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ABSTRACT

Background: There is no agreement on the best strategy for interpreting/
analyzing cardiopulmonary exercise test (CPET) results.

Aims: This study aims to evaluate the feasibility of using computer-aided
algorithms to evaluate CPET data to identify the exercise limitation/
intolerance level.

Methods: This study used 206 retrospective CPET files from the Pulmonary
Institute and the Cardiology Rehabilitation Center at the Sheba Medical
Center and 50 from the exercise physiology laboratory at the Washington-
Hill College, both in Israel. Eighty patients with confirmed primary
cardiovascular-related exercise limitation, seventy-six with ventilatory-
related exercise limitation, and fifty healthy (none or very mild exercise
restraints) subjects comprised the pool of examined CPET data. Support
Vector Machine (SVM) Learning was performed on 150 (50 in each group) of
the 206 CPETs, while model validation was performed on the remaining 56
CPET files. By applying the K-means clustering method, distribution analysis
was used to compare the SVM interpretive module's performance to that of
senior cardiologists, pulmonologists, and expert exercise physiologists.
Results: Overall, the proposed interpretive model has a predictive power of
between 78% and 100%, as shown by its ability to correctly classify the
degree of exercise limitation.

Conclusions: The proposed machine-learing CPET interpretive module
was highly sensitive and specific in identifying patients with mild, moderate,
or severe cardiovascular- or ventilatory-related exercise limitations/
intolerance. Comparable modules may be applied to additional (kinds of
exercise limitations) and larger populations, making this tool powerful and
clinically applicable.

Keywords: Cardiopulmonary exercise testing (CPET), Support Vector
Machine, machine leaming, exercise limitation severity, cardiovascular,

ventilatory, data analysis.
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Introduction

Cardiopulmonary exercise testing (CPET) is a
valuable tool used in various fields of medicine
to assess an individual's exercise capacity and
diagnose exercise limitations'?. It provides
crucial insights into the functioning of the
cardiovascular, respiratory, metabolic, and
gas exchange systems during exercise, enabling
clinicians to identify the underlying causes of
exercise intolerance and prescribe appropriate
interventions?®*. Interpretation of CPET is a
multivariate time series problem involving
simultaneous manual assessment of generated
heart rate, ventilation, gas exchange (oxygen
uptake), and carbon dioxide output. These
time series' manual evaluations and traditional
analytics are simplified to peak values, summary
indices, and slopes?’. A computer-aided
module can automate the analysis process,
ensuring accuracy, consistency, and saving
time. It can perform complex calculations and
algorithms more quickly and consistently than
manual analysis, reducing the risk of human
errors and providing reliable results.

In recent years, machine learning (ML) has

emerged as the new flexible learning
framework in which automatic extraction of
relevant features happens based on the
learning  objective.  This  cutting-edge
approach capitalizes on the power of machine
learning algorithms, including Support Vector
(SVM),

patterns and correlations from complex CPET

Machines to derive meaningful
data>®. SVMs, known for creating accurate
decision boundaries between different data
classes, are particularly advantageous in
classifying and categorizing CPET results
based on factors such as heart rate, oxygen

consumption, pulmonary function, and gas

exchange’. Machine learning algorithms have

shown promising potential in extracting
meaningful patterns from large and complex
datasets, leading to more accurate and
efficient diagnosis and treatment decisions. In
line with this progress, researchers and clinicians
have begun exploring the application of ML in

the analysis of CPET data®¢”#.

Only a few studies have applied ML to identify
clinically relevant phenogroups from CPET data.

By harnessing the power of advanced

algorithms, this methodology seeks to

overcome the limitations of traditional
subjective interpretations, offering a more
standardized,

objective, and time-saving

approach to CPET analysis.

The present study continues our recently
published article®, which presents a novel
approach using machine learning algorithms
to identify individuals suffering from chronic
heart failure (CHF) and chronic obstructive
pulmonary disease (COPD) or is considered
healthy®. The present study aims to present a
novel machine learning analysis approach for

classifying severity levels of exercise
limitations (Cardiovascular-related exercise
limitations (CREL) and ventilatory-related

exercise limitations (VREL) using CPET data.
Notably, in the majority of referrals for CPETSs,
the goal is not to diagnose a specific
pathology (there are other ways to do this
(though more expensive and time-consuming)
but rather to identify the cause and degree of
locate the

exercise intolerance - or to

reason(s) of unexplained dyspnea.

Materials and Methods

PARTICIPANTS - The data set in the present
study consists of anonymized results from
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retrospective cardiopulmonary exercise tests
(CPETs) of 156 patients with two mains
clinically diagnosed conditions: cardiovascular-
related (n=80) and ventilatory-related (n=76)
(CREL and VREL,
respectively). It should be pointed out that

exercise limitations
some of the studied patients presented with
the coexistence of CREL and VREL, and their
final group assignments were based on the
most prominent CPET findings and symptoms

(primary or secondary).

An additional 50 CPET files were obtained
from studies carried out on healthy individuals
(with no apparent particular exercise-related
weakness) (H) at the exercise physiology
laboratory of the Washington-Hill College in
Yavne, Israel.

Each CPET file (including PFTs) was reviewed
by a senior cardiologist, pulmonologist, and
exercise physiologist well-versed in CPET
standardized  manual

studies using a

interpretation  strategy”®.  Their ultimate
verdict regarding the severity of exercise
limitation was used as the "gold standard" to
validate and compare the proposed model's

results to that of the "gold standard".

THE EXERCISE PROTOCOL - All the CPET
protocols in the study used cycle ergometers
1200, Germany) with
phases: rest, test, and recovery. The CPETs of

(Ergoselect three

the "patients" were performed at the exercise
physiology
Institute at the Sheba Medical Center in
those of the healthy
physiology
laboratory of the Washington-Hill College in
Yavne, both in Israel. The CPET protocols and

metabolic carts were the same in the two

laboratory of the Pulmonary

Ramat-Gan and

participants at the exercise

laboratories. The primary criteria for inclusion

in the study cohort were: technically sound
CPET, technically good resting pulmonary
(PFT), maximal effort or
CPETs

exchange ratio RER = 1.00; test duration = 6

function test
symptom-limited (respiratory
min), and age = 35 years old). The Institutional
Review Board (IRB) of the Sheba Medical
Center approved the protocol (No. 1730-14-
SMCQ). Informed consent was not required due
to the observational and retrospective nature
of the study design.
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Workflow of the study procedures

206 CPET files: Cardiovascular limitation
(n=80), Ventilatory limitation (n=76),
Healthy (n=50)
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Before performing the CPETs, all study  maximal exercise test was performed after a

participants completed a pulmonary function ~ 3-minute rest and 3 min of unloaded
test per the American Thoracic Society (ATS)  pedaling. Expired Oz and CO: gases and the

guidelines'. An incremental symptom-limited airflow rate were measured breath-by-breath
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through a facemask connected to a metabolic
cart (all from COSMED, ltaly). Gas analyzers
(O, and CO,) were calibrated before each
test. The airflow sensor was calibrated daily.
The exercise protocols ensured that subjects
reached volitional exhaustion within 8-12
minutes of incremental exercise. Work rate
increments  were individually  adjusted,
ranging from 5 to 25 watts.min”'. Before
entering the CPET data into the selected SVM
learning and the respective validation
processes, maximal and submaximal values of
each CPET file obtained
conventional algorithms embedded in the
metabolic carts (COSMED, ltaly). The CPET

protocols and metabolic carts were the same

were using

in the two laboratories. Then, the relations of
those measured values to their corresponding
normal (predicted) values were calculated and
assigned as % of predicted. The predicted
"normal" values were based on Inbar et al."
and Wasserman et al.”® CPET's reference
values. Using % predicted values as input data
for the SVM module ensured unbiased
physiological feature comparisons (peak and
submaximal) across various test procedures,
ergometers, and populations with varying
physical,

physiological, and pathological

characteristics.

NORMALIZING RANGES OF % OF
PREDICTED VALUES (80%-100%) - During
CPET, assorted physiological variables are
measured with their widely spread "normal"
peak values. To overcome the above problem
and standardize the CPET predicted normal
ranges, we rescaled the original boundaries of
all expected normal ranges into equal limits of
80% to 100% of predicted normal (commonly
used in medical sciences).® This procedure

was accomplished by using three points to

apply a linear regression equation for each
CPET variable: The limit of the
predicted normal range was set to 80% of

lower

normal, the average of the expected normal
range to 90% of normal, and the upper limit
to 100% of normal. Feature scaling is mapping
the feature values of a dataset into the same
range and is crucial for machine learning
algorithms such as the SVM™™. It should be
stated that training an SVM classifier includes
deciding on a boundary between classes. This
boundary is known to have the maximum
distance from the nearest point on each data
class and differs for nonscaled and scaled
cases. Also, the linear scaling of the input data
in our study was done to avoid attributes with
greater numeric ranges that could dominate
those with smaller ones™.

FEATURE SELECTION - Each "limitation"
(CREL or VREL) was classified separately. A
feature selection algorithm [SVM-recursive
(SVM-RFE)] with a
correlation bias reduction process (CBR) was

feature  elimination
employed to identify the relevant features in
the CPET dataset. The algorithm ranks the
features based on their impact on the
classification process'. As indicated above,
the feature reduction algorithm was
implemented separately for patients with
moderate-to-severe ventilatory-related and

cardiovascular-related limitations.

Feature selection can be achieved by
choosing a group of top-ranked features.
SVM-RFE is an application of RFE using the

weight magnitude as a ranking criterion.

A linear SYVM model was trained in each
iteration of the recursive feature elimination
(RFE). The feature with the minimal ranking
criterion was removed since it has the least
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impact on classification. The remaining weights, heights, levels of physical fitness, and

features were kept for the SVM model in the
next iteration. This process was repeated until
all the features had been removed. Then, the
features were sorted according to the order of
Since SVM-RFE
correlated features, which could incorrectly

removal. includes inter-

estimate the feature's importance, an
additional algorithm was implemented: The

Correlation Bias Reduction module (CBR)™.

The SVM-RFE+CBR procedures produced a
list of selected exercise limitation-related
CPET features ranked in terms of their impact
on the quality and reliability of the respective
predictive model. (see Tables 5 and 6).

The SVM model implementations in this study
were carried out using MATLAB R2013b,
applying the Library for Support Vector
Machines (LIBSVM) toolbox'®.

THE SVM ALGORITHM - is a supervised (or
unsupervised) machine learning technique
widely used in pattern recognition and
classification problems. It includes a set of
supervised  (or learning
methods developed in the 1990s"'® and is

used to solve classification and regression

unsupervised)

problems. SVM is one of the most popular
techniques for supervised classification'?, built
on the structural risk minimization (SRM)
induction principle and has found success in a
variety of applications®. Machine learning
approaches can be valuable for interpreting
cardiopulmonary exercise tests (CPETs) by
leveraging the power of data analysis and
pattern recognition. However, the success of
many applications using the SVM depends on
the initial manual choice of features. As
mentioned above, the present study looked at
individuals of different

genders, ages,

kinds and degrees of exercise limitation.

THE LEARNING STAGE - Included in the
exercise limitation severity (ELS) classification
were patients demonstrating moderate to
severe ventilatory-related exercise limitation
(VREL;  N=50),
exercise limitation (CREL; N=50), and healthy
participants (H; N=50).

We used the LIBSVM binary classifier for the
ELS classification.

cardiovascular-related

Two SVM binary models (one for ventilatory
and one for cardiovascular) were separately
applied following input of selected CPET
features (normalized % of predicted).

CROSS-VALIDATION OF SVM MODELS -
Following the SVM binary model learning
stage, cross-validation was conducted for
both (ventilatory- and cardiovascular-related)
binary models.

Two cross-validation methods were carried
out: leave-one-out and cross-validation

repeated random sub-sampling.

FINAL VALIDATION OF THE EXERCISE
LIMITATION SEVERITY CLASSIFICATION - 56
CPET files, not used for the learning stages,
were added for the final confirmation of the
SVM classification module. Of those patients,
26 were initially classified as suffering from
ventilatory-related and 30 from
cardiovascular-related exercise limitations.
These patients showing various degrees of
exercise limitations (mild, moderate, severe)
were used for the final validation stage of the
proposed classification module. Validation of
the Model ELS classification (ventilatory- or
cardiovascular-related) was based on the SVM
K-means

probability  estimation.  The
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clustering method categorized the SVM
probability values into three severity levels
(mild,

categorization was carried out by minimizing

moderate, and severe)’'?. The
the sum of squares of distances between the
objects and the corresponding cluster or class
centroid. Results from the SVM and K-means
of the

severity were compared with those initially

classifications exercise limitation

assigned by the attending physicians (all
experts in assessing CPET results).

Statistical analyses

PARTICIPANTS' PHYSICAL CHARACTERISTICS
AND CPET RESULTS -
(participant physical characteristics and CPET

Discrete values

peak values) were calculated and are

presented as means + Standard deviation (SD).

A one-way analysis of variance (ANOVA) with
a multiple comparison test was conducted to
compare the three study groups' CPET peak
and sub-peak values. A p-value of <0.05 was
considered indicative of statistical significance.

PERFORMANCE QUANTIFICATION - The

model's cross-validation outcomes
(probability estimates) are presented as
means=SD. The SVM classification outcomes
versus prior physicians' clinical diagnoses
were compared regarding test sensitivity,
specificity, accuracy, and overall precision and

presented in confusion tables. The confusion

matrix contains information about actual and
predicted classifications.

Sensitivity, specificity, accuracy, and overall
precision were calculated based on the

following formulas:

S itivity = TP
ensitivity = TP-l-—FIV
Svecificity = TN
pecificity = TN+ FP
TP+TN
Accuracy =

TP+ FP+FN+TN

TP

p . . -
ercision TP + FP

TP, FP, TN, and FN represent the number of
true positives, false positives, true negatives,
and false negatives. A p value of < 0.05 was
considered statistically significant

Results

PARTICIPANTS - Tables 1 and 2 show the
participants' physical characteristics during
the learning and validation stages.

Table 1. Physical characteristics of the participants in the learning stage (means+SD)

Variable CREL (N=50) VREL (N=50) Healthy (N=50)
Age [yr] 52.2 +13.3 64.4+10.2 45.7+9.3
Height [cm] 172.3+£6.2 169.0+£6.7 173.0+£4.5
Weight [kg] 79.411.7 70.7+13.3 76.6%5.6

CREL=Cardiovascular-related limitations; VREL=Ventilatory-related exercise limitations.
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Table 2. Physical characteristics of the study participants of the validation stage

(means=SD)

CREL (N=26) (18

VREL (N=30) (17 males and

Llite males and 8 females) 13 females)
Age [yr] 54.3 +13.5 65.6+7.3
Height [cm] 171.6+6.6 167.8+6.1
Weight [kg] 80.7%15.0 75.6x14.6

CREL=Cardiovascular-related limitation; VREL=Ventilatory-related exercise limitation.

CPET RESULTS - Tables 3 and 4 in the
supplementary materials present the CPET

raw data and selected resting pulmonary

(peak and submaximal values) and the % of
the measured values of the corresponding

predicted (expected) values of all CPET

characteristics measured during the learning parameters. In addition, the tables show the

and validation stages, respectively. The tables  statistical differences between the three groups.

detail the patient's measured test results

Table 3. Comparisons of CPET actual and % of predicted values among the three

studied groups- learning stage (means + SD).

Variables CREL (n=50) VREL (1=50) H (n=50)
Measured® | % of pred.? | Measured® | % of pred.c | Measured® | % of pred.f

Time [min] 9.3£2.4% 90.4£9.5 10.9£2.42 95.7x16.5 9.9£1.8 91.8+8.1
Peak WR [watt] 83.5+£35.0" | 43.8+13.0f 57.7£19.3% | 42.6=10.8T | 180.2£27.1%0 | 90.7+6.8%
Peak VO: [I/min] 1.1+0.3¢ 45.2+13.1¢f 1.2+0.4¢ 60.0=15.74 2.5+0.2% 92.2+9 8de
Peak VCO: [I/min] 1.1+0.4¢ 35.8+10.6°F 1.1£0.5¢ 43.5+15.04 3.1:0.5% 88.9+7.19
RER 1.08+0.06° 85.0+4.3F 1.08=0.07¢° 85.0+4.8F 1.19+0.0930 92.7+6.6%
Peak VOx/kg [ml/kg/min] 13.324.2b¢ 42.2+9.7¢ 16.9£3.72¢ | 64.3£10.1% | 3242472 91.0£6.5%
VO2/WR slope 7.6+1.0v¢ 71.1£8.0¢ 10.4=1.12 90.4+6.04 10.2+1.22 89.2+7.44
Peak HR [beat/min] 103.7£13.17¢ | 50.8+6.1¢T | 114.0=14.3%¢ | 58.8=6.49 | 175.1=10.23? | 9].1+7.09
Peak OzPulse [(ml/kg/beat)x100] 12.1£1.9b¢ 65.9+8.4¢f 13.8+2.52%¢ 80.4=11.24 19.0+2.130 93.5£6.7%
BR [1] 51.8+19.4 | 109.4=15.6°T| -1.6=13.3%¢ | 66.7=10.7% | 27.4+:10.7% 89.7+7.14e
Peak VE [I/min] 51.5+15.8> | 51.8=13.17 | 44.4=10.1*¢ | 5591047 | 98.5+13.0% 90.1£6.1%
Peak Vi [I/min] 1.3+0.3" 48.029.5¢ 1.240.23¢ 46.5+8.0F 2.6+0.2% 90.6+5.6%
Peak Bf [1/min] 35.2+5.50¢ 69.9£10.0F | 31.5+£3.9% 63.0£7.79F 47.6x5.2% 90.1=7.44%
Peak VE/VO2 42.5+6.2° 96.7=11.7¢F 40.1+6.0 89.2=10.14 39.5+4.72 91.8+8.44
Peak VE/VCO: 42.0=5.4P | 125.1216.9¢7 | 37.6=4.9% | 108.0=14.19F| 28.4x2 7% 87.6x7.14
Peak PETO: [mmHg] 113.8+4.8"¢ 85.6=5.7¢ 108.3+5.72¢ 79.6=5.34f 118.5+6.8% 90.8+7.24¢
Peak PETCO; [mmHg] 34.8+3.70 92.0+9.6° 38.6=5.12¢ | 101.8+13.19 [ 33.5£2.6" 88.8+6.6°
VAT % of pred. VO2/kg [%] 34.3+5.0P¢ 60.9+8.9¢f 48.4+9 8ac 80.1+9.14f 60.2=9 23> 90.1+6.84d
ECG grading (%) N/A 79.612.2¢F N/A 99,23 4df N/A 89.8+7.6%
O:Pulse response grading [%] N/A 74.412.2¢ N/A 86.2+6.69F N/A 91.4+6.9%
Sa0;z [%] 97.8+1.5b¢ 98.7+2.6%f 88.5x4 9ac 80.1x9.19f 93.5+3 .4ab 89.0+7.0de
VE/VCO: slope 38.1=3.8% | 130.3=11.3¢F [ 31.9£5.12¢ | 105.6=16.69 [ 25.4+2 43 90.2+7.44
FVCII] 3.6=0.8b¢ 80.7+10.3¢f 2.5+0.5% 67.7+8.84f 4.5+£0.730 90.2+7,54%
FEVI [[] 2.8+0.6" 78.3+10.3¢f 1.2+0.23¢ 43.0+6.04f 3.7+0.5% 90.7+6.3%
FEVI/FVC [%] 88.2+8.8b¢ 97.3%6.1¢ 49.0=4.13¢ 64.8+5.24f 77.7£10.9% 89.1£7.34

Data presented as mean + SD.

WR = work rate; VO2 = Oxygen Consumption; VCO2 = Carbon Dioxide Production; RER = Respiratory Exchange Ratio; HR = Heart
Rate; OzPulse = Oxygen Puls; BR = Breathing Reserve; VE = Minute Ventilation; Vt = Tidal Volume; Bf = Breathing Frequency; PETO:
= End-Tidal Oxygen tension; PETCO; = End-Tidal Carbon Dioxide tension; VAT = Ventilatory Anaerobic Threshold; % predicted =
percent of predicted normal value; ECG = Electrocardiography; SaO2 = Oxygen Saturation; FVC = Forced Vital Capacity; FEV1 =
Forced Expiratory Volume in 1 second; CHF = Chronic Heart Failure; CREL=patients diagnosed with cardiovascular-related
limitations; VREL= patients diagnosed with ventilatory-related exercise limitations; H=healthy (normal) patients.

2 Letters a, b, and c represent significant differences (P < 0.05) related to measured values between the specified groups.

b Letters d, e, and f, represent significant differences (P < 0.05) related to % of predicted values between the specified groups.
Ozpulse response grading (% of predicted normal)®?*: Up-sloping 90%, flat 50%, down-sloping 30%.

ECG (%) changes in ECG tracings were classified based on clinical severity: Normal 100%, nonspecific changes 80%, specific T-wave
changes 75%, ventricular conduction defects 70%, atrial arrhythmia 60%, ST depression (>2 mm) 50%, ventricular arrhythmia 40%,
ST elevation (>2 mm) 30%.
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Table 4. Comparisons of CPETs actual and % of pred. values among the three

studied groups - validation stage (means + SD).

Variables CREL (n=26) VREL (n=30)
Measured? | % of pred.©c | Measured” | % of pred.?
Time [min] 8.2=1.7° 85.8+5.14 12.5+£2.22 102.2+14.5¢
Peak WR [watt] 74.3£37.8 41.3£16.5 58.6+20.3 43.4=18.3
Peak VO [/min] 1.0=0.2 40.5+10.5 1.0+£0.2 53.8=14.7
Peak VCO: [I/min] 1.1+0.3 31.7£12.7 1.0£0.2 42.9+£13.6
RER 1.06+0.05 84.1+4.3 1.07+0.06 84.3+£3 8
Peak VO2/kg [ml/kg/min] 13.7+5.0 44.7+17.44 19.2+£5.9 68.7£19.2¢
Slope VO2/WR 8.9+2.8 80.5£22.0 10.7=1.7 85.7x12.0
Peak HR [beat/min] 99.1+21.2° | 4932959 | 116.5=16.22 59.9+8.6°
Peak O:Pulse [(ml/kg/beat)x100] | 123245 | 67.4+254 | 14.1z4.1 82.9£21.2
BR [1] 41.8+18.2 | 101.0=14.54| 17.2+11.02 81.8+8.6°¢
Peak VE [I/min] 45.5+16.6 | 472+17.8 47.3+10.5 58.5+17.2
Peak Vi [/min] 1.4+0.4 50.5+32.8 1.2+0.3 51.9+11.2
Peak Bf [1/min] 32.9+8.7 66.1+16.4 32.1£7.2 62.1=13.2
Peak VE/VO2 48.4=12.3b | 110.0=26.09 | 40.7=7.32 89.0£13.5¢
Peak VE/VCO2 46.2=10.17 | 136.2=29.69| 39.7+7.22 113.0+£19.4¢
Peak PETO; [mmHg] 115.0+£5.5 86.1+6.3 111.3+£5.2 82.1+£6.2
Peak PETCO2 [mmHg] 33.8+4.7 89.2+12.2 35.5+4.3 93.6=11.0
VAT % of pred. VO2/kg [%] 33.7£11.6" | 57.5£17.19 | 49.1+13.62 79.3£14.7¢
ECG grading [%] N/A 80.1+18.74 N/A 08.1+6.3°
OzPulse response grading [%] N/A 71.1£21.8 N/A 77.2=19.5
Sa0; [%] 98.1+1.3P 98.4+3 .34 92.5+3 42 88.3+7.5¢
Slope VE/VCO2 46.0=17.7° | 157.0=55.39| 38.0+11.22 | 124.6£37.0¢
FVC [1] 3.8+1.3 84.2+19.4 3.6£1.0 87.2+22.7
FEV1 [1] 3.1=1.3P 81.6+£24.74 1.2+0.4a 52.8£19.5¢
FEVI/FVC [%] 85.9£19.4 | 97.1+18.19 | 54.8+16.52 70.3£17.6°

Data presented as mean + SD.

See Table 4 for abbreviations.

® Letters a, and b, represent significant differences (P < 0.05) related to measured values between the

specified groups.

b Letters ¢, and d, represent significant differences (P < 0.05) related to % of predicted values between the

specified groups.

O2pulse response grading (% of normal)?*?*: Up-sloping 90%, flat 50%, down-sloping 30%.

ECG grading (% of normal), changes in ECG tracings were classified based on clinical severity: Normal
100%, nonspecific changes 80%, specific T-wave changes 75%, ventricular conduction defects 70%, atrial
arrhythmia 60%, ST depression (>2 mm) 50%, ventricular arrhythmia 40%, ST elevation (>2 mm) 30%.

FEATURE SELECTION - A feature reduction
algorithm (SVM-RFE+CBR) was implemented
to identify the most contributory CPET

Table 5 and 6 present the relative contribution
of CPET parameters to the respective
cardiovascular-related and ventilatory-related
features for each level of exercise limitation ELS.

(ventilatory, cardiovascular, or healthy).
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Table 5. CPET feature contribution to correct classification of ELS in order of impact

— Cardiovascular-related exercise limitation severity classification.

Parameter Sn (%) Sp (%) Acc (%) Pr (%)
Peak VO2/kg 83 92 89 83
Peak HR 63 82 76 63
Peak Ozpuise 80 90 87 80
VE/VCO: Slope 83 92 89 83
Peak VE 83 92 89 83
BR 97 98 98 97
Peak Vt 77 88 84 77
Sa02 77 88 84 77
Peak VE/VCO: 73 87 82 73
O2puise response 73 87 82 73
Peak WR 77 88 84 77
VO2/WR Slope 80 90 87 80
Peak Bf 77 88 84 77
FEV1 77 88 84 77
VAT 77 88 84 77
FEV1/FVC 80 90 87 80
ECG 83 92 89 83
Peak PETO: 83 92 89 83
Peak PETCO:2 83 92 89 83
Peak VE/VO: 83 92 89 83
FvC 83 92 89 83

Sn=Sensitivity; Sp=Specificity; Acc=Accuracy; and Pr=precision.

Table 6. CPET feature contribution to correct classification of ELS in order of impact

— Ventilatory-related exercise limitation severity classification.

Parameter Sn (%) Sp (%) Acc (%) Pr (%)
FEV1 73 87 82 73
Peak WR 77 88 85 77
Peak HR 85 92 90 85
Peak Vt 85 92 90 85
FEV1/FVC 65 83 77 65
Peak Bf 85 92 90 85
Peak VE 81 90 87 81
BR 92 96 95 92
FvC 58 79 72 58
ECG 81 90 87 81
Peak VO2/kg 81 90 87 81
SaO2 81 90 87 81
Peak PETCO:2 81 90 87 81
O2puise response 77 88 85 77
Peak VE/VCO: 77 88 85 77
Peak PETO: 81 90 87 81
Peak Ozpuise 77 88 85 77
VO2/WR Slope 77 88 85 77
VAT 77 88 85 77
Peak VE/VO: 77 88 85 77
VE/VCO: Slope 77 88 85 77

Sn=Sensitivity; Sp =Specificity; Acc=Accuracy; and Pr=precision.
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We selected the best combination of features
(CPET  parameters)
reduction ranking, considering the sensitivity,

based on feature
specificity, accuracy, and precision for the
SVM ELS classifications. Consequently, six
CPET
cardiovascular-related and ventilatory-related

and  eight parameters  for
limitations provided the best classification

outcomes (pale gray features).

The selected features for the two SVM
exercise limitation severity models, in order of

impact, were:

For the cardiovascular-related limitations:
Peak VO/kg, Peak HR, Peak Ozpuse, VE/NCO;
Slope, Peak VE, and BR.

For the ventilatory-related limitations:
FEV1, Peak WR, Peak HR, Peak Vt, FEV1/FVC,
Peak Bf, Peak VE, and BR.

CROSS-VALIDATION OF SVM MODELS -
Table 7 and 8 present the results of the cross-

validation process estimating the accuracy of
the predictive binary models' performance for
the ELS classifications. The
significant

results show

separation between the two
groups (healthy and exercise-limited) and
high similarity within each group of the
exercise-limited patients (low SD) in both
binary models (cardiovascular and ventilatory

- related).

Table 7. Results of the SVM binary model cross-validation — Cardiovascular-related

exercise limitation severity classification.

Physician SVM probability estimation average (%)
Cross-Validation No. of . Cardiovascular .
. . Limitation L Healthy patients
method iterations limitation
50% (training) - Cardiovascular 95+5 43
1250
50% (validation) Healthy patients 5+5 96+3
70% (training) — Cardiovascular 96+5 4+5
450
30% (validation) Healthy patients 4+2 96+2
80% (training) - Cardiovascular 97+4 3+4
200
20% (validation) Healthy patients 3+3 97+3
Cardiovascular 98+3 2+3
Leave-One-Out 100 ]
Healthy patients 32 97+2

Values are means + SD. Bold numbers denote the average probability estimates of the respective group.
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Table 8. Results of the SVM binary model cross-validation — Ventilatory-related

exercise limitation severity classification.

Physician SVM probability estimation average (%)
Cross-Validation | No. of L Ventilatory Healthy patients
. . Limitation T
method iterations limitation
50% (training) — 1250 Ventilatory 96+3 4+3
50% (validation) Healthy patients 5+3 95+3
70% (training) — 450 Ventilatory 97+2 3%2
30% (validation) Healthy patients 4+2 96+2
80% (training) — Ventilatory 97+2 3%2
L 200
20% (validation) Healthy patients 3+3 97+3
Ventilatory 98+2 2+2
Leave-One-Out 100
Healthy patients 2+2 98+2

Values are means + SD. Bold numbers denote the average probability estimates of the respective group.

Final validation of the SVM module as a

classifier for exercise limitation severity.

CLUSTER ASSIGNMENT (K-MEANS) - The
cluster assignments determined by the K-
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means method following the SVM probability
estimation are depicted in Figures 1 and 2.
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Figure 1. K-means cluster assignment for exercise limitation severity levels - cardiovascular-related.
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Figure 2. K-means cluster assignment for exercise limitation severity levels-Ventilatory-related.

Each dot represents the SVM model  Table 9 presents the distribution of the SVM
probability estimation (%). ELS classification compared with prior

The dashed lines show probability estimation ~ Physician evaluation.
thresholds between levels of limitation
severity (mild, moderate, and severe).

Table 9. Confusion matrix — exercise limitation severities

Limitation Severity TP FN FP TN
mild 1 2 0 23

Ventilatory moderate 7 0 2 17
severe 16 0 0 10
mild 4 0 0 26

Cardiovascular | moderate 5 0 1 24
severe 20 1 0 9

TP, FN, FP, and TN denote true positive, false negative, false positive, and true negative, respectively.

The SVM models' ability to correctly predict ~ Table 10. Fifty-three (53) of the validated
the original classification level of ELS is shown in patients (56) were correctly classified (95%).
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Table 10. Comparison between the original physicians' and SVM models' exercise

limitation severity classification.

PHYSICIAN SVM
Limitation Severity level  Count Mild Moderate  Severe  Total
Mild 3 Count 1 2 0 3
i
% within "true" 33% 67% 0%
. Count 0 7 0
Ventilatory Moderate 7 — 7
% within "true" 0% 100% 0%
S 16 Count 0 0 16 16
evere
% within "true" 0% 0% 100%
Mild 4 Count 4 0 0 4
|
% within "true" 100% 0% 0%
. Count 0 5 0
Cardiovascular Moderate 5 — 5
% within "true" 0% 100% 0%
S 21 Count 0 1 20 21
r
evere % within "true" 0% 5% 95%

The count in the Physician section represents the number of study participants in each group. The count

in the SVM section represents the classification results of the SVM model. In addition, % within "true"

(bold percentage) denotes the percent of correct classifications of the entire respective group.

The sensitivity, specificity, accuracy, and
SVM  binary models'
classifications are displayed in Tables 11 and
12. The results show that the SVM model
classification had an overall predictive power
of 83% to 100% for cardiovascular-related

exercise limitations and 78% to 100% for

precision of the

respiratory-related exercise limitations. These
numbers point to the high accuracy of the
machine learning SVM module in predicting
exercise limitations. The sensitivity of the mild
ventilatory-related ELS was an exceptionally
low finding (33%) and was linked to the small
number of patients in this category.

Table 11 - Validation of the cardiovascular-relate exercise limitation severity

classification.

Severity Sn (%) Sp (%) Acc (%) Pr (%)
Mild 100 100 100 100
Moderate 100 96 97 83
Severe 95 100 97 100

Sn-sensitivity; Sp-specificity; Acc-accuracy; Pr-precision.

Table 12. Validation of the ventilatory-related exercise limitation severity

classification.

Severity Sn (%) Sp (%) Acc (%) Pr (%)
Mild 33* 100 92 100
Moderate 100 89 92 78
Severe 100 100 100 100

Sn-sensitivity; Sp- specificity; Acc-accuracy; Pr-precision. *N=3.
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Discussion chronic obstructive pulmonary disease (COPD),

Interpreting and analyzing cardiopulmonary
exercise test (CPET) results remains a topic of
debate in the medical field, with no clear
consensus on the best strategy. Traditionally,
all CPET interpretive strategies are performed
following

These
strategies, including flow charts, graphs, and
tables,
extensive knowledge and understanding of

manually expert-based

guidelines' 41017, interpretation

are time-consuming and require
the meaning and implications of all CPET
physiological variables.? As such, the potential
exists for subjective and sometimes
inaccurate interpretation of CPET results.”*#
Moreover, there is no consensus on any
presently applied interpretation strategies for
CPET data

objectivity and consistency of interpretation
26,27,28

analysis, thus reducing the

and its reporting

Recently, more sophisticated statistics and
machine learning techniques have been
applied in the context of CPET?%2730,

They might prompt a revolution in how
machines will support experts in analyzing
CPET results and the degree of exercise
limitation/intolerance. In the present study, a
CPET
interpretation strategy using SVM models was

novel automatic (computerized)
developed and validated using a supervised
machine learning procedure. The SVM was
trained to model three groups of patients
(CREL, VREL, and Healthy) and to discriminate
between their respective exercise limitation

severities.

Our recently published study® looked at how
well computer-aided algorithms could be
used to evaluate CPET data to find individuals
suffering from chronic heart failure (CHF),

and healthy people. The present study aimed
to expand the paradigm using CPET data and
SVM algorithms

limitations' severity (mild, moderate, severe).

to determine exercise

A total of 206 retrospective CPET files from
two medical centers: The Pulmonary Institute
and the Cardiology Rehabilitation Center at
the Sheba Medical Center in Israel and from
the exercise physiology laboratory at the
Washington-Hill College. Among these files,
80 belonged to patients with confirmed
primary  cardiovascular-related  exercise
limitations, 76 patients with ventilatory-
related exercise limitations, and 50 to healthy
subjects with no apparent exercise limitation,
forming the data pool for analysis. We
employed SVM Learning on 150 CPET files (50
from each group) for model training, while the
remaining 56 CPET files were used for model
validation. Additionally, distribution analysis
was conducted to compare the performance
of the SVM interpretive module with that of
senior cardiologists, pulmonologists, and
expert exercise physiologists. The study's
results demonstrated that the proposed
interpretive model based on machine learning
(SVM)

ranging between 78% and

exhibited high predictive power,
100%. This
indicates its ability to accurately classify the
degree of exercise limitation/intolerance.

Accurately identifying exercise limitations
makes the proposed platform a potent and
clinically applicable solution. Furthermore, we
suggest that similar modules could be
developed and applied to other exercise

limitations and larger populations.

Unlike the disease classification study®, the

exercise limitation severity classification
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consisted of two separate SVM binary models,
one for each limitation (cardiovascular-related
or ventilatory-related). Each exercise limitation
was characterized by selected limitation-
specific physiological responses (features).
Hence, a linear SYM-RFE+CBR algorithm for
the feature reduction process was employed.
This algorithm ranks the CPET features'
impact on the exercise limitation classification
process in descending order. Various
combinations of features were examined to
determine the most powerful (i.e., accurate)
combination of CPET features for predicting
ventilatory- or cardiovascular-related exercise

limitation severity (see Tables 5 and 6).

Surprisingly, a few features (variables)
contributed  significantly to  classifying
cardiovascular-related exercise limitations,

which are truly ventilatory and vice versa (i.e.,
VE, VE/NCO; slope, and BR for the
cardiovascular-related limitation and HR for
limitation).  This

outcome may be partially attributable to many

the ventilatory-related

cardiovascular-related patients suffering from
pulmonary edema, among other deficiencies.
As such, this may cause, among other effects,
right heart overload and malfunction?+°, Such
malfunctions, no doubt, could affect the
pulmonary gas exchange and breathing
patterns (Vt and Bf) and, therefore, their
resulting minute ventilation (VE) and VA/Q
(VE/NCO;, These
functions  are pulmonary-related

mismatch slope)*313233,
truly
attributes. Similarly, many pulmonary-related
patients  suffer  peripheral  (muscular-
mitochondrial) abnormalities that, if severe

enough, could hamper metabolic energy

production and, thereby, limit exercise
tolerance. Furthermore, due to their
ventilatory deficiencies, many of these

patients reach their ventilatory potential
(MVWV) well before that of their cardiovascular
system?*'?_ These health-related factors could
be responsible for the observed relatively low
peak HR (cardiovascular-related feature) and
exercise intolerance. The presence of
overlapping characteristics among different
limitations and intolerances may contribute to
the complexities and discrepancies encountered
when analyzing results from cardiopulmonary
exercise testing (CPET). Interestingly, human
vision can be approximated by computer
vision®*. As a result, the use of machine
learning algorithms  designed to find
discriminatory features in patterns of variables
likely the

representation of what a human expert does

is  most closest artificial
when manually analyzing/interpreting CPET
results. By examining multiple variables
concurrently, an SVM can detect differences
between patterns less likely to be distorted by
internal and/or external "noise" than
conventional manual interpretation or linear
regression algorithms operating on single
variables at a time®3%3  Therefore, the
implementation of an ML algorithm, which is
naturally conceived to find discriminatory
features in patterns of variables, is most likely
the closest artificial representation of what the
human expert is doing when analyzing/
interpreting  CPET

computer-aided algorithms to interpret CPET

results.  Accordingly,
results have several potential advantages. It
can improve analysis efficiency, consistency,
and objectivity, reducing inter-observer
variability. Additionally, such algorithms can
aid decision-making and treatment planning
by providing objective and standardized
assessments. Our approach may enable a

more comprehensive, faster, and observer-
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friendly way to evaluate CPET results than

current approaches, or it may be a

complementary tool. Nonetheless,
prospective studies with larger and more
diverse populations are necessary to validate
the findings further and

generalizability of the SVM

ensure the
interpretive
modules. Additionally, the present study
focused on a specific set of exercise
limitations, and further research is needed to
explore the module's performance in different

clinical contexts.

Conclusions

CPET-based clustering utilizing supervised
identified
stratifying a

machine learning algorithms
CPET profiles,

heterogeneous patient sample according to

integrative

CREL and VREL. Such phenogrouping may
enable an integrative interpretation of CPET
results, facilitate a more comprehensive
assessment of CPET results, and complement
risk stratification strategies.

The proposed new CREL and VREL modules
for CPET analysis are among the few recently
proposed computer-aided interpretation
algorithms for CPET interpretation®3>3¢%.
Both our modules were found to be highly
sensitive and specific. Using them should
reduce complexity, increase objectivity, and
economize on the time of CPET interpretation
in clinical settings. These encouraging results
suggest that the proposed classification
method should be extended to additional
clinical conditions and exercise limitations.
Lastly, we believe that the phenogrouping
model used in this study has high clinical
potential. However, a stringent development
procedure for the software to be used as a
medical device is still required before it can

be used as a real-life medical application.
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Future research directions:

With the study's promising outcomes, it is self-
evident that the

strategies should be extended to other

proposed  diagnostic

pathologies and  exercise limitations/

intolerances.

These may include abnormal O2 delivery,
muscle metabolic dysfunction, pulmonary
abnormalities,

gas-exchange chronotropic

incompetence, overweight, and more.

Study limitations:

As with most research, some shortcomings are
to be expected:
1. This

retrospective CPET data, which may have

study was conducted using
inherent biases and limitations associated
with data collection and documentation.

2. Only three sample populations (CREL,

VREL, and healthy) were selected for the

computer-aided exercise limitation severity

classification, undermining universal

generalizability  and  limiting  clinical
applicability.

3. Even though prior clinical diagnosis and
ELS were corroborated by experienced
physicians and exercise physiologists using
"gold standards" manual CPET interpretation
guidelines, no manual interpretative process
is entirely free of potential error and

inaccuracy.

Abbreviations:

ATS: American Thoracic Society

CPET: Cardiopulmonary exercise testing
ECG: Electrocardiogram

SD: Standard deviation

ML: Machine learning

SVM: Support Vector Machine.

LIBSVM: Library for Support Vector Machines
ELS: Exercise limitation severity

CREL: Cardiovascular-related exercise limitation
VREL: Ventilatory-related exercise limitation
CHF: Chronic heart failure

COPD: Chronic obstructive pulmonary disease
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