways'®. Due to their
oxidizing nature, ROS have the ability to
impact the redox status of cells, which,
depending on their concentration, can lead to
either a positive response (such as cell
proliferation) or a negative cellular response
(such as growth arrest or cell death). As
mentioned earlier, high concentrations of
ROS can lead to cell death or necrosis, but at
low or transient levels, ROS can stimulate
proliferation and enhance the survival of
various cell types. Thus, ROS can serve as
essential secondary messengers in various
physiological processes'. For instance, they
calcium

can regulate the cytosolic

concentration (which, in turn, regulates the

activate specific transcription factors like NF-
kB and the AP-1 family of factors'®. ROS and
metal ions primarily inhibit phosphoserine/
threonine, phosphotyrosine, and

phospholipid  phosphatases, often by
interacting with the sulfhydryl groups on their
cysteine residues, leading to the formation of
disulfide

bonds'®. These structural changes alter the

intramolecular or intermolecular

conformation of proteins, thereby

upregulating several signalling cascades.
Notably, these cascades include growth factor
kinase-dependent, src/Abl kinase-dependent,
MAPK-dependent, and PI3-kinase-dependent
These

ultimately result in the activation of various

pathways. signalling  cascades
redox-regulated transcription factors, such as

AP-1, NF-kB, p53, HIF-1, and NFAT (Figure-5).
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Figure 5: Role of ROS and metal ions in cell signalling; ROS and metal ions primarily exert their inhibitory

effects on phosphoserine/threonine, phosphotyrosine, and phospholipid phosphatases. This inhibition is
likely due to their interaction with the sulfhydryl groups on cysteine residues within these enzymes, leading
to the oxidation and subsequent formation of intramolecular or intermolecular disulfide bonds. These
structural modifications result in altered protein conformation, subsequently triggering the upregulation
of several signalling cascades, notably including growth factor kinase, src/Abl kinase, MAPK, and PI3-
kinase-dependent pathways. These signalling cascades ultimately activate various redox-regulated
transcription factors, such as AP-1, NF-kB, p53, HIF-1, and NFAT. super oxides are also generated by the
activation of NADPH oxidase (NOX).

5. Antioxidant defence mechanism Fridovich provided conclusive evidence of its
. antioxidant activity'®. Superoxide dismutase
INn cancer

exists in several isoforms, each differing in the
5.1. SUPEROXIDE DISMUTASE (SOD) nature of the active metal centre, amino acid
Superoxide dismutase is the enzyme  composition, number of subunits, cofactors,
responsible for catalysing the dismutation of ~ and other characteristics. In humans, there are
O (superoxide) into O (oxygen) and the  three forms of SOD: cytosolic Cu, Zn-SOD,
less-reactive  species  H;O; (hydrogen  mitochondrial Mn-SOD, and extracellular
peroxide). Although SOD was isolated asearly ~ SOD (EC-SOD)'”". SOD effectively neutralizes

as 1939, it wasn't until 1969 that McCord and 0" at high reaction rates through a "Ping-
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Pong" type mechanism, involving successive
oxidation and reduction of the transition
metal ion at the active site'®. Cytosolic Cu,
Zn-SOD is an enzyme composed of two
identical subunits (homodimer), with a
molecular weight of approximately 32 kDa'®.
This SOD specifically catalyses the dismutation
of the superoxide anion into oxygen and
water. Each subunit contains a dinuclear metal
cluster consisting of copper and zinc ions.
Enzyme activity remains relatively
independent of pH within the range of 5-9.5.
Mitochondrial Mn-SOD, a homotetramer with
a molecular weight of 96 kDa, contains one
manganese atom per subunit'®. This enzyme
undergoes a cycle from Mn (lll) to Mn (Il) and
back to Mn ()

dismutation of superoxide. Mn-SOD is known

during the two-step
to be one of the most effective antioxidant
enzymes with anti-tumour activity. Studies on
various cell lines have shown that over
expression of Mn-SOD can lead to the
retardation of tumour growth'”. However, the
role of Mn-SOD as a tumour suppressor
protein is not universally clear, as some
tumours exhibit reduced Mn-SOD activity. In
certain tumour cells, the activity of total SOD
(Cu, Zn-SOD and Mn-SOD) has been found to
be diminished'. Intriguingly, some cancers
of the gastrointestinal tract have displayed
marked over expression of Mn-SOD, which
correlates with poor prognosis, advanced
stages of progression, and an invasive and
metastatic phenotype. These observations
suggest that while excessively high levels of
Mn-SOD can suppress cell growth, they may
simultaneously increase the invasive potential
of cancer cells. Over expression of Mn-SOD

has been associated with the activation of

enzymes from the zinc-dependent matrix
metalloproteinase family (MMP), particularly
MMP-1 and MMP-2. MMPs play diverse roles
in cellular remodelling processes, with some
family members being critical for tumour
invasion. Activation of MMPs is likely mediated
through the redox-sensitive transcription factors
AP-1 and NF-kB, triggered by elevated levels
of hydrogen peroxide induced by Mn-SOD

" In conclusion, it is hypothesized

activity
that an imbalance between superoxide radical
formation and hydrogen peroxide degradation
in cells over expressing Mn-SOD may activate
the metastatic potential of cancer cells. The
exact role of Mn-SOD in inducing the loss of
matrix functions in metastasis requires further
investigation. Extracellular ~ superoxide
dismutase (EC-SOD) is a secretory, tetrameric
glycoprotein containing copper and zinc, with
a high affinity for specific glycosaminoglycans
such as heparin and heparin sulphate'®. Its
regulation in mammalian tissues is primarily
coordinated by cytokines, rather than as a
response of individual cells to oxidants. A
completely distinct class of SOD containing
nickel (Ni-SOD) was recently discovered in
Streptomyces and cyanobacteria. Ni-SOD is a
small protein consisting of 117 amino acids

with no sequence homology to other SODs'".

5.2.CATALASE

Catalase is an enzyme found in the cells of
plants, animals, and aerobic bacteria that
require oxygen for the cellular respiration®. It
is primarily located within a cell organelle
known as the peroxisome. Catalase plays a
highly efficient role in facilitating the
conversion of hydrogen peroxide into water
and molecular oxygen. Catalase boasts one of

the highest turnover rates among all enzymes.
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To illustrate, a single molecule of catalase can
convert approximately 6 million molecules of
hydrogen peroxide into water and oxygen

every minute.

Catalase
H,0, —2H,0+0,
The reduced capacity of various types of
tumours to detoxify hydrogen peroxide is

attributed to a decrease in catalase levels.

5.3. GLUTATHIONE

The primary thiol antioxidant in biological
systems is the tripeptide glutathione (GSH). It
plays a crucial role as a multifunctional non-

within  cells'3.

enzymatic  antioxidant
Glutathione serves as the predominant thiol-
disulphide redox buffer in the cell and is
highly
compartments, including the cytosol (1-11

M), nuclei (3-15 mM), and mitochondria (5-
11 mm)"s,
forms. The reduced form, GSH (glutathione)
(Figure-6), and the oxidized form, GSSG
(glutathione disulphide) (Figure-7). In the

nucleus, GSH plays a vital role in maintaining

abundant in  various cellular

This antioxidant exists in two

the redox state of critical protein sulphydryls,
which are essential for processes such as DNA
Oxidative

conditions can lead to rapid modifications of

repair and gene expression.

COOH

Z=T

protein sulphydryls, including the formation of
sulphenic acids (protein-SOH) through two-
electron oxidation and thiyl radicals (protein-
S*) through one-electron oxidation'. These
partially oxidized products react with GSH to
form S-glutathiolated proteins (protein-SSG).
The glutathione cycle, involving enzymes like
reductase,

glutathione glutaredoxin, and

thioredoxin, subsequently reduces protein-
SSG back to protein sulphydryls (protein-SH).
However, if oxidation of protein sulphydryls is
not intercepted by GSH, further oxidation can
lead to the irreversible formation of sulphinic
(protein-SO;H) and sulphonic (protein-SO3H)
acids'". The potent antioxidant capacity of
thiol compounds like glutathione primarily
arises from their sulphur atoms, which can
readily accommodate the loss of a single
electron'™.  Furthermore, the lifetime of
sulphur radical species, particularly the thiyl
radical (GS®), can be considerably longer than
many other radicals generated during
oxidative stress.

The reaction between GSH and a radical R
can be described as follows:

GSH + R* - GS* + RH

Thiyl radicals (GS*) may dimerize to form
oxidized glutathione (GSSG):
GS* + GS* — GSSG

s

c:-:zs

Cst

f\\
N OOH
H,N | COOH \I/\).L N\/c

CH,SH

Figure 6: GSH (Reduced form)

COCH

Figure 7: GSSG (Oxidised form)
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Accumulated GSSG inside cells, and the
GSH/GSSG

oxidative stress within organisms''. Excessive

ratio, serve as indicators of
GSSG levels can potentially damage numerous
enzymes via oxidative mechanisms. GSSG can
also react with protein sulphydryl groups,
forming protein—glutathione mixed disulphides:

GSSG + protein-SH < protein-SSG + GSH

These (protein-SSG)
exhibit longer half-lives, likely due to protein

mixed  disulphides

folding processes. The main protective roles

of glutathione against oxidative stress

encompass several aspects'"

. Acting as a
cofactor for detoxifying enzymes, including
glutathione peroxidase (GPx) and glutathione
transferase. Participating in amino acid
transport through the plasma membrane.
Direct scavenging of hydroxyl radicals and
singlet oxygen, leading to the detoxification
of hydrogen peroxide and lipid peroxides
through the of GPx.

Regenerating essential antioxidants such as

catalytic action
vitamins C and E, returning them to their
active forms. Glutathione can directly reduce
the tocopherol radical of Vitamin E or
indirectly reduce semidehydroascorbate to
ascorbate. The capacity of glutathione to
regenerate vital antioxidants is closely related
to the redox state of the glutathione
disulphide-glutathione couple (GSSG/2GSH)'".
This couple's half-cell reduction potential
varies based on the redox environment it
operates in. For instance, the redox potential
is -180 mV in the endoplasmic reticulum and -
232 mV in the cytosol'”. Compartmentalization
of GSH is linked to the distinct redox
environments within these compartments.
The glutathione system has a significant role
in promoting overall health and preventing a
studies,

range of diseases''’® . Numerous

including our own researchhave revealed that
a deficiency in cellular glutathione, whether
due to reduced biosynthesis or increased
health

challenges, such as oxidative stress, impaired

depletion, can lead to various

immune function, susceptibility to viral

infections, and an increased risk of cancer? %

120 Recent biomedical literature has also
underscored that a lack of glutathione (GSH)
is considered a leading factor in explaining
the higher COVID-19

infection among the elderly population and

susceptibility  to
individuals  with comorbidities such as
diabetes,
diseases'?'. As people age, their endogenous

cardiovascular, or pulmonary
GSH levels naturally decline, rendering cells in
older individuals, especially in lung tissue,
more vulnerable to oxidative damage caused
by environmental factors and viral attacks.
There is compelling evidence indicating that
glutathione deficiency, a common factor in
exacerbate

many chronic diseases, can

121

oxidative damage in COVID-19 patients'?'.

5.4. GLUTATHIONE PEROXIDASE

Glutathione peroxidase (GPx) exists in two
forms:  one is  selenium-independent
(glutathione-S-transferase or GST), while the
other is selenium-dependent (GPx)'®. These
two enzymes differ in molecular structures and
catalytic mechanisms. Glutathione metabolism
plays a critical role in one of the most essential
defence.

mechanisms of antioxidative

Humans possess four distinct selenium-
dependent glutathione peroxidases'”. All
GPx enzymes are capable of adding two
electrons to reduce peroxides by forming
selenoles (Se-OH). These selenoenzymes'
antioxidant properties enable them to
neutralize peroxides, preventing them from

becoming substrates for the Fenton reaction.
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GPx functions in conjunction with the
tripeptide glutathione (GSH), which is present
in cells at high (micromolar) concentrations.
GPx's catalytic reaction involves the substrate
H2O2 or an organic peroxide ROOH. In the
process, GPx decomposes peroxides into
simultaneously

water (or alcohol) while

oxidizing GSH:

GPx
2GSH+H;0, ——— > GSSG+2H;0

GPx
2GSH+ROOH ———» GSSG+ROH+H:0

Significantly, GPx competes with catalase for
H20. as a substrate and serves as the primary
defence against low levels of oxidative stress.

6. Cellular redox environment

and oxidative stress

Oxidation and reduction reactions in
biological systems are commonly referred to
as redox reactions and form the foundation for
In the

context of biological systems, it's more

numerous biochemical processes.
suitable to use the terms antioxidant and pro-
oxidant instead of reductant and oxidant,
respectively'”. A reductant, or reducing
agent, donates electrons, while an oxidant, or
oxidizing electrons. An

agent, accepts

oxidation  process (oxidation  reaction)
involves a loss of electrons, while a reduction
process (reduction reaction) entails the gain of
electrons. This phenomenon is described by
the redox (reduction/oxidation) theory of
cellular functioning. Each cell maintains a
specific concentration of electrons, known as
its redox state. The redox state of a cell and
its fluctuations play a crucial role in cellular
differentiation’*'?4, Normally, the redox state

of a biological system remains within a narrow

range, akin to the regulation of pH. Under
pathological conditions, however, the redox
state can deviate towards lower or higher
values. Notably, a 30mV change in the redox
state corresponds to a tenfold change in the
reductant and

primary
responsible for intracellular "redox buffering"
are glutathione and thioredoxin (TRX).
Glutathione, represented by the 2GSH/GSSG
couple, serves as the principal cellular redox

ratio between oxidant

species'®.  The components

buffer and an indicator of the cell's redox
environment'?. The intracellular concentration
of glutathione is 500 times higher than that in
the extracellular space, playing a crucial role
in the cell's detoxification processes. In the
endoplasmic reticulum, where the 2GSH/
GSSG ratio is relatively low, mixed disulphide
formation and disulphide exchange are
significant components of protein folding.
However, under conditions of enhanced
oxidative stress, the GSSG content increases
through a specific reaction, leading to an
increase in the content of protein mixed
disulphides. A notable aspect is that GSSG
seems to act as a non-specific signalling
molecule, affecting various proteins involved
in signalling processes. High ratios of reduced
to oxidized GSH and TRX are maintained by
the activities of GSH reductase and TRX
reductase, respectively. Both these redox
thiol systems counteract intracellular oxidative
stress by reducing hydrogen peroxide and
lipid peroxides through reactions catalysed by
peroxidases. For instance, GSH peroxidase
catalyses the reaction H,O; + 2GSH — 2H,0
+ GSSG. Besides their antioxidant functions,
GSH and TRX also participate in cell-signalling
processes. Other crucial elements influencing

redox regulation include exogenous molecules
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such as ascorbic acid, carotenoids, and
selenium. In recent years, the term "redox
state" has expanded to describe not only the
state of a redox pair, such as GSSG/2GSH,
Asc*/AscH™, and

characterize the broader redox environment

others but also to

of a cell'®. Determining the molar concentrations

of major redox couples is relatively
straightforward in homogeneous fluids like
plasma, enabling the evaluation of the redox
cellular

environment. However, in

compartments, issues such as
compartmentalization and non-equilibrium
conditions may complicate determining the
molar concentrations of specific redox
couples. Since various cellular compartments
like the

mitochondria, and nucleus lack significant

cytosol,  extracellular  space,
gradients of various redox couples involving
glutathione, it is possible to estimate the
overall concentration of glutathione in each
redox

compartment'®.  The  cellular

environment is instrumental in  signal
transduction, enzyme activation, DNA and
RNA

differentiation, and apoptosis'®*'%. Generally,

synthesis, cell proliferation,
cell death initiation is associated with an
oxidative cellular environment, whereas a
reducing environment supports increased cell
proliferation. An example of this involves
stimulated proliferation of certain tumour cells
exposed to high thiol concentrations.
Accordingly, antioxidants have been shown to
Studies have

prevent  apoptosis'?.

demonstrated that the cell cycle is
characterized by fluctuations in the redox
environment, primarily mediated by changes
in glutathione concentration within the cell'®.

Oxidizing molecules such as H;O; and

thioredoxin are present outside the cell and
can enter cells, leading to alterations in the
intracellular redox environment. Various levels
of oxidants and antioxidants in the cell appear
to be associated with the induction or

inhibition of cell proliferation. A more

reducing  cell  environment  promotes
proliferation, while a slight shift towards a
mildly oxidizing environment initiates cell
differentiation. Further progression towards a
highly oxidizing environment in the cell results
in apoptosis and necrosis. Apoptosis is
triggered by moderate oxidizing stimuli,
whereas necrosis is induced by intense

27 Each stage of the cell

oxidizing effects
cycle has a distinct redox state characterized
by a specific cellular reduction potential. In
line with these findings, reduced glutathione
(GSH) has been identified as playing a role in
protecting cells from apoptosis. The
depletion of GSH, leading to a more oxidizing
cellular environment, has been observed to
coincide with the onset of apoptosis. GSH loss
is facilitated by specific membrane
translocators that extrude GSH from the cell.
Moreover, the release of mature Cytochrome
¢ from mitochondria has been linked to
glutathione depletion. It is important to note
that the depletion of intracellular glutathione
is not the sole factor influencing the decision

125

to undergo apoptosis'®. Nevertheless, the

redox environment stands as a critical
determinant for triggering apoptosis. In light
of these findings, cancer cells are
characterized by a more reducing cellular
environment, representing an imbalance
skewed towards cell proliferation. Extensive

evidence suggests that redox balance is
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disrupted in cancer cells compared to normal

cells, potentially due to oncogenic

stimulation. Altered levels of antioxidant
(SOD,

peroxidase) and non-enzymatic antioxidants

enzymes catalase,  glutathione
(GSH, Vitamin C, thioredoxin), as well as
changes in associated signal pathways, have
been observed in various human cancers'?,
The cumulative production ofROS in many
redox

cancer cells is linked to altered

regulation of signalling cascades. The
reducing intracellular environment in the
nucleus and mitochondria, maintained by
elevated levels of glutathione and thioredoxin,
not only prevents apoptosis but also
promotes cell survival through the activation
nuclear

of redox-sensitive transcription

factors'®

. The human DNA repair enzyme
APE/Ref-1 is a dual-function protein that plays
a crucial role in responding to oxidative stress
and in DNA base excision repair. Additionally,
APE/Ref-1 facilitates the DNA-binding activity
of several transcription factors (AP-1, NF-kB,
through both

p53, and others) redox-

dependent and redox-independent

130 Several studies have shown

mechanisms
that upregulation of Ref-1 protects cells from
various apoptosis triggers, including oxidative
stress and radiation. Conversely, down-
regulation of Ref-1 is associated with apoptosis
and cell sensitization. Ref-1 is implicated in
various stages of carcinogenesis (initiation,
promotion, and progression), primarily through
the maintenance of the intracellular redox
balance, activation of cell survival signals, and
repair of damaged DNA lesions. Elevated

expression of Ref-1 has been observed in

cervical, prostate, and ovarian cancers, with
Ref-1 exhibiting both cytoplasmic and nuclear

enzymatic activities'’

. Apoptosis is closely
related to the Bcl-2 protein™?. Bcl-2 can inhibit
the release of Cytochrome c, preventing a
decrease in glutathione concentration, thus
shifting the cellular redox environment away
from apoptosis. Cancer cells typically exhibit
over expressed Bcl-2, which can enhance
resistance to ROS-induced apoptosis. Notably,
a defective redox regulation of progression
from G1 to S in non-malignant cells has been
found in cancer cells. While thiol antioxidant-
induced modulation of the intracellular redox
state results in G1 arrest in non-malignant
cells, tumour cells continue to cycle. Recent
studies

mechanisms through which TRX, GSH, and

Ref-1 maintain intracellular "redox buffering"

indicate that understanding the

capacity can aid in the development of targeted

cancer prevention and therapeutic drugs'.
7. Conclusion

of ROS is a natural

consequence of aerobic life and is an

The production

unavoidable process. ROS continually pose
challenges to the integrity of our genetic
material. Its effects can be influenced by
various factors such as diet, hormones, and
environment. Excessive production of ROS
due to internal or external factors can lead to
oxidative stress, which can be detrimental to
living organisms. ROS not only have the
potential to damage DNA but can also affect
other cellular components like proteins and
lipids, leaving behind reactive by-products
that can interact with DNA bases. One
studied DNA

extensively lesion is the
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formation of 8-OH-G, which is significant
because it forms relatively easily, possesses
mutagenic properties, and can serve as a
potential biomarker for cancer development.
DNA mutations play a

carcinogenesis, and elevated

crucial role in
levels of
oxidative DNA damage have been observed
in various types of tumours, suggesting a
possible link between such damage and
cancer development. While the exact extent
of oxidative DNA damage's contribution to
carcinogenesis remains uncertain, it appears
to be primarily associated with the initiation
phase of this process. Additionally, ROS
participate in cell-signalling pathways related
to cell growth regulation, making them
instrumental in carcinogenesis. The regulation
of cell growth is a complex process, and the
role of ROS in this context depends on the
type and concentration of the specific radicals
involved. Activation of transcription factors,
MAP-kinase/AP-1  and NF-kB

has a direct impact on cell

including
pathways,
proliferation and apoptosis, with oxidative
stress being a common factor in all these
events. Although the involvement of oxidants
at various stages of malignant transformation
is evident, many details regarding the specific
role of ROS-induced damage in multifactorial
diseases like cancer remain to be elucidated.
The effect of
depends on the

stress  on
type,
reactivity, and concentration of the radicals
identify  valid

biomarkers for cancer incidence, extensive

oxidative
carcinogenesis
involved. To confidently
studies involving the long-term monitoring of
DNA in healthy individuals are required to
identify those who eventually develop cancer.

The detrimental effects of oxidative stress are

countered by both antioxidant enzymes and

non-enzymatic antioxidants. Among these,
manganese superoxide dismutase (Mn-SOD)
is considered one of the most effective
antioxidant enzymes with potential anti-
tumour activity. Experimental evidence
suggests that abnormally high levels of Mn-
SOD, while suppressing cell growth, may also
enhance the invasive potential of cancer cells.
It is conceivable that an imbalance between
superoxide radical formation and hydrogen
peroxide degradation in cells over expressing
Mn-SOD

potential of cancer cells. However, antioxidant

could activate the metastatic

protection therapy against free radicals
should be administered with caution, as its
effectiveness depends on the cancer stage at
which it is introduced. When used during the
cancer progression stage, antioxidant therapy
might inadvertently stimulate tumour growth
by promoting the survival of cancer cells.
Additionally, it's essential to consider that
some antioxidants can exhibit pro-oxidant
properties depending on their concentration
and the oxygen levels in their environment. To
prevent cancer related to oxidative stress, a
crucial approach is to minimize exposure to
both internal and external sources of oxidative
stress, including the elimination of
environmental carcinogens and carcinogenic
metals to the extent possible. In this context,
prevention is a more effective strategy than

treatment.
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