
 
Medical Research Archives |https://esmed.org/MRA/index.php/mra/article/view/4899  1 

 
 

 
 

   OPEN ACCESS 
 
Published: January 31, 2024 
 
Citation: Fernando BA, Talebi S, 
et al., 2024. Environmental Health: 
Unraveling Particulate Matter 
Trends with Biometric Signals, 
Medical Research Archives, [online] 
12(1).  
https://doi.org/10.18103/mra.v
12i1.4899 
 
Copyright: © 2024 European 
Society of Medicine. This is an 
open-access article distributed 
under the terms of the Creative 
Commons Attribution License, which 
permits unrestricted use, 
distribution, and reproduction in 
any medium, provided the original 
author and source are credited.  
DOI  
https://doi.org/10.18103/mra.v
12i1.4899 
 
ISSN: 2375-1924 
 
 
 
 
 
 
 

RESEARCH ARTICLE 
 

Data-Driven Environmental Health: 
Unraveling Particulate Matter Trends with 
Biometric Signals 

 

Bharana Ashen Fernando, Shawhin Talebi, Lakitha 
Wijeratne, John Waczak, Vinu Sooriyaarachchi, Shisir 

Ruwali, Prabuddha Hathurusinghe, David J. Lary∗, 
John Sadler, Tatiana Lary, Matthew Lary, Adam Aker 
 
Department of Physics, University of Texas at Dallas, 800 W 
Campbell Rd, Richardson TX 75080, USA 
 
*Corresponding author: David.Lary@utdallas.edu  
 
ABSTRACT 
Human physiology is known to react to various environmental stimuli 
over different time frames. Prolonged exposure to elements such as 
heat, air pollution, and volatile organic compounds negatively 
affects health, as established in previous research. Our earlier work 
demonstrated that autonomic responses of the human body, recorded 
through biometric sensors on a single individual, could empirically 
predict levels of inhalable particulate matter in their immediate 
environment. This current study extends this finding to observations 
from multiple participants. Subjects cycled on stationary bikes 
outdoors, equipped with a range of biometric sensors, while 
environmental sensors simultaneously captured data on their 
surroundings. Using this expanded data set, machine learning models 
achieved a high degree of accuracy (R2=0.97) in predicting 
concentrations of particulate matter (PM2.5) using a few readily 
available biometric features, including skin temperature, heart rate, 
and respiration rate. This research underscores the importance of 
physiological responses as markers of exposure to particulate 
matter, laying the foundation for the use of biometric data in 
environmental health surveillance and real-time pollution assessment. 
Keywords: particulate matter; autonomic responses; machine 
learning 
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1. Introduction 
The environment continuously exerts an influence 
on human health on multiple temporal1,2,3 and 
spatial scales. There has been significant 
literature on long-term exposure to air pollutants 
such as nitrogen oxides,4 sulfur dioxide, volatile 
organic compounds (VOC), and PM5 that produce 
and exacerbate adverse health effects such as 
cardiovascular diseases,6 damage to nervous 
systems,7 and even cancer.8 Studies of short-term 
exposures and effects are less prevalent, but still 
outline effects such as wildfire smoke on cognitive 
abilities after a 24-hour delay from the time of 
exposure.9 
 
Among the air pollutants mentioned above, PM, 
in particular, can affect human physiology to 
varying degrees. The depth of penetration into 
the human body through inhalation is inversely 
related to the size of PM.10 For example, PM10 
can only travel through the trachea, while PM1 
can penetrate through the alveoli. Historically, 
PM10 and PM2.5 have been the most prominent 
metrics for quantifying habitable air quality, 
but since smaller PM particles are capable of 
reaching deeper into respiratory systems, it is 
important to characterize their effects on health 
as well. 
 
To characterize the short-term effects of PM on 
human physiology, we observe the autonomic 
responses of a human subject. Autonomic 
responses such as heart rate, galvanic skin 
response (GSR), pupillometry, and 
electroencephalography (EEG) are controlled by 
the autonomic nervous system (ANS) and regulate 
involuntary bodily functions.11 Thus, by 
simultaneously measuring the environmental 
context alongside the subject’s biometric 
variables, we may relate how PM may affect 
human physiology in extremely short temporal 
and spatial scales. Previous research has found 
that healthy non-smoking women exposed to 
PM2.5 traffic during cycling were associated with 
a decrease in heart rate variability (HRV) 3 
hours after exposure.12 Among patients with 
chronic obstructive pulmonary disease (COPD), 
short-term exposure to PM2.5 can result in 
decreased blood oxygen saturation (SpO2) in the 
order of minutes.13 This manuscript describes an 
extension of a previous study,14 and contains 
biometric data from four subjects collected in 

four cases in October 2021, January, and 
February 2022. We observe that with additional 
data from increased subjects, machine learning 
(ML) models can better predict smaller PM 
concentrations from a handful of biometric 
features (skin temperature, heart rate, and 
respiratory rate). 
 

2. Materials and Methods 
The data collection methodology is inherited 
from the previous iteration of this study.14 
Although the fundamental methodologies for 
data collection, described in Sections 2.1 and 
2.2, have remained consistent, the main 
differences and improvements of the study 
presented are outlined below. 
 
Previously, data acquisition involved a single 
subject participating in multiple trials of an 
outdoor bicycle riding along a public bike trail, 
while an accompanying electric vehicle equipped 
with an array of sensors captured the surrounding 
environmental context. This study involved the 
collection of data from four distinct participants, 
each on a stationary bicycle, also placed 
outdoors next to the WSTC building at the 
University of Texas at Dallas in Richardson, TX, on 
four separate occasions, spanning October 2021 
to February 2022. Again, the environmental 
context was acquired through sensors placed 
immediately adjacent to the participants. 
 
Although a significant portion of the biometric 
and environmental attributes recorded in both 
experiments remain consistent, substantial 
enhancements have been made to the temporal 
resolution of the data. Specifically, we now have 
access to biometric and environmental data in 
the order of 1 Hz, whereas previously the data 
for analysis were sampled every 30 seconds, 
which allows the ML models to capture rapid 
changes in both the environment and 
physiological responses to the environment. 
 
a. Biometric Data 
To comprehensively capture the autonomic 
responses exhibited by the participants, a wide 
variety of biometric variables were captured 
from a range of sensors. The objective of this 
approach was to build ML models without 
preconceived notions of the physiological 
responses that are being explored. 

 

https://esmed.org/MRA/index.php/mra/article/view/4899
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Figure 1: Left: Cognionics (CGX) 64-electrode system used to measure EEG data. Top right: CGX 
AIM2 sensors measure biometrics such as skin temperature, rate of respiration. Bottom right: Tobii 
Pro Glass 2 used to collect pupillometric data. 
 
Electroencephalography (EEG) signals were 
recorded using a CGX Mobile-64 system 1, shown 
in Figure 1, which consists of 64 electrodes that 
are in contact with the scalp of the subject. The 
electrodes were placed according to the 10-20 
system, which describes the distances between 
the electrodes.15 Millions of neuronal excitations 
emanating from the brain produce electric fields 
that are captured by the electrodes.16 A 
conductive gel is applied on the scalp of the 
subject to improve the detection of electrical 
activity on the electrode. These signals, captured 
in units of microvolts as a time series, can provide 
valuable information on the cognitive state of an 
individual. 
 
In addition to the EEG headset, we also 
incorporate the CGX AIM2 sensing system, which 
collects a rich spectrum of biometrics, such as skin 
temperature, respiration rate, blood oxygen 
concentration, electrocardiography (ECG), and 
galvanic skin response (GSR), a measure of 
autonomic sweat gland activity.  
1https://www.cgxsystems.com/  
 
Tobii Pro Glass 2 eye tracking system is used to 
measure pupillometric data from subjects. From 
this sensor, we have access to metrics such as 
pupil diameters, gaze directions, and pupil 
center positions, all collected at 100 Hz. 
Furthermore, video streams of the participant’s 
eyes and their point of view are recorded at 50 
and 25 frames per second (fps). 
 
b. Particulate Matter 
The Fidas Frog 2, a fine dust measurement 

device, is the sensor used to measure particulate 
matter near participants. It is an optical 
aerosol spectrometer that uses the scattering of 
light from single particles to determine their 
sizes. 
 
The sensor has a time resolution of 1 s and is 
capable of measuring the concentrations of PM1, 
PM2.5, PM4, PM10, (particle matter of size 1, 2.5, 
4 and 10 µm, respectively) in addition to the 
concentrations of particles within the range of 
0.18 – 93 µm. To serve as a direct comparison 
to the previous study with a single subject, we 
also only considered the effects of particulate 
matter concentrations on biometric features. 
 
c. Data Collection 
We collected physiological data from four 
subjects on four separate days in October 2021, 
January, and February 2022. Before stationary 
cycling began, there was a calibration period of 
two minutes each in which subjects had their eyes 
open and closed, respectively, to establish 
baseline biometrics. Each participant was 
equipped with a set of sensors, shown in Figure 
3, in such a way that they could unobtrusively 
cycle on the stationary bike for a period of 
time at their discretion. Each data collection 
instance lasted approximately 10 minutes. 
 
The environmental sensors were located in the 
back of an electrical vehicle, which collects 
ambient air from an input for analysis, parked 
approximately two meters from the participant. 
The Fidas Frog PM measurement device was 
placed adjacent to the subject of the participant. 

https://esmed.org/MRA/index.php/mra/article/view/4899
http://www.cgxsystems.com/
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2https://www.palas.de/en/product/fidasfrog 
 
d. Data Processing 
To explore the relationship between biometric 
and environmental data in multiple people, we 
frame the problem as a supervised ML problem. 
Biometric data will serve as features of the ML 
model, and the environmental context, measured 
by particle concentrations for PM sizes, is the 
target. 
 
As part of data processing, raw EEG data, 
measured in µV, are transformed from the 
time domain to the frequency domain using 
the Welch method,17 which calculates power 
spectral densities at different frequencies. These 

can be further subdivided into frequency bands, 
namely: Delta (0.5-4Hz), Theta (4-8 Hz), Alpha 
(8-13 Hz), Beta (13-30 Hz), and Gamma (30-
100 Hz).16 Each frequency band is associated 
with specific states of brain activity, such as deep 
sleep, calm wakefulness, and attentiveness. The 
spectral density of each frequency band can be 
calculated for each of the 64 electrodes, resulting 
in 320 feature columns. 
 
To compare the data collected from various 
sensors at disparate frequencies, they need to 
be appropriately synchronized. The three main 
sources of data -biometric, pupillometric, and 
environmental are collected at 500 Hz, 

 

 
Figure 2: Left: Fidas Frog PM measurement unit. Right: AIRMAR Weatherstation 220WX used to collect 
environmental quantities such as pressure, air temperature. 
 

 
 
Figure 3: Participants are adorned with biometric sensors and ride a stationary bike next to 
environmental sensors. 
 

100 Hz, and approximately 1 Hz, respectively. 
Thus, all sources are merged and resampled at a 
rate of 1 Hz, the smallest measurement frequency 
from the sensor suite. After the data processing 
was completed, including the removal of the data 

from the T7 electrode due to poor signal quality, 
there were a total of 1,383 unique timestamp 
records in 324 columns of biometric features, 
measured from four participants. 
 

https://esmed.org/MRA/index.php/mra/article/view/4899
http://www.palas.de/en/product/fidasfrog
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e. Feature Selection and Machine Learning Model 
Initially, a decision tree-based algorithm known 
as XGBoost18 was chosen for the development 
of the model.  XGBoost is used for supervised 
ML tasks, such as regression, and since we are 
attempting to predict ambient PM from biometric 
signatures from individuals, XGBoost is well suited 
for the problem. Builds decision trees 
sequentially, iteratively minimizing the loss 
function, which in this case is the mean squared 
error (MSE). 
 

Similarly, to a standard ML workflow, training 
was performed on 80% of the data, while the 
model was tested on the remaining 20%. For 
explainability, we employ SHapley Additive 
exPlanations (SHAP) values,19 which attempt to 
quantify the importance of a particular feature 
by assigning a score to the model when the 
feature is removed from the predictions. 
Furthermore, it attempts to score how the model 
reacts when a particular feature value increases 
or decreases, which can provide an intuition on 
how the features contribute to the model. It 
should be noted that these contributions should 
not be interpreted as causal, but merely as how 
the features are correlated to the model. 
 

Given the large number of feature columns, we 
also attempted to build a more robust learning 
environment by selecting only the most optimal, 
information-rich features. If the selected features 
do not contain useful and generalizable 
information, the resulting model is an overfitted 
model that does not perform well when faced 
with data the model was not trained on or one 
that learns the noise of the data instead of the 
meaningful characteristics of features. For that 
reason, Pearson’s correlation coefficients and 

mutual information20 were considered potential 
methods to extract information-rich 
characteristics.  Pearson’s correlation 
coefficients are known to capture linear 
relationships between features, while mutual 
information can quantify non-linear relationships 
between variables. For two continuous variables 
X and Y, mutual information I is given as: 

 
where p(x) and p(y) are marginal probability 
density functions of X and Y , and p(x, y) is the 
joint probability density function of X and Y . In 
other words, mutual information measures the 
dependency between features using an estimate 
of the entropy from the distances of the k nearest 
neighbors and produces a nonnegative score; the 
higher the score, the higher the mutual 
information between the two variables and vice 
versa. 
 

Following the premise that features with high 
mutual information with the target variable are 
good predictors of the said target, the ML model 
can be made more robust by selecting a smaller 
number of features based on their mutual 
information score to create a more general ML 
model. 
 

Furthermore, in an attempt to investigate easily 
obtainable biometric variables, we developed 
ML models to predict PM concentrations 
exclusively using skin temperature, respiration 
rate, blood oxygen concentration (SpO2), 
changes in blood volume (PPG) and heart rate. 
For these models, all biometric features that are 
less readily collected from the more resource-
intensive sensors such as EEG |. 

 

 

  
Figure 4: The correlation (left) and mutual information (right) matrices calculated between a subset of 
the features used in our empirical regression models and the target dataset of PM concentrations.  

https://esmed.org/MRA/index.php/mra/article/view/4899
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f. A Causal Perspective for Feature Selection 
A fundamental principle for the interpretation of 
statistical data is ‘correlation does not imply 
causation’.21 When choosing what features to use 
in an empirical machine learning regression 
model, it is, therefore, helpful to use a causal 
perspective to try and draw a directed graph. 
The graph is based on observations alone and 
describes the likely relationship between the 
ambient environment and the physiological 
response of the human body. We then used only 
the features that have a causal relationship with 
the variable we are seeking to estimate. The 
Occam Razor is a principle that states ‘Entities 
should not be multiplied without necessity’ or ‘The 
simplest solution is most likely the right one’.22 

Applying Occam’s Razor in regression modeling, 
with an emphasis on including only causally 
related variables, leads to models that are 
likely to be more accurate, reliable, 
interpretable, and generalizable. Simpler 
models with fewer parameters and less 
complexity are less likely to overfit the training 
data. This means that they are more likely to 
perform well on unseen data, which is the ultimate 
goal of a machine learning model. For clarity, it 
is useful to note that the causal graph does not 
utilize the machine learning model, it is employed 
at the feature selection stage before we train the 
models. First, we calculate a ‘causal effect’ 
between the target (in this example, 

 

 
Figure 5: Left: Causal effect between input feature and PM2.5 for easily accessible biometric features. 
Right: A directed graph created using causal analysis of the collected biometric and environmental 
data to assess the interaction between the ambient PM abundance and the autonomic responses in 
humans. 
 
PM2.5) and the biometric features, as proposed 
by.23 This method suggests that the degree to 
which a feature can reduce the uncertainty of 
a target variable, calculated by Shannon 
entropy, can quantify the causal effect of a 
feature on a target. While the algorithm failed 
to execute on the full biometric dataset due to 
memory constraints, we were able to successfully 
calculate causal effects on the easily collectible 
biometric features (skin temperature, heart rate, 
and so on). Then we use the approach 
described by24,25 to produce the directed graph 
shown in Figure 5. In the Discussion section, we 
explore the physiological relationships between 

PM2.5 and heart rate, skin temperature, 
respiration rate, and SPO2. 
 

3. Results 
The first ML model to predict PM concentrations 
from biometric data from all participants 
included all biometric characteristics, a total of 
324 columns, ranging from EEG data to 
pupillometrics and metrics such as heart rate, skin 
temperature, and galvanic skin response. The 
results of this model can be seen on the top left 
of Figure 6. 

 

PM2.5 

Heart Rate 

Skin Temperature Respiration Rate SpO2 

https://esmed.org/MRA/index.php/mra/article/view/4899
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Figure 6: Top left: Scatter plot with the goodness of fit of the ML model. Top right: SHAP values of the 
model, which provides both a ranking of feature importance as well insight into how each variable 
affects the model. Bottom: quantile distribution of actual and prediction PM2.5 values. 
 
For PM2.5, the correlation coefficient reports an 
r2 = 0.976 as the goodness of fit on the test 
dataset, an improvement over the previous study, 
and suggests a relationship between biometric 
context and PM concentrations in an extremely 
short time scale (on the order of seconds) between 
multiple participants. The axes in the scatter plot 
show the distribution of training and testing data, 
which shows the subgroups of data from different 
participants. The plot on the top right in Figure 6 

shows the results for 10 features with the highest 
SHAP values from the model. We note that 
skin temperature is ranked as the most important 
feature, followed by heart rate, distance 
between the center of the pupils, and a host of 
frequency band information from EEG 
electrodes. The SHAP values suggest that, among 
participants, given a higher value of skin 
temperature, the model is more likely to predict 
a lower concentration of PM2.5 and vice versa. 

 
 

Quantile plot for PM2.5 

https://esmed.org/MRA/index.php/mra/article/view/4899
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Figure 7: With a handful of (relatively) easily-collectible biometric features, the ML model is able to 
predict ambient PM2.5. The RMSE error had increased from 0.34 to 0.40 µg/m3 
 
To explore viable simplifications of the ML model, 
we calculated the mutual information between the 
target and the biometric data. In Figure 4, we 
show the mutual information matrix of a handful of 
variables (from the initial 324) that contain the 
most information and are accessible in terms of 
data collection. Rebuilding a machine learning 
model to predict ambient PM2.5 concentration 
with this high mutual information biometric 
features yields results comparable to the previous 
model, which included all biometric features 
collected and derived. The respective scatter plot 
and SHAP values are shown in Figure 7. 
 

4. Discussion 
Empirical ML models that predict PM 
concentration on multiple participants extend the 
results that predicted PM concentration from the 
biometric signature of a single participant.14 
The first model, Figure 6, included all biometric 
characteristics collected and derived, 
represented by 324 columns, ranging from EEG 
frequency spectral densities to pupillometrics to 
skin temperature and heart rate. This is an 
improvement over the previous results from a 
single subject, which had a goodness of fit of r2 
= 0.91 between the predicted and actual PM 
concentrations for the test data set. It should also 
be noted that the models trained and tested on 
data from a single subject are unable to predict 
on the test data set with a comparable degree 
of precision, as shown in Figure 8. Multiple 
trials may improve the predictive power of the 
model, similar to the previous single-subject 
experiment.14 
 

Through the usage of SHAP values, it is also 
revealed that skin temperature and heart rate 
hold the most importance for this empirical ML 
model. Research has shown that there is a 
relationship between skin temperature and heart 
rate in children,26 but the short-term effects of PM 
concentration on physiological responses such as 
skin temperature and heart rate are still being 
explored. It is interesting that the sweat response, 
measured through GSR, is not an important metric 
even though the skin temperature is highly 
correlated with the ambient PM concentration. 
 
The performance of the empirical models created 
from a handful of easily collectible biometric 
variables also sets an important paradigm. It 
suggests that to model ambient PM concentration, 
one may not necessarily need to invest in a 
resource-intensive sensor suite that captures EEG 
or pupillometric data. Although the data from 
these sensors have helped, biometrics such as skin 
temperature, heart rate, and blood oxygen 
concentration can model the ambient PM 
concentration equally well. 
 

The benefits of linking skin temperature, heart 
rate, and particulate matter concentration are 
numerous. Measurement of core body 
temperature is a fundamental body temperature 
measurement but is challenging to make, as it 
usually involves a rectal probe, so we have 
instead measured the skin temperature. Skin 
temperature is influenced by the core 
temperature since the body regulates heat loss or 
retention through blood flow to the skin,27,28 but 
it is also subject to external environmental 
factors, making it an imperfect proxy of the core 

https://esmed.org/MRA/index.php/mra/article/view/4899
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temperature. Heart rate and core temperature 
are intrinsically linked through thermoregulation 
and cardiovascular physiology. As the core 
temperature increases, such as during fever or 
exercise, the body initiates thermoregulation 
processes such as vasodilation and sweating, 

which can lead to an increase in heart rate to 
facilitate heat loss. In contrast, a drop in core 
temperature can trigger vasoconstriction and 
shivering, which also affect heart rate. This 
bidirectional influence suggests a complex 
relationship that 

 

 

 
Figure 8: Each scatter plot shows predictive power of a model trained only on a single subject’s biometric 
data and their ambient PM2.5 concentration. None of the models show performance comparable to 
when data from all is part of a feedback system that maintains homeostasis. 
 
When the heart rate increases, usually during 
physical exertion or stress, the blood flow to the 
skin also increases, potentially increasing the 
temperature of the skin.29,30 Conversely, in a 
relaxed state, a lower heart rate is associated 
with a decrease in blood flow to the skin, which 
can decrease the temperature of the skin. Both 
heart rate and skin temperature are influenced 
by a variety of other factors, including ambient 
environmental conditions such as temperature, 
physical activity, emotional state, and general 
health. 
 
The physiological relationship between heart 

rate and respiration rate is closely coordinated 
through the autonomic nervous system, where 
both rates increase to meet the increasing 
demand for oxygen and nutrients in the body 
and to remove carbon dioxide and waste 
products.31,32 This coordination is known as 
cardiorespiratory coupling. Each can be 
independently influenced by various factors such 
as physical activity, emotional state, and overall 
health. 
 
Heart rate and blood oxygen saturation (SpO2) 
are related in the context of cardiovascular and 
pulmonary function; Heart rate determines how 

https://esmed.org/MRA/index.php/mra/article/view/4899
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often blood is cycled through the lungs, where 
oxygenation occurs, and SpO2 indicates the 
percentage of oxygen-saturated hemoglobin in 
blood.33,34 Elevated heart rate can increase 
oxygen delivery to tissues by circulating blood 
more rapidly, but does not necessarily increase 
SpO2, which is generally maintained at a high 
level by homeostatic mechanisms until pulmonary 
or cardiovascular function is compromised. The 
relationship is a complex interaction, especially 
under stress or pathological conditions. 
 
Of all the biometric variables we measured, skin 
temperature has the strongest response to the 
change in PM abundance (Figures 6 and 7). 
Ambient PM can potentially influence skin 
temperature through a variety of mechanisms, 
each of which is likely to operate on different 
timescales. The shortest timescales of seconds or 
less are those that we are likely to be observing in 
our observations. Response times are likely to 
vary between individuals depending on the 
individual’s sensitivity, the concentration of PM, 
and the duration of exposure. 
1. Vascular Responses: PM can cause 

immediate (within seconds to minutes) 
vasoconstriction due to the release of 
endothelial signaling molecules such as 
endothelin, resulting in decreased blood flow 
to the skin and potentially reduced skin 
temperature.35 

2. Autonomic Nervous System Disruption: The 
effects of PM on the autonomic nervous system 
can occur as PM-induced irritation of the 
respiratory tract can alter the autonomic 
balance, affecting sweat production and 
dilation of blood vessels.36 

3. Inflammation and Oxidative Stress: 
Inflammatory and oxidative stress responses to 
PM can develop in hours to days, as the body 
mobilizes immune cells and generates reactive 
oxygen species in response to particulates, 
which can affect the regulation of skin 
temperature.37 

4. Endocrine Changes: Endocrine responses to 
PM, such as disruptions in thyroid function, can 
take days to weeks, as alterations in hormone 
levels can affect metabolic processes and 
consequently, skin temperature over time.38  

 
The relationship between ambient particulate 
concentrations and heart rate could involve an 
intricate interplay of multiple physiological 
mechanisms, each with its own timescale. 
1. Autonomic Imbalance: Exposure to PM can 

alter the balance of the autonomic nervous 
system (in seconds to minutes) by enhancing 
sympathetic activity.39 This immediate 

response can occur due to the activation of 
neural receptor reflexes in the respiratory 
tract after inhalation of particulates. 

2. Oxidative Stress: Particulates can induce 
oxidative stress that leads to changes in 
vascular tone and heart rate due to the effects 
of reactive oxygen species on the 
cardiovascular system.37 

3. Inflammatory Response: Over a period of 
hours to days, PM can induce systemic 
inflammation, potentially increasing heart rate 
through increased sympathetic activity.35 The 
release of cytokines and other inflammatory 
mediators into the bloodstream can increase 
heart rate by influencing the electrical 
activity and contractility of the heart.40 

4. Endothelial Dysfunction: This can occur over a 
longer period, from days to weeks, as chronic 
exposure to particulates leads to endothelial 
dysfunction, affecting heart rate by altering 
blood vessel reactivity.41,42 

5. Direct Effect on Heart Cells: Fine particles can 
enter the blood-stream and exert direct 
effects on cardiac cells.40 

6. Cardiovascular Reflexes: Irritation caused 
by particulates in the lungs can provoke 
reflexive cardiovascular responses, including 
increasedheart rate.42 

7. Hypoxemia: Particulate matter has been 
found to affect gas exchange and 
subsequently have effects on heart rate.43 
 

5. Conclusion 
This study builds on the earlier study of14 by using 
a much larger data set amassed from a diverse 
cohort of participants, substantially increasing 
the number of data points available for the 
development of machine learning models, and 
expands the analysis to include a causal 
perspective and derive a directed graph based 
on the collected data that describes the 
relationship between variables. This causal 
perspective highlights the importance of 
physiological responses as indicators of exposure 
to particulate matter, providing a basis for the 
use of biometric data in environmental health 
surveillance and real-time pollution assessment. 
The results are encouraging, as we shown that, 
between multiple participants, the concentration 
of ambient PM2.5 can be predicted with a high 
degree of precision, initially from many biometric 
features, and then using only a handful of easily 
collectible features such as skin temperature, 
heart rate, blood oxygen and respiration rate. 
We believe that the study can and should be 
further strengthened by increasing the sample 
size to a more numerous and representative 

https://esmed.org/MRA/index.php/mra/article/view/4899
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population. Data collected from demographics of 
various statures that would facilitate the analysis 
of autonomic physiological responses that are 
disproportionately affected by air pollution. 

 

Supplementary Materials 
Both the data and code have been made 
publicly available at: https:// 
github.com/mi3nts/DUEDARE_multiple_participa
nts and https://zenodo. org/records/10152548 
(accessed on November 17th, 2023). 
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