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ABSTRACT

Respiration is vital for human function. Inhaling specific gases
can have specific physiological and cognitive impacts. Using a
suite of sensors, we can collect detailed information on a range
of both physiological and environmental factors. This study
builds on previous research exploring how particulate matter
affects physiological and cognitive responses, now expanded
to include CO,. We tracked the biometric variables of a cyclist,
analyzing 329 specific variables. Simultaneously, an electric
vehicle following the cyclist measured CO, and other
environmental factors. After data collection, we used machine
learning models to decipher the interactions between the
human body and its surroundings. We found that biometric
data alone could be used to accurately estimate the amount
of CO; inhaled, achieving a good level of precision (r?=0.98)
when comparing the estimated CO; based on biometrics and
the actual observed CO; levels. In addition, we developed a
ranking system to identify the biometric variables that most
significantly predict environmental CO; inhalation.

Keywords: Machine learning, biometric, particulate matter,

cognitive, COx.
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1. Introduction

During inhalation, air containing oxygen and
other components is drawn into our lungs. As
a byproduct of our body’s metabolism,
carbon dioxide is produced and enters the
lungs via the bloodstream. This waste gas is
then expelled from the lungs during
exhalation'. Recent data from the World Health
Organization reveal that 99% of the global
population is breathing air that exceeds WHO
quality guidelines. This widespread exposure
to air pollution at home and in the
environment contributes to approximately 7

million premature deaths per year?.

Since respiration is an important part of life, it
is natural that the quality of air we breathe has
many effects on the human body®. Exposure
to gases such as sulfur dioxide, ozone,
nitrogen oxides, and carbon monoxide
negatively affects the respiratory, cardiovascular
and other systems of the human body, while
particles such as lead and mercury can
negatively affect the nervous, urinary, and

cellular mechanisms, among others®*®¢7:89.10,

This study continues the work done previously
to understand the effects of air pollution,
particularly particulate matter in the human
body',

autonomic response in microenvironments at

expanding it to examine the
small spatial and temporal scales by now
considering inhaled CO..

Previous studies have shown that even short-
term exposure to CO; can lead to various
physiological and cognitive effects with a
concentration of CO; ranging from 500 ppm
to 3,000 ppm'#™3™. Short-term exposure, but
with a high concentration of CO; in the range
of 7%-14% has been found to increase arterial

pressure, heart rate, and gas volume intake

with other effects such as abnormal cardiac
rhythm, sweating, headache, and auditory

and visual problems™.

The purpose of this work is to simultaneously
sense both environmental and biometric data
and then examine the utility of machine
learning to build empirical models of the
observed interactions. As the functional forms
of the relationships between the observed
variables are not always known, machine
learning techniques can be used to learn by
multi-variate and often

example these

nonlinear  relationships. The  biometric
variables observed simultaneously include
nine physiological responses, namely heart
rate (HR), galvanic skin response (GSR),
respiration rate (RR), skin temperature, blood
oxygen saturation (SpOy), electrocardiography
(ECG), average diameter of the pupil of both
eyes, absolute value of the difference in pupil
diameter, the distance between pupils, and
activity at 64

head

electroencephalography (EEG). Among these

measurement of electrical

locations  throughout  the using
variables, the absolute value of the difference
in pupil diameter and average pupil diameter
are calculated variables using the measured
values of diameter of both eyes of the
participant, while the EEG and seven other

physiological variables are directly measured.

Since inhaled CO; affects our body in multiple

ways, we investigated whether these
biometric variables can be used to estimate
the concentration of inhaled CO,. We were
able to use machine learning regression to
estimate inhaled CO; from just a subset of the
observed biometric data. After training the
model, which used 80% of the complete data
set, we could test how the model performs

using the remaining data as an independent
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validation data set. It turns out that, for this
purpose, some biometric variables are much
more useful than others, so we can use only a
subset of biometric variables to accurately

estimate the inhaled environmental CO,.

2. Materials and Methods

We simultaneously collected biometric data
for a single participant and data on their
environmental context, using an extensive

array of sensors. Following data collection, we

analyzed this information with machine
learning models.
Here is a concise overview of our

methodology; a more detailed description of
data collection can be found in''.

2.1 HOLISTIC SENSING

Our holistic sensing has two key parts,
environmental and biometrics. The array of
environmental sensors consisted of multiple
sensors; in this study, we will only consider the
CO; data measured using a LI-COR LI-850
instrument’® at a sampling rate of 0.5 Hz. A
total of 329 biometric variables have been
considered. The EEG data was collected using
a Cognionics system' at 500 Hz. The ECG,
GSR, SpO,, respiration rate, skin surface
temperature, and heart rate were measured
using the Cognionics AIM Generation 2
device'®, with a sampling rate of 500 Hz. The
physiological readings of the eyes: the
diameter of each eye and distance between
the pupils were measured using the Tobii Pro
Glasses 2", with a sampling rate of 100 Hz.
The list of all the biometric variables and their

purpose is mentioned below:

* Electroencephalography (EEG) is a medical
imaging technique that employs sensors to

monitor surface brain electrical activity. This

method captures electrical signals originating
from the brain, which arise from the collective
activities of neurons®. These electrical signals,
measured in voltages, are very small and are
measured by placing electrodes on the scalp.
In this study, we used an EEG headset
equipped with 64 electrodes, adhering to the
10-10 nomenclature system?'. This device was
placed on the scalp, and each electrode was
designed to detect minute voltage changes in
the brain. The voltage recorded by each
electrode was referenced against ‘virtual
reference’, calculated as the average across all
channels. The data we obtained took the form
of a voltage time series (V) at each electrode.
Readings for some electrodes can be
distorted with artifacts such as blinks, eye
movement, jaw clench, tongue movement,
head

movement which have not been removed.

swallowing, neck tension, and

The data thus obtained from each electrode
can be transformed from the time domain to
the frequency domain, and this was done
using the Scipy? Welch function in the
following frequency ranges: Delta (1-3 Hz),
theta (4-7 Hz), alpha (8-12 Hz), beta (13-25 Hz)
and gamma (25-70 Hz). Therefore, a power
spectrum is obtained with the frequency on
the X axis in units of Hz and the density of the
power spectrum on the Y axis in units (V?/Hz).
The data obtained from each of the 64
electrodes and dividing the frequency into
five bands each yield a total of 320 features
from the EEG headset alone. The EEG data
and code for retrieval of the EEG data and
transformation of the EEG data from a voltage
time series to power spectral density are
uploaded on GitHub and are included in the

supplementary materials.

e Electrocardiography  (ECG): ECG, or
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electrocardiography, is a method employed
to measure the electrical activity of the heart.
Coordinated electrical impulses in various
regions of the heart are essential for
maintaining proper blood flow.? Analyzing
these impulses helps to assess heart rhythm
and detect irregularities in heartbeat, as well
as determine the rate and strength of these
electrical signals?®. In this study, the ECG
measurements were taken in microvolts, with

the sensor positioned on the chest surface.

* Galvanic Skin Response (GSR): GSR, also
known as skin conductance, is a method that
measures the electrical conductivity of the
skin. This technique exploits the fact that the
sweat glands, which are involuntary, become
active in response to emotions such as joy,
increasing the conductivity of the skin®.
However, it is not just emotions that trigger
sweating; everyday experiences such as
physical labor or exposure to high
environmental temperatures can also lead to
increased perspiration. In this study, the GSR
sensor was positioned on the lower back of
the neck. Conductivity is measured in micro
Siemens

(uSiemens), with higher values

indicating a greater sweat response.

* Oxygen Saturation (SpO2): SpO:
measurement reflects the proportion of
hemoglobin saturated with oxygen compared
to hemoglobin not carrying oxygen.? For this
study, the SpO; sensor was placed behind the
left ear and the readings were presented as
percentages. For example, a reading of 95%
SpO:; indicates that 95% of the hemoglobin in
each red blood cell is oxygenated, while the

remaining 5% is non-oxygenated.

* Respiration Rate: Indicates the breathing

rate per minute, measured with the same

device used to measure the GSR.
* Skin
measurement reflects the temperature at the

Surface Temperature: This
skin surface where the sensor is located. In this
instance, the sensor was positioned on the
right temple of the participant, from their
perspective. The temperature is recorded in
degrees Celsius ('C).

eHeart rate: Indicates the number of
heartbeats per minute measured with the

same device used to record SpO; data.

* Average Pupil Diameter: This metric
represents the mean diameter of the pupils of

both eyes, measured in millimeters (mm).

e Pupil Center Distance: This refers to the
three-dimensional measurement of the
distance between the centers of the pupils,

expressed in millimeters (mm).

* Pupil Diameter Disparity: This measures the
absolute difference in diameter between the
left and right pupil, quantified in millimeters
(mm). Sensor placement and biometric suite
fitting were carefully managed to minimize
physiological responses. All data collected
were downsampled to a frequency of 1 Hz,
effectively producing one data point per
second for each of the 329 variables and the

environmental CO; measurements.

2.2 DATA COLLECTION

During the COVID-19 pandemic, this study
was conducted with a single participant, while
plans to involve multiple participants are
currently underway. Data collection occurred
when the participant rode a bicycle, followed
by an electric car equipped with
environmental sensors in its trunk, including
the CO, sensor. Data recording ceased when

the bicycle ride ended.
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Data gathering took place over three separate
days: May 26, June 9, and June 10, 2021. CO;
measurements were conducted specifically on
June 9 and 10, with two trials each day. This

study was located in Richardson, Texas.

The cyclist was equipped with a GPS sensor,
which tracks longitude, latitude, and altitude.
Figure 1, created using MATLAB, displays a
street map of the data collection area,
the 329 variables and CO;

measurements simultaneously,

displaying
recorded
resulting in a comprehensive dataset.

Sensor data are not always precise due to
measurement artifacts such as biometric
sensor movement and may sometimes fail to
provide readings, necessitating data cleaning,
which leads to occasional gaps in the data. In
Figure 1, Trials 1 and 2 exhibit fewer gaps,
allowing a nearly continuous  path
representation, along with the corresponding
CO; concentrations at various locations. The
start and end points of each bicycle ride are
marked with an asterisk. The data points
collected totaled 710 and 696 for Trials 1 and
2, respectively. In Trials 3 and 4, some data
gaps are evident due to cleaning, yielding

total data points of 673 and 238, respectively.

The methodology of data collection,
downsampling, and subsequent data cleaning
resulted in a comprehensive data set
comprising 2,317 time-stamped records. This
data set was organized into a DataFrame with
Of these, 329

predictor

330 columns. columns

represent variables, primarily
consisting of biometric data, and one column
is dedicated to the target variable, which in
this case is the CO; values. The DataFrame
these 2,317 data

encapsulates entries,

presenting the values of the 330 variablesin a
time series format. Geographic coordinates
latitude)
corresponding CO; values have been made

(longitude and along with the

available on GitHub and are included in the

supplementary materials.
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Figure 1: Location and track of bicycle for data collection. (a) Track for data collection in Trial 1 on June 9, 2021 with

the corresponding COz concentration. (b) Track for data collection in Trial 2 on June 9, 2021 with the corresponding

COz2 concentration. Arrow indicates the initial direction of ride in the loop. (c) Track for data collection in Trial 3 on

June 10, 2021 with the corresponding CO2 concentration. (d) Track for data collection in Trial 4 on June 10, 2021 with

the corresponding CO2 concentration. Arrow indicates the initial direction of ride in the loop.

2.3 DATA ANALYSIS AND MACHINE
LEARNING MODEL DEVELOPMENT
Upon constructing the DataFrame, a machine
learning algorithm was applied to predict
inhaled environmental CO, using biometric
variables as features. We employed Random
multi-dimensional
the
Ensemble Random Forest Regressor package.
The dataset was split, with 80% used for
training the model and the remaining 20%

Forests?® for non-linear,

regression,  utilizing scikit-learn?’

serving as a test set. We evaluated the
prediction accuracy by computing Pearson'’s
correlation coefficient between the actual and
predicted CO; values, where a perfect
prediction would result in a coefficient of 1.
Additionally, the Root Mean Square Error

(RMSE) was calculated to assess the prediction’s
precision. Qualitative analysis of the actual
and predicted values was conducted using
Quantile-Quantile plots and Time series plots.

Post-implementation of the Random Forest
algorithm, SHAP Values (SHapley Additive
explanations)?®, designed for tree-based
algorithms?, were used to rank predictors
based on their effectiveness in forecasting the
target variable. The SHAP value algorithm was
the

package from the SHAP library.

implemented  using TreeExplainer

The top 9 predictor variables were then

examined, and a Pearson’s correlation

coefficient was calculated between these
variables and CO;, resulting in a 10x10

6
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correlation matrix. The corr function from the

3031 was used to investigate

Pandas library
potential linear relationships between the

variables.

To explore non-linear relationships, mutual
information was calculated using the package
from scikit-learn?. A higher mutual information
value indicates a stronger relationship, while a
value of zero suggests independence between

the variables.

3.Results

The process inhaled

environmental CO, and understanding its

of estimating the

connection to the human body through the
measured biometrics is broken down into two
parts: first, considering all 329 biometrics (or
features) of which 320 were EEG variables and
9 were non-EEG (or physiological) variables
and second used only the 9 non-EEG variables.

3.1 ANALYSIS USING 329 FEATURES

As mentioned above, the models were trained
on 80% of the data set using the scikit-learn
random forest algorithm and the remaining
20% was kept as a test. Doing so yielded a
very high accuracy in both the training and the
testing set, with the value of Pearson’s
correlation coefficient squared (r?) between
the actual and predicted to be 0.99 and 0.98
respectively. Additionally, the root mean
square error (RMSE) between the actual and
predicted values was also low, with an RMSE
of 9.01 ppm and 25.66 ppm in the training
and testing set, respectively. This is much
higher than the previous estimation of PM;
particles that yielded an accuracy of r? = 0.91

in the test set.™

Figure (2a) shows a bar graph of RMSE values
with RMSE in the training set in blue, while

RMSE in the test set in orange. Figure (2c)
shows a scatter plot of the true CO; values
versus the estimated CO; values with the ones
in the training set represented by the blue
dots and those in the testing set by the
orange sign X'. It can be seen that most of the
points lie at or near the 1:1 dark line,
indicating that the difference between the
true and estimated values is close most of the
time. The points seem to deviate between
700 ppm and 800 ppm where there are fewer
data points. The data points then again start
to be close to the dark line as the
concentration of the data points increases.
Figure (2d) shows a quantile-quantile graph of
the true values of CO; versus the estimated
values of CO,. As can be seen, most of the
data points lie close to the 1:1 red line. Again,
the quantiles deviate from the red line
between the 700 to 800 range, where there
are fewer data points available, and start to
come closer as the concentration of the data
increases. The percentiles of the distribution
have also been indicated showing that 75% of
the CO; values were approximately below the
550 ppm values.

Finally, Figure (2b) shows a SHAP value
beeswarm plot of the top 9 features arranged
in descending order indicating the features
that were the most influential or contributed
the most to the prediction of environmental
CO:; inhaled. These SHAP values on the X-axis
are in units of the target variables, that is,
ppm. The color bar indicates the values of the
features with higher values in red and lower
values in blue with identical SHAP values for
the features stacked vertically in the plot.
Depending on how the data are shuffled, the
order of the variables might change a bit, but
the variables tend to stay the same, especially
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in the top seven, where the magnitude of the
SHAP values is significantly higher than other
values. The average pupil diameter is one of
the top most variable useful in predicting the
CO; values with a higher average pupil
diameter lowering the prediction while a
lower average pupil diameter increasing the
prediction. The dilation of the pupils, as a
physiological response, has been correlated

with cognitive tasks®***. As data collection is

done while the person is cycling, it is expected
that the participant is sweating. However, it
has been found that inhaling CO; causes
sweating thereby affecting the GSR values®.
Similarly, other features such as skin
temperature, heart rate, and respiration rate
were top features as it was in the estimation

of PM; particles done previously'.

(a) (b)

Model Performance RMSE High

25 4 Average Pupil Diameter (mm) W—'

GSR (1S) .’-h——

£ T7-delta (V?/Hz) ’- 2 —
g : . ; 3
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U 15+ ©
© | >
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g g
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Figure 2: Performance and top 9 feature importance plot for estimating CO> using 329 biometric features. (a) RMSE

between the actual and estimated values of CO; in the training and test set. (b) Top 9 features in estimating COz

identified using SHAP values in a beeswarm plot. (c) Scatter plot between the actual and estimated values in the

training and the testing set with the corresponding r? values. (d) Quantile-Quantile plot between the actual and

estimated values with the percentiles.

Other variables with the highest contribution
in estimating CO; included the ones from
EEG. The T7 electrode, as suggested by the
10-10 nomenclature system?', is located in the

temporal lobe on the left side of the brain
which is involved in speech and short-term
memory®. The FT10 electrode is located

between the frontal and temporal lobe,

Medical Research Archives | https://esmed.org/MRA/index.php/mra/article/view/4890

8



https://esmed.org/MRA/index.php/mra/article/view/4890
https://esmed.org/MRA/mra

Medical
Research
Archives

Gauging Ambient Environmental Carbon Dioxide Concentration Solely Using
Biometric Observations: A Machine Learning Approach

located on the right side of the brain. Similarly,
the alpha band of the Fp2 electrode which is
placed between the frontal and parietal lobes
on the right side of the brain seems to have a
lesser contribution to the estimation of CO,
with all variables below, even less contribution

with lower SHAP values.

Figure 3 shows a time series of the true CO,
plotted in solid red with the estimated CO;
plotted in dotted blue lines for all 4 trials on 2
days of data collection. The shaded background
1 had
among the lowest values of CO, while trial 4

colors differentiate the trials. Trial

had the highest values with CO. reaching
above 900 ppm. For most parts in the time
series, the true values of CO, are in close
proximity to the estimated values of COs.

A 10 by 10 correlation matrix of Pearson’s
correlation coefficient consisting of the top ¢
features and the target variable has been
plotted to identify the linear relationship
between them and a 10 by 10 matrix of mutual
information for the same variables has also
identify
relationship. The digits are rounded up to 2

been plotted to nonlinear

significant figures.

Figure (4a) shows that few of the variables are
linearly related. The average diameter of the
pupil had a negative correlation with GSR,
ECG, heart rate, and vice-versa. GSR had a
positive correlation with skin temperature,
ECG and vice versa. Regarding the target
variable, the strongest linear correlation with
CO; was found to be with the average
diameter of the pupil. Figure (4b) helps in
identifying non-linear relationship between
the 10 features. The skin temperature had a
high mutual information with GSR, ECG,
respiration rate, and heart rate. GSR had
higher mutual information with ECG, heart
rate, respiration rate, and skin temperature.
Similarly, with respect to the target variable
CO; had a high mutual information with
heart ECG,
temperature, GSR which is to be expected, as

respiration rate, rate, skin
these variables had a greater contribution to
the estimation of CO, as shown by SHAP

values.

Time series of all 4 trials for CO, (ppm)

l/—— True CO fAe 10 9097 |
200 c 06-09-2021 ‘ 106-10-2021 |
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€
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Time (seconds)

Figure 3: Time series plot of the true CO; values with the estimated values of CO; overlaid for all the 4 trials

of data collected on 2 separate days considering 330 biometric variables
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Figure 4: 10 by 10 Pearson’s correlation and mutual information matrix (a) Pearson’s correlation matrix for 10 variables

to identify linear relationships. Mutual information matrix for 10 variables to identify linear and non-linear information.

3.2 ANALYSIS USING 9 PHYSIOLOGICAL
RESPONSES

Now we consider only the 9 physiological
responses (or non-EEG) to estimate CO; using
the same Random Forest algorithm from
scikit-learn with 80% of the data set for
training and the remaining 20% of the dataset
for testing.

Remarkably, considering only the 9 physiological
responses yielded an almost identical and
indicated by
Pearson’s correlation coefficients of 0.99 and

highly accurate result as
0.98 between the actual and estimated values
of CO; in the training and the testing set,
respectively. The RMSE between the actual
and estimated CO; values was also very low,
8.78 ppm and 19.41 ppm in the training and

testing set, respectively.

A bar graph of the RMSE in the training set
and the testing set is shown in Figure (5a) with
the train RMSE in blue and the test RMSE in
orange. A scatter plot in Figure (5¢) between
the true and actual CO; values is shown in
Figure (5a) with actual values of CO; in blue
dots and the estimated values in the orange
sign 'x". The plot shows that most of the values
are close to the 1:1 dark line with some values
deviating between the 700 ppm and 800 ppm

just as before with a probable cause being
less number of data points.

The quantile-quantile plot in Figure (5¢) shows
that the true values and the estimated values
of CO; are very close to each other with values
deviating between 700 ppm and 800 ppm
with a distribution similar to that of the

estimate made using 329 variables.

A SHAP value beeswarm plot in Figure (5b)
shows a ranking in descending order of the
physiological variables that indicates which of
the variables was the most important to
predict CO. The SHAP value, which in this
case is in ppm is close in magnitude for
average pupil diameter and GSR thus the
ordering of these two variables might change
as the data are shuffled. Similarly, the SHAP
value for SpOy, the distance of the pupils, and
the absolute value of the difference in the
diameter of the pupils are close to each other
and the ordering could change when the
algorithm is rerun. Just as before, the average
pupil GSR,
respiration rate, and heart rate were among
with  the

very low

diameter, skin temperature,

the main predictor variables
SpO;  with

magnitude of SHAP values. Furthermore, the

immediate next

distance of the pupil and the absolute value
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of the difference between the pupil diameter
have less of a contribution, as indicated by the
small magnitude of the SHAP value. Since the
SHAP values of SpO;, the distance of the
pupils and the absolute value of the difference

in the diameter of the pupils are low,

(a) (b)

Model Performance RMSE
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Figure 5: Performance and feature importance plot for estimating CO2 using 9 biometric features. (a) RMSE between
the actual and estimated values of COz in the training and the testing set. (b) Top 9 features in estimating COz
identified using SHAP values in a beeswarm plot. (c) Scatter plot between the actual and the estimated values in the
training and the testing set with the corresponding r? values. (d) Quantile-Quantile plot between the actual and the

estimated values with the percentiles.

A time series graph of the true CO; and the
estimated CO; of the 9 non-EEG variables is
in Figure 6. The solid red line
the true CO;
estimated CO; is represented by the blue
dotted line for the 4 trials in 2 days where the

shown

represents whereas the

background color indicates the individual
trials. Apart from a few points, the estimated

CO, values are close to the actual CO,, which
was a similar result when considering all the
329 variables.
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Figure 6: Time series plot of the true CO2 values with the estimated values of CO2 overlaid for all the 4 trials

of data collected on 2 separate days considering 9 biometric variables

Just as before, a 10 by 10 correlation matrix
of Pearson’s correlation coefficient and a 10
by 10 mutual information matrix of the 9
physiological responses and CO; as shown in
Figure 7. A

correlation is observed between respiration

somewhat positive linear
rate and SpO,. A relationship is expected
between respiration rate and SpO; since
respiration is the way blood receives
oxygen.? Although there does not appear to
be any strong linear correlation of CO; with
the 9 non-EEG variables expected with that of

average pupil diameter as before.

There was greater mutual information
between CO, and GSR, heart rate, skin
temperature, ECG, and average pupil
(a)
Pearson’s Correlation Coefficient Plot 10
Average Pupil Diameter (mm) ozmoo Bl 01 o5 L
ECG () - 0.6 (LRI 3% 03 00 00 01
Skin Temperature (°C) X LE8 00 00 04
g Heart Rate (bpm) - 0.5 | 0.0 L 02 90 01 01 m
|Difference in Pupil Diameter| (mm) - 0.1 0.0 01 0.0 01 0.0 X

€0; (ppm) - 0.6

diameter with near zero mutual information
between the absolute value of the difference
in pupil diameter and the distance of the
pupils, which is again expected, as indicated
by the magnitude of SHAP values. The
absolute value of the difference between the
diameters of the pupils seems to have near
zero mutual information with most of the other
variables. Similarly, the pupil distance also has
near-zero mutual information with the rest of
the variables, indicating that the variables are
almost independent of each other.

(b)
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Figure 7: 10 by 10 Pearson’s correlation and mutual information matrix (a) Pearson’s correlation matrix variables to

identify linear relationships. (b) Mutual information matrix for 10 variables to identify linear and non-linear information.
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The entire data set and the code for the

results are publicly available and are
uploaded in GitHub, the link to which is in

supplementary materials.

4. Discussion

The results of our study show that the
physiological and cognitive responses resulting
from inhaling CO, and measured using
various sensors can be used to predict inhaled
CO, with precision, as indicated quantitatively
by the r* and RMSE values between the true
and estimated values and qualitatively by the
quantile-quantile graph and the time series
graph. The predictor ranking indicates that a
small set of physiological responses can be
used to make the model simpler while also
these

understanding in  what  way

physiological responses change.

The results obtained from this research show
that the methodology previously used to
estimate and understand the effects of
particulate matter'' can also be used in
inhaled gases such as CO.. The comprehensive
suite that we have used to measure a large
number of biometrics can simultaneously test
not just the effects of inhaled CO; but also the
relationship between these variables, as
shown by the Pearson correlation matrix to
identify linear relationships and the mutual
nonlinear

information matrix to capture

relationships. Moreover, by taking into
account a large number of biometrics, we can
test not just one but multiple variables that
were simultaneously affected due to the

inhaled gas.

Although this study showed some promising
results, two of the main limitations in this study

cannot be overlooked. The first is that the

study was conducted with a single participant.
To overcome this limitation, measurements
were made on multiple days with multiple
trials. However, a generalized result can only
be obtained by considering a large number of
participants. The other limitation is that of
artifacts in the EEG signal resulting from
various activities such as blinking, tongue
movement, jaw clenching, muscle movement,
etc. as mentioned before which creates noise
in the EEG data. Although there are many
algorithms to remove artifacts,* considering
the activities involved while cycling, which
would consist of a combination of artifacts,
the removal process can be very challenging.
However, the results shown by the study show
that the non-EEG variables are good enough
to estimate inhaled CO..

This work can be extended in various ways.
Future work can involve other biometric
variables other than the one used and also
particulates or gases such as black carbon,
carbon monoxide, ozone, etc. A study can
also be conducted to test whether the reverse
process is possible, for example: can a
biometric variable such as skin temperature
be predicted with reasonable accuracy using
a combination of biometrics and atmospheric
compounds such as CO,. Multidimensional
machine learning models can also be used to
test whether a biometric variable such as skin
temperature can be predicted with other
biometrics such as heart rate, breathing rate,
and GSR since the mutual information between

these variables was found to be high.

5. Conclusion
Using a subset of biometrics, inhaled CO; can
be estimated using machine learning models

with a high fidelity and autonomic responses
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can be studied at a small temporal and spatial
scale in microenvironments. Although there
are a few limitations to this study, there are
also mitigation measures with plenty of room
for future work. Computational techniques
such as machine learning have many practical
purposes, which in this
understand the effects of inhaled CO; on
physiological and

case was to

autonomous cognitive

responses of a human body.
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