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ABSTRACT 

Background: This perspective concerning hepatoxicity of per- and 

polyfluoroalkyl substances (PFAS) aims to provide a current understanding 

of the damage and reasonable clinician responses to the needs of 

concerned patients and affected communities.  

Methods: Search strategy included PFAS and the following: human liver 

toxicity/disease; relevant biomarkers including transaminases, lipids, uric 

acid; predictive equations (for liver disease), liver imaging modalities, and 

histologic findings. Experimental data concerning liver outcomes and 

disrupted hepatic metabolic pathways was also reviewed. Recommended 

clinical approaches to patients and communities was sought in both the 

National Library of Medicine and relevant organizational websites.  

Results: Several PFAS reliably cause adverse changes in human liver 

biomarkers, with strong consistency between human and experimental 

data. Adverse population changes include human transaminases, cholesterol 

and LDL cholesterol, and uric acid. This biomarker triad suggests that 

mechanisms and outcomes are or resemble metabolic associated steatotic 

liver disease, which is found across species following experimental PFAS 

exposure. Human imaging studies and sparse human histologic studies 

mostly support the inference that the toxicant damage is or resembles a 

pathway that can lead from steatosis to more serious stages of liver disease 

due to disrupted liver metabolism of fatty acids. Advice to patients and 

clinicians was reviewed from various agencies and nonprofits organizations 

including a committee of the US National Academies of Sciences, 

Engineering, and Medicine, and the nonprofit/university collaboration PFAS 

REACH.  

Discussion: Converging lines of evidence indict PFAS as human (and trans-

species) hepatotoxins and mostly support a metabolic associated steatotic 

liver disease continuum as the nature of the injury. Increases in abnormal 

transaminases and sparser imaging and biopsy findings support that the 

damage is clinically important and a contributing cause of a public health 

problem. It is still challenging to decide which of many definitively disrupted 

metabolic pathways is/are most important to the injury. Many PFAS in use 

remain virtually unstudied, a research and public health emergency. Simple 

clinical responses to the concerns of the most heavily contaminated patients 

and communities, which are within the capabilities of most clinical offices, 

are reviewed.  

Keywords: Per- and polyfluoroalkyl substances (PFAS); Liver Diseases; 

Liver steatosis; Non-alcoholic fatty Liver disease (NAFLD); Alanine 

aminotransferase (ALT); review 
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Abbreviations:  
alanine aminotransferase (ALT)  

fibrosis-4 index for liver scarring/fibrosis (Fib-4) 

homeostatic model assessment for insulin resistance 

(HOMA-IR) 

metabolic dysfunction associated steatotic liver 

disease (MASLD) 

odds ratio (OR) 

nonalcoholic fatty liver disease (NAFLD)  

US National Health and Nutrition Survey (NHANES) 

NLR family pyrin domain containing 3 

inflammasome (NLRP3) 

per- and polyfluoroalkyl substances (PFAS) 

perfluoroheptane sulfonic acid (PFHpS) 

perfluorohexanesulfonic acid (PFHxS) 

perfluorooctanoic acid (PFOA) 

perfluorooctanesulfonic acid (PFOS) 

toxicant-associated fatty liver disease (TAFLD) 

vibration-controlled transient elastography (VCTE) 

 

Introduction 
Current evidence indicates that per- and 

polyfluoroalkyl substances (PFAS) are hepatotoxins 

and suggests that liver toxicity of PFAS is or 

resembles nonalcoholic fatty liver disease (NAFLD), 

now called metabolic dysfunction associated 

steatotic liver disease (MASLD). An exogenous 

environmental source of such toxicity is important for 

two reasons. MASLD is a rapidly advancing 

international epidemic, affecting an estimated 30 

percent of the world’s population.1-3 The histologic 

phenotypes of the disease range from often 

subclinical steatosis to steatohepatitis, and may 

progress to fibrosis and cirrhosis. Despite increased 

awareness of MASLD as a source of morbidity and 

mortality, it is understood to be seriously 

underdiagnosed, especially in its earliest, most 

reversible phases.2,4 Second, PFAS have become 

ubiquitous environmental toxins,5 and can be 

detected in the blood of almost all humans (and 

wildlife species) from around the world.6-8 Clinical 

understanding of the contribution of PFAS to liver 

disease provides opportunities for improved 

individual and population health.  

 

PFAS are synthetic, multiply fluorine-substituted 

carbon compounds with enduring environmental 

persistence due to the strength of their carbon-

fluorine bonds (“forever chemicals”).9,10 PFAS have 

myriad industrial uses and appear in household and 

personal products, including nonstick cookware, 

disposable food containers, water repellant 

garments, paint, carpets, drapes and upholstery, 

cleaning products, skin applications including 

cosmetics, sunscreens, and deodorants, ski wax and 

other waxes, as well as medications, medical 

devices and anesthetic agents.8 Occupational 

groups (including firefighting, electroplating, 

coated paper and other coating product 

manufacture, and some hobbies) and residence in 

communities with contaminated water have the 

greatest exposure risks.11,12 Nevertheless, PFAS are 

ubiquitous, present in numerous foods including 

vegetables, meat, and especially fish and 

seafood.13 Migration from food packaging 

materials is an important and potentially avoidable 

source of exposure.14,15 A number of PFAS are 

biomagnified in the food chain and bioaccumulative 

in species, including humans.16 PFAS are also in 

household dust (including PFAS originating from 

surface applications and from topically applied 

cosmetics),17,18 and are internal contaminants of 

almost all of humans internationally.6,8  

 

Their chemical stability belies extraordinary 

biological activity. PFAS interact with numerous 

human nuclear receptors,19,20 disrupt fatty acid 

metabolism,21 and increase reactive oxygen 

species.22 They cause immune dysregulation and 

endocrine disruption,23-25 potentially explaining 

epidemiologic findings of increased risks of human 

carcinogenesis such as testicular cancer and kidney 

cancer.26-29 They are associated with diminished 

bone mineralization,30-32 a risk for osteoporosis, 

and with increased risk for bone fracture in 

longitudinal study.33 Exposure is associated with 

hypertensive disorders of pregnancy including 

preeclampsia,34-36 as well as population-level 

alterations in childhood growth and 

development.37,38 Among the catalogue of risks, 

there is increasing evidence that PFAS accumulate 

in liver and that liver is a primary target organ for 

the toxic effects of PFAS.39-41  

 

PFAS and Clinical Biomarker data of Liver 

Function: A systematic review of 23 relevant human 

studies in multiple geographies found evidence of 

adverse effects on liver enzymes and incorporated 

data from eight adult studies in formal meta-

analysis of the historic longer chain compounds. 

Alanine aminotransferase (ALT), the most liver-

specific of transaminase biomarkers, was adversely 

associated with long-chain PFAS exposure (for 

perfluorooctanoic acid (PFOA), representative z-

score =6.20, p=0.001).42 Adverse human 

population associations extend to other 

transaminases, as well as to the apoptosis 

biomarker cytokeratin 18 m30.25,42,43 Transaminase 

https://esmed.org/MRA/index.php/mra/article/view/4819
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and other biomarker evidence of PFAS liver 

damage also pertain to children and adolescents.44-

47 Biological coherence is seen in parallel liver 

function and histologic data from toxicologic studies 

across species.25,42,48-52  

 

The “C8 Health Project” addressed the topic of liver 

injury based on abnormal ALT values in a large 

adult population (n=47,092).53 The population was 

exposed to widely varying levels of PFOA 

contamination in six contiguous water districts, from 

“background” levels of exposure in one unaffected 

area to very high levels of internal contamination, 

and also included exposed workers from teflon 

manufacturing. Using historic statistically-derived 

cutoffs (ALT>45IU/L in men, >34IU/L in women) a 

near-monotonic increase of abnormal value (Odds 

Ratio (OR) 1.10; (95% C.I. 1.07,1.13) was found 

for each additional unit of measured log serum 

PFOA after multivariable adjustments.53,54 Trends 

for abnormal values were stronger in the 

overweight and obese, but the PFAS association to 

abnormal values was significant in all weight 

groups.55  

 

PFAS internal exposures similarly affect total and 

LDL cholesterol, as well as uric acid including 

increased risk of hyperuricemia in studies of multiple 

populations, including children, adolescents, and 

adults including women during the menopausal 

transition.25,42,56-64 The triad of higher liver enzymes, 

worse lipid profiles, and higher uric acid is the 

pattern of biomarker elevation also seen in 

populations afflicted by MASLD, notably in the 

setting of metabolic syndrome.65,66 (NAFLD or 

MASLD has also been termed toxicant-associated 

fatty liver disease (TAFLD) when the contributing 

cause may be contaminant such as PFAS.67) 

Population researchers have sought evidence that 

PFAS hepatotoxicity is due to or resembles the 

progressive damage of MASLD, beginning with 

simple steatosis and progressing to hepatocyte 

inflammation, fibrosis and cirrhosis.  

 

Prediction scores for MASLD combine several 

clinical and/or biochemical parameters in order to 

more accurately predict MASLD state. The fibrosis-

4 index for liver scarring/fibrosis (Fib-4) has been 

used to predict population-wide hepatotoxicity of 

environmental and dietary exposures in 

general.68,69 In US National Health and Nutrition 

Survey (NHANES) data, serum PFAS mixture was 

associated with worse Fib-4 scores but not with the 

(NAFLD) liver fat score; the pattern of findings 

suggested that the risk was more closely related to 

fibrosis than to steatosis.70 In contrast, the hepatic 

steatosis index developed specifically for Asian 

patients was used to evaluate 546 newly 

diagnosed acute coronary syndrome patients in 

Hebei Province, China. The study detected linear 

associations of serum perfluorooctanesulfonic acid 

(PFOS), perfluorohexanesulfonic acid (PFHxS), and 

total PFAS to the predictive index at PFAS serum 

exposure levels considered representative of the 

Chinese population (median PFOS was 5.59 ng/mL, 

serum concentrations of other PFAS were lower).71  

 

Before accepting predictive equation data for 

steatosis vs fibrosis at face value, understanding a 

complexity of serum PFAS concentrations may be 

helpful. PFAS are bound in vivo to albumin,72,73 and 

serum PFAS concentrations are predictably lower in 

those with low albumin and especially lower when 

there is microscopic albuminura.74 Further, liver 

diseases including MASLD increase the risk of 

albuminuria.75 The (NAFLD) Liver Fat Score and 

Hepamet Fibrosis score, which incorporate serum 

albumin as a predictive factor, may therefore suffer 

from attenuation bias when the population-wide 

goal is to interrogate the specific causation role of 

PFAS. The Fib-4 score and the Asian Hepatic 

Steatosis Index, which do not incorporate albumin in 

their predictive equation, may therefore be more 

likely to be useful in PFAS settings and showed 

associations to steatosis as well as fibrosis.70,71  

 

PFAS and Liver Imaging data: In clinical settings, 

suspected MASLD can be diagnosed with 

abdominal ultrasound, magnetic resonant imaging 

or computerized tomography, or increasingly with 

vibration-controlled transient elastography (VCTE), 

a specific ultrasound technique that uses a 

mechanically generated shear wave and liver fat 

to predict liver stiffness.76 Harvard University 

investigators interrogated NHANES 2017-18 data 

for the subpopulation with both serum PFAS 

measures and results of VCTE (n=1,135). Evidence 

of MASLD (n=448) was based on a controlled 

attenuation parameter (CAP, or fatty change) score 

≥285 dB/m (a score representing high degree of 

fatty liver change) and a high likelihood of fibrosis 

with liver stiffness measurements ≥8.6 kPa.77 

Significant associations to CAP scores (per log 

transformed standard deviation increase in PFAS) 

were found for PFOA and for PFHxS (OR 1.13; 

95% C.I. 1.01-1.26) with stronger associations 

present for those with the comorbid risk of heavy 

alcohol intake (≥2 drinks/day for women and ≥3 

https://esmed.org/MRA/index.php/mra/article/view/4819
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drinks-day for men)). Associations were also 

stronger for obese participants.77  

 

PFAS exposure was also associated with imaging 

evidence of MASLD in children. In a study of 244 

NHANES adolescent participants, 41 met CAP score 

criteria for MASLD.78 Perfluoroheptane sulfonic acid 

(PFHpS) was significantly associated with MASLD, 

and most ORs for other PFAS were >1 but not 

statistically significant.78  

 

PFAS and Liver Biopsy and Histology data: Liver 

biopsy remains a key method for diagnosing 

MASLD and for grading and staging disease 

severity. Experimental data across species show 

that PFAS reliably induce lipid droplet accumulation 

and steatosis in hepatocytes.25,79,80 High fat diet 

combined with PFAS exposure increases the 

experimental hepatoxicity.81 Explanations for 

steatosis seen across species have been proposed 

based on experimental data in vivo and in vitro. 

These include (and are not limited to) activation of 

NLR family pyrin domain containing 3 (NLRP3) 

inflammasome, multiple nuclear receptor activations 

disrupting glycerophospholipid metabolism and 

shifting the hepatocyte response from fatty acid 

oxidation to hepatic triglyceride accumulation, 

disruption of gut microbial metabolites, triggering 

of Wnt/ß-catenin/NFß signaling, induced insulin 

resistance possibly by alterations in the 

phosphatidylinositol-3 kinase pathway, and 

disruption of microRNAs and chemical composition 

of liver extracellular vesicles.40,56,82-89 

 

Human biopsy-based studies concerning PFAS and 

nonneoplastic liver disease are likely sparse 

because the procedure carries a risk of bleeding 

and is generally reserved for serious cases in which 

the result of biopsy would also affect 

management.90 Among 74 children with biopsy-

proved MASLD, higher serum PFAS (per each 

interquartile range) and especially higher serum 

PFHxS were associated with increased risk for 

nonalcoholic steatohepatitis (NASH, OR: 4.18, 95% 

CI: 1.64-10.7), lobular inflammation (OR 2.87, 

95% CI: 1.12-7.31). and higher (NAFLD) activity 

score (β-coefficient 0.46; 95% CI: 0.03, 0.89).91 A 

contrasting study of 161 morbidly obese adults 

within a bariatric surgery population found serum 

PFAS to be inversely associated with evidence of 

hepatocellular inflammation.92 The authors noted 

similar inverse associations to polychlorinated 

biphenyl (PCBs) and hexachlorocyclohexane, and 

discussed whether impaired enterohepatic 

circulation following surgical procedures for obesity 

could lead to decreased retention of long half-life 

serum pollutants such as PCBs and PFAS in the 

morbidly obese, explaining the inverse results.92 A 

French study of 100 biopsy proven NAFLD patients 

measured 17 PFAS and found and 

perfluorododecanoic acid (chain length C=12) was 

associated with significant fibrosis and 

perfluorohepatanoic acid with advanced fibrosis.93 

The importance of these isolated findings in the 

context of multiple comparisons will need further 

study. In a cohort of 105 individuals already known 

to have biopsy-proven NAFLD, serum PFAS 

concentration was associated with bile acid and 

lipid metabolic pathways, and with population 

clinical variables such as liver fat content, and with 

homeostatic model assessment for insulin resistance 

(HOMA-IR) in females.94 The authors reported 

similar findings in including sex-specific differences 

in hepatocyte lipid content in a murine model.94 

 

For the related topic of liver cancer, a case-control 

comparison of 50 incident hepatocellular carcinoma 

(HCC) cases and matched controls nested within the 

longitudinal Multiethnic Cohort Study population 

found that high serum PFOS concentrations 

(>55ug/L, a high contamination level that pertains 

to <1% of the population) was associated with 4.5-

fold increase in the risk of HCC (95% C.I. 1.2-

16.0).95 This finding is based on small numbers, and 

did not visualize an effect when exposure was 

evaluated as a continuous variable, pointing to 

possible non-monotonic effects. In addition, a 

lifetime exposure model cohort within the C8 Health 

project (with a still smaller number of liver cancer 

cases) did not dichotomize low versus high exposure 

and detected no relationship to HCC for the related 

compound PFOA.96 The authors of this PFOA study 

discussed the potential for underestimation bias 

when the lifetime exposure enrollment model begins 

with a survivor cohort of an often lethal cancer.96  

 

Discussion of Current Knowledge, 
Literature Gaps, and Research Needs 
for PFAS and Liver Disease.  
Mechanisms of PFAS hepatoxicity: 

Historic “long-chain” PFAS such as PFOA, PFOS, and 

PFHxS are consistently associated with adverse 

changes in a variety of human clinical biomarkers of 

liver toxicity and also with predictive equations for 

MASLD in humans.25,42,54,55,58,70,71 There are parallel 

confirmatory experimental findings of consistent 

presence of steatosis and disruption of lipid and uric 

https://esmed.org/MRA/index.php/mra/article/view/4819
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acid metabolism across species following PFAS 

exposure,25,42,97,98 although reproducing the specific 

experimental finding of higher serum cholesterol 

requires attention to species, dietary conditions, and 

can benefit from additional investigation of 

‘humanized’ models for energy handling.19,99-101 

Multi-omics approaches identify suspect 

mechanisms, including (and not limited to) disruption 

of the pentose-phosphate shunt and compromised 

fatty acid signaling and degradation 

pathways,102,103 and disruption of bile acid handing 

with dysregulated glucose metabolism pathways.94 

Thus, experimental data firmly support and human 

population data including biomarkers, imaging, and 

liver biopsy mostly support that the liver damage 

of PFAS exposure is likely consistent with or similar 

to a steatosis mechanism, while the extent of the 

damage and the most important pathways (out of 

multiple candidate pathways suggested in the 

literature) are only partially amenable to human 

population exploration with biomarker findings.  

 

Imaging for liver steatosis and fibrosis: Emerging 

human imaging VCTE data also support a PFAS 

exposure effect on steatosis and 

inflammation/fibrosis as indicated by CAP scores in 

NHANES data.77,78 The initial introduction of VCTE 

data to the 2017-2018 NHANES cycle, after more 

than fifteen years of population declines in historic 

long-chain serum PFAS levels (such as PFOA and 

PFOS), means that investigations using this resource 

are limited to a narrower exposure range than 

many previous studies. The research gap of few 

available studies and a narrow range of exposure 

means that similar studies in populations with a 

wider range of exposure and longitudinal study 

design are desirable. 

 

Progression and severity of liver disease in 

humans: While experimental data across species 

support a role for PFAS increasing the risk and 

severity of MASLD, sparse human biopsy data are 

conflicting. Associations to liver disease progression 

in at-risk children,91 conflict with inverse associations 

to lobular inflammation in a bariatric surgical 

population for adult morbid obesity.92 A suggested 

role for inverse causation due to enhanced 

excretion patients with altered gut anatomy and 

disrupted enterohepatic circulation following 

bariatric surgery could explain the inverse adult 

association.92 Medications such as cholestyramine 

that disrupt enterohepatic circulation do markedly 

decrease serum PFAS,104 so the proposed 

explanation is plausible, but unproved. An intriguing 

study in a high exposure worker population found 

that modeled cumulative PFAS exposure in a region 

with serious contamination was associated with both 

liver cancer and liver disease mortality, but 

conclusions are tempered because comorbid risk 

factors (such as alcohol) could not be measured and 

the extent of histologic clarification of cirrhosis 

deaths is uncertain.105 PFAS-associated disrupted 

metabolomic pathways in a cohort proven to have 

NAFLD, along with greater steatosis in the females, 

support a role for these toxicants in either the origin 

or the exacerbation of liver disease.94 Finally, PFAS 

and human liver cancer data are intriguing but 

conclusions cannot be drawn.95  

 

Research gaps: 1) To what extent do PFAS initiate 

early stages of liver disease, and to what extent do 

they contribute to disease progression? Early stages 

of MASLD are greatly underdiagnosed, while more 

severe MASLD (and other diseases with late stages 

characterized by serious morbidity and mortality) 

face serious study design challenges including 

enrollment bias and underestimations.4,96,106-108 

Case-control imaging studies nested in existing 

longitudinal populations with historic, wider-ranging 

PFAS measures hold some hope for providing an 

early answer to this question. 2) What can we learn 

about the risks of PFAS in understudied populations, 

including populations with higher a priori risks of 

liver disease such as native Americans, LatinX, and 

Indian subcontinent populations and environmental 

justice communities? 3. How do lifestyle and 

individual risk factors interact with the risk of PFAS? 

It is understood that risk intervention approaches to 

diet and exercise decrease morbidity and mortality 

in steatotic liver disease in general,109,110 and 

preliminary but far from extensive experimental 

and population evidence suggests that appears to 

be the case for PFAS.87,111,112 In addition, there are 

already important hints in the literature that the risks 

of PFAS and alcohol or obesity may be additive, 

and we need to know more. 4) Which of many 

experimentally-supported mechanisms for 

hepatoxicity are most important? The bewildering 

biological activity of these chemically stable 

compounds gives the problem of multiple signals; 

identifying the most important from multiple 

candidates is a need. 

 

Hepatoxicity of PFAS “replacements,” an 

overarching research gap: Proliferating 

"replacement compounds” are generally PFAS with 

shorter carbon chains and shorter half-lives. These 

are increasingly present in food, water, soil, and 

https://esmed.org/MRA/index.php/mra/article/view/4819
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humans.113 These replacements may not be 

bioaccumulated. Convenient serum biomarkers as 

surrogate representatives of exposure are often 

unavailable and exposure estimates are therefore 

complex. Human studies addressing the 

hepatotoxicity of compounds with short half-lives 

are sparse, needed, while after-the-fact 

exploration of hundreds or thousands of compounds 

is inadequate to the task of protecting the public. 

For PFAS in current or contemplated use, the pace 

of industrial development in critical industries and 

proliferation of introduced compounds will exceed 

the available funding for research. The hope that 

replacement compounds will reliably and 

sufficiently be less hepatotoxic than predecessor 

compounds is a slender thread for hanging 

consequential decisions about environmentally 

persistent compounds that find their way into water, 

food, and household dust, especially considering the 

known hepatoxicity of analogous compounds. 

Replacement compounds can demonstrably share 

characteristic toxicity risks with better-studied 

predecessors and may in some cases augment or 

even add risks not previously recognized.85,101,114-

121 Policy debates in the absence of reliable 

predictive data are problematic. The expanding 

knowledge of unfortunate outcomes for the 

compounds we already know, and the strong 

likelihood based on experimental findings that 

many replacement compounds will adversely affect 

humans (and other species), deserve substantial 

scrutiny. Understanding which mechanisms are most 

important to liver disease is critical if there is to be 

hope of using experimental studies for policy 

decisions concerning which (if any) of these 

enormously useful compounds are relatively safer 

and safe enough. 

 

A research facilitation need is clear in all 

circumstances and potentially acceptable to most 

industrial manufacturers and PFAS users. Secrecy 

regarding PFAS molecules in production and use 

needs to end. Delayed recognition that these too 

have been released to the environment, as well as 

the disinformation tactic of artificially high detection 

limits as public reporting values, can only increase 

suspicion, increase adverse effects, and increase 

downstream healthcare consequences and 

environmental clean-up costs, with associated 

potential liability across domains of cost and 

reputation of manufacturing and user industries. The 

pace and efficiency of research will improve and 

public distrust will decrease when environmental 

pollutant reporting and detection strategies keep 

pace with new PFAS-reliant processes and 

pollutants.  

 

Roles and responses of clinicians 
Clinicians may not have to become expert in yet 

another topic with its own rich literature in order to 

interact successfully and safely with patients 

concerned about PFAS exposure. Trust with the 

concerned patient can be built by the simple 

acknowledgement of the substantial evidence of 

PFAS toxicity without committing to specific 

outcomes if the clinician is not knowledgeable. For 

liver toxicity, the topic of this perspective, the 

evidence is quite strong.  

 

Second, exposure concerns of patients such as those 

living in contaminated communities, or in specific 

occupations or avocations, or even those with 

specific diets (such as high consumption of 

freshwater species) can be acknowledged. These 

patients and communities may also want specific 

data about their internal contamination. A 

committee empaneled by The US National 

Academies of Science, Engineering, and Medicine 

(NASEM) at the request of the US Centers for 

Disease Control and Prevention (CDC) has provided 

open source (  

https://nap.nationalacademies.org/catalog/2615

6/guidance-on-pfas-exposure-testing-and-clinical-

follow-up ) clinical guidance for this circumstance, 

encouraging clinicians to inquire about exposure.122 

This begins with a conversation aimed at 

determining how a patient might be exposed to 

PFAS. The exposure assessment includes 

consideration of dietary exposures, local advisories 

that might include fish, game, or water 

contamination, and an occupational medicine 

consultation if there is a work component. (From 

experience, we also recommend a consultation with 

a consultant who is comfortable with broader 

environmental topics, such as an occupational 

physician, when clinical time or expertise is unequal 

to the task of an exposure history.) NASEM then 

recommends offering PFAS testing to patients 

whose history suggests elevated exposure.122 

Considerations for this recommendation will include 

when and if exposure ended, as most elevations in 

blood levels will be gone or greatly diminished 

after 3-4 half lives. However, experience suggests 

that residents in exposure communities can remain 

anxious if merely reassured in the absence of data. 

The considerable problem of the cost of testing if 

there is no payment source, and potential difficulty 

of finding a collaborating laboratory, can make 

https://esmed.org/MRA/index.php/mra/article/view/4819
https://nap.nationalacademies.org/catalog/26156/guidance-on-pfas-exposure-testing-and-clinical-follow-up
https://nap.nationalacademies.org/catalog/26156/guidance-on-pfas-exposure-testing-and-clinical-follow-up
https://nap.nationalacademies.org/catalog/26156/guidance-on-pfas-exposure-testing-and-clinical-follow-up
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PFAS internal contamination testing a difficult task 

from patient and clinician perspective. From 

experience, when patients who may be in high 

exposure groups seek testing, clinical attempts to 

remove barriers to testing support patient 

autonomy and sense of well-being. 
 

What about risk mitigation? NASEM guidance 

includes a lipid panel for patients whose summed 

serum PFAS is higher than 2ng/mL one time 

commencing ages 9-11, and once every 4-6 years 

after age 20, with recommendations that 

dyslipidemia testing could begin as young as age 2 

for patients with ≥20 ng/mL summed serum PFAS 

levels.122 Recommended minimum ages and 

periodicities for preventive screening tests are 

characterized by national variations, and comorbid 

risk factors such as obesity can influence thinking. 

The reasonable goal is to reduce risk, not to rigidly 

follow helpful recommendations which are intended 

to be general. Although lipid screening tests are 

recommended in many countries for all patients, it is 

known that many do not get tested in some 

nations,123 and the concern for PFAS testing can be 

a ‘teachable moment” in the clinician-patient 

relationship that improves performance for lifestyle 

interventions and medication adherence. 
 

NASEM does not make additional recommendations 

about other aspects of PFAS and liver disease for 

the individual, and is also clear that such testing is 

not precluded but instead the outcome of clinician-

patient discussion.122 PFAS-REACH, a US federally 

funded collaboration of several nonprofit 

organizations and universities led by Silent Spring 

Institute does recommend consideration of liver 

disease for high-PFAS exposure populations. The 

medical screening recommendations can be found 

at the PFAS Exchange Resources page website 

(https://pfas-exchange.org/resources/) and 

includes transaminases for highly exposed 

patients.124  
 

Limited yet demonstrably useful lifestyle 

interventions characterize our current responses to 

early stages of MASLD and are equally 

appropriate when PFAS are part of the risk picture, 

and they have known favorable risk profiles. These 

include lifestyle modifications and targeted weight 

loss, physical activity, and dietary changes. As with 

lipid management, which is more likely to engender 

early pharmacologic therapy, the natural patient 

concern about PFAS and liver disease is a potential 

motivator. Its additional contribution to liver risk 

factors may improve the patient-clinician success in 

the rewarding but difficult topic of lifestyle 

intervention to prevent advancement of MASLD. It 

may further be useful to patients to know that there 

is preliminary yet unsurprising evidence that 

exercise, for example, decreases risks for PFAS and 

liver-related topics in adolescents.125 Dietary 

changes that are well-understood to be first-line 

interventions for reducing the risk of hyperlipidemia 

and MASLD in general, such as high fiber diet, can 

also modestly reduce PFAS uptake and increase 

PFAS excretion.111,126,127 Pharmacologic treatments 

are generally reserved for those with who have 

evidence of steatohepatitis or fibrosis,2 although 

obesity is increasingly a pharmacologic target of its 

own in some countries.  
 

Patients may inquire about means to hasten 

excretion of these bio-persistent chemicals with their 

long half-lives. Although PFAS exposures are 

ubiquitous and unavoidable, they can be decreased 

by food and personal product mindfulness such as 

avoidance of freshwater fish from contaminated 

regions, avoidance of prepackaged foods with 

nonstick wrappers, and consideration of which of 

the numerous personal and household products 

contain PFAS. Detailed exposure reduction advice 

is available from NASEM,122 and excellent succinct 

consumer advice is available from many reliable 

consumer sites. Concerning more aggressive means 

of PFAS excretion, a clinical trial in firefighters 

showed that each successive serial phlebotomy 

provides modest decreases in serum PFAS.128 From 

experience with patients from the most affected 

communities, self-nomination as a regular voluntary 

blood donor has been a logical and likely cost-

effective patient response to internal contamination, 

although also an ethical topic not addressed by 

blood donation agencies since the blood PFAS is 

directly transferred to unknown recipients. One 

affected community appears to be considering a 

coordinated phlebotomy approach to decreasing 

serum PFAS.129 Bile acid sequestrants such as 

cholestyramine appear to greatly enhance 

excretion of PFAS and especially sulfonate PFAS 

such as PFOS,104 and may be reasonable 

considerations with an uncharacterizable 

risk/reward profile, especially for patients who 

also need a secondary lipid lowering drug.  
 

Finally, clinicians can add PFAS to their list of known 

public health concerns, and provide advocacy for 

steps that reduce environmental releases or dietary 

and personal exposures. Clinicians can advocate 

for resources that support delivering 

uncontaminated water where PFAS have already 

https://esmed.org/MRA/index.php/mra/article/view/4819
https://pfas-exchange.org/resources/
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infiltrated source water, and that mitigate risks in 

those already exposed.  

 

Conclusion: 
The ubiquitous environmental and internal 

contaminants PFAS are definitively hepatotoxic to 

humans (and other species). This is shown by 

consistent alterations in liver enzyme biomarkers 

across experimental species and in numerous human 

populations, with convincing meta-analysis 

findings.42 The toxicity either is or resembles 

MASLD, as shown by a triad of biomarker data 

including transaminases, cholesterol and LDL 

cholesterol, and uric acid; by emerging liver 

imaging data;77,78 and by sparser and not fully 

consistent biopsy data.91,94 Experimental studies 

show that a number of pathways are 

affected.25,39,42,56 Clarifying which of these 

pathways is most important is a consequential 

research need because “replacement” PFAS ( which 

are also “forever chemicals”) are being introduced 

into use, and therefore into the environment and into 

humans (and other species) at a rapid rate.7,8,10,130 

Predictive studies of which, if any, may be nontoxic 

to the liver are essential. Trade secrecy delays 

recognition of environmental releases and is 

societally expensive. There are several roles for 

clinicians including public health advocacy for clean 

water and medical care of exposed workers and 

residents of contaminated communities. It is not 

necessary for clinicians to become PFAS experts to 

follow the simple PFAS avoidance and monitoring 

guidance presented by the several authoritative 

websites provided in the text. A healthy high-fiber 

low-meat diet can decrease exposure and enhance 

excretion, and unhealthy foods often have more 

PFAS (and freshwater fish from contaminated areas 

and some seafoods are examples of generally 

healthy foods that can contain more PFAS). 

Specialists can provide additional discussion 

concerning enhanced excretion. PFAS exposure 

causes liver damage, and it may also provide those 

so affected with an additional motivation for early 

and safe interventions which decrease risk. 
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